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We present a path-integral formulation of the motion of a particle subjected to fluctuating active and thermal
forces. This general framework predicts the statistical behavior associated with the stochastic trajectories of
the particle, accounting for all possible realizations of Brownian and active forces, over an arbitrary potential
landscape. Temporal correlations in the active forces result in non-Markovian statistics, necessitating the
inclusion of a fixed active-force value at specified times within the statistical treatment. We specialize our theory
to that of exponentially correlated active forces for a particle in a harmonic potential. We find the exact results
for the statistical distributions for the initial position of the particle, accounting for the impact of the correlated
active forces at all times prior to the initial time. Our theory is then used to find the two-point distribution for
the active Brownian particle, which governs the joint probability that a particle begins and ends at specified
locations. Analyses of the active Brownian statistics demonstrate that the impact of active forces can be
interpreted through a time-dependent temperature whose influence depends on the competition of timescales of
the active-force correlation and the relaxation time of the particle in the harmonic potential. The general results
presented in this work are transferable to a broad range of nonequilibrium systems with active and Brownian
motion, and the time-dependent temperature serves as a governing principle to describe the competition of
timescales associated with active forces and internal relaxation processes.
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I. INTRODUCTION

Active matter systems constantly harness energy (either
from within the system or from its surroundings) to produce
useful work or to enhance motion beyond that of Brownian
diffusion alone [1–8]. Such systems are ubiquitous in nature.
Examples of active forces at play work at varying length scales
and timescales of dynamic phenomena including swarming
bacterial cells or so-called “microswimmers” [9], artificially
self-propelled Janus probes or “active” colloidal particles
[10], ant colonies [11], schools of fish [12], flocking of birds
[13], and correlated herd motion of animals [14].

Active forces also impact crucial biological processes
at the microscale, such as enzymatic activity of proteins
[15], gene expression in cells [16,17], the protein machinery
that enables endosomal membrane fusion [18,19], biophys-
ical properties of cell membranes [20–23], and cytoskeletal
mechanical properties [24–26]. Large-scale dynamic rear-
rangement is central to chromosomal function as a repository
of genetic information that must be stored, expressed, repli-
cated, and divided. As with synthetic polymers [27], DNA
in living cells undergoes stochastic motion that is character-
istic of Brownian forces arising from thermal fluctuations.

*ajspakow@stanford.edu

However, numerous experimental observations indicate that
“active” biological fluctuations play a central role in the mo-
tion of chromosomes in living cells [28–36]. Fundamental
insight into the role of active biological fluctuations is es-
sential to establishing a quantitative prediction of behavior in
living cells.

Thermal fluctuations drive the stochastic Brownian motion
of microscopic objects. The theoretical basis for predicting
Brownian motion establishes a connection between the mag-
nitude of Brownian forces from the thermal surroundings and
the dissipation of heat from the friction exerted on the object
[37,38]. The resulting fluctuation-dissipation theorem predicts
stochastic trajectories whose time-averaged behavior is gov-
erned by equilibrium statistical thermodynamics. However,
the introduction of active forces generally nullifies the use of
the governing statistics from equilibrium statistical thermody-
namics [39,40], although connections with equilibrium may
exist in some limiting cases [41,42]. As such, it is necessary
to establish a theoretical framework from which the statistical
behavior of an active Brownian particle can be determined.
Given the prevalence of nonequilibrium systems, this method-
ology would have a broad range of applications in the study
of their dynamic behavior.

While the dynamics of a single particle in the presence
of an arbitrary colored noise process is a long-studied prob-
lem [43–46], recent theoretical developments include efforts
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towards understanding the nonequilibrium characterization of
the system and thermodynamic irreversibility in the presence
of active forces [2,7,47–52], motility-induced phase sepa-
ration [42,53] and phase equilibrium [54], and generalized
fluctuation relations for active matter systems [55,56]. These
existing theoretical approaches primarily focus on a path-
integral treatment based on the Onsager-Machlup integral and
characterize the breaking of time-reversal symmetry with the
introduction of active forces.

In this manuscript, we provide a path-integral formulation
of the statistical behavior of particles that are acted on by both
thermal (i.e., Brownian) and athermal active forces. Within
our path-integral approach, we introduce a field transforma-
tion that enables the solution of the particle statistics in a
range of problems. To account for the non-Markovian nature
of active Brownian motion, we incorporate fixed values of
the active force at specified times, allowing us to capture
particle distributions with memory of all past active forces
values. Specializing to the case of harmonic forces, we derive
exact expressions for the initial and the two-point distribu-
tions, which are used to analyze the competition between the
active-force timescale and the relaxation time of the particle
in the harmonic potential. This competition is prevalent in
active Brownian motion, and we introduce the concept of a
time-dependent temperature to interpret the influence of active
forces on relaxation processes with a given timescale.

II. PATH-INTEGRAL FORMULATION OF BROWNIAN
MOTION WITH ACTIVE FORCES

We consider a particle undergoing random motion over
a potential V . For our development, we focus on one-
dimensional transport, but the final results are extended
to three dimensions. The particle is subjected to a time-
dependent fluctuating thermal force fB (i.e., Brownian force)
and an active force fA that represents transient perturba-
tions from the surrounding enzyme activity and, hence, is
generically athermal in nature. The temporal evolution of the
position x(t ) is governed by a modified Langevin equation,

ξ
dx(t )

dt
= fV [x(t )] + fB(t ) + fA(t ), (1)

where fV [x(t )] = − ∂V [x(t )]
∂x(t ) is the potential force on the parti-

cle at position x, and ξ is the friction constant of the medium.
The Brownian force fB is governed by the fluctuation dissi-

pation theorem, which states that fB is a Gaussian-distributed
random force that satisfies

〈 fB(t )〉 = 0, (2)

〈 fB(t ) fB(t ′)〉 = κ (B)(|t − t ′|) = 2kBT ξδ(t − t ′). (3)

This assumes that the environment is purely Newtonian,
leading to the instantaneous decorrelation of Brownian forces
(i.e., Gaussian white noise).

In our work, we additionally assume the active forces fA

are also stochastically varying with experimental conditions
but still have well-defined statistical moments. Active forces

for our work are considered as also being Gaussian distributed
with an arbitrary temporal correlation, such that

〈 fA(t )〉 = 0, (4)

〈 fA(t ) fA(t ′)〉 = κ (A)(|t − t ′|), (5)

where κ (A)(t ) represents the temporal correlation between ac-
tive forces (discussed in more detail below). In accordance
with Doob’s theorem [57], the athermal active colored noise
Gaussian process corresponds to the Ornstein-Uhlenbeck
(OU) process [58].

The short-time friction is completely oblivious to the
existence of active forces in the system and, hence, the gen-
eralized fluctuation dissipation relation does not hold. Put
another way, the existence of athermal active fluctuations
modifies the effective conservative potential to a position- and
time-dependent nonconservative one as Veff(t ) = V [x(t )] −
x(t ) fA(t ), and the motion of the active Brownian particle is
the same as the dynamics of a purely Brownian particle in the
presence of a modified effective time-dependent potential.

We now frame the particle motion as a path-integral for-
mulation, which recasts the Langevin equation [Eq. (1)] as a
sum over particle trajectories. Since thermal fluctuations are
Gaussian white noise, the probability can be written as

P[ fB(t )]

∝ exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2 fB(t1)κ (B)−1(|t1 − t2|) fB(t2)

]

= exp

{
− 1

4kBT ξ

∫ t

0
dt1[ fB(t1)]2

}

=
∫

D[w(t )] exp

{
−kBT ξ

∫ t

0
dt1[w(t1)]2

−i
∫ t

0
dt1w(t1) fB(t1)

}
, (6)

where the last line introduces a Gaussian integral over a conju-
gate field w(t ). Since a random noise results in the dynamical
variable randomly varying in time, we effectively write that
the noise path tracks the dynamics of the particle itself.
As the particle needs to follow the force-balance Langevin
equation in the presence of active forces at each point in time,
we write

P[x(t )] =
∫

D[w(t )] exp

{
−kBT ξ

∫ t

0
dt1[w(t1)]2

− i
∫ t

0
dt1w(t1)[ξ ẋ(t1) − fV (x) − fA(t1)]

}
, (7)

where the path probability is written for a specific realization
of the active force fA(t1).

Active forces exhibit temporal correlation, defined by the
active-force correlation κ (A)(t ). The particle statistics at any
time hinges on the memory of past forces. Thus, the statistical
distribution for the particle depends both on the current po-
sition and the current active force, necessitating the inclusion
of a fixed active force at a given time within the statistical
treatment. To do this, we define a fixed time t = t0 where the
magnitude of the active force is given by f (0)

A . Hence, for any
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given path of the particle from x(t = 0) = x0 to x(t ) = x for
the given fixed value of active force f (0)

A at t = t0, we write

P[x|x0; t, t0]

=
∫ x

x0

D[x(t )]
∫

D[w(t )]
∫

D[ fA(t )]

× exp

{
−kBT ξ

∫ t

0
dt1[w(t1)]2

−i
∫ t

0
dt1w(t1)[ξ ẋ(t1) − fV [x(t1)] − fA(t1)]

}

×P[ fA(t )]δ
(

fA(t0) − f (0)
A

)
, (8)

where P[ fA] is the probability density functional of the active
noise. We write the δ function using a Fourier representation
to result in the expression

P[x|x0; t, t0]

=
∫ x

x0

D[x(t )]
∫

D[w(t )]
∫

D[ fA(t )]
∫

dη

× exp

{
−kBT ξ

∫ t

0
dt1[w(t1)]2

+iξ
∫ t

0
dt1ẇ(t1)x(t1) − iξw(t )x(t ) + iξw(0)x(0)

+i
∫ t

0
dt1w(t1)[ fV [x(t1)] + fA(t1)]

+iη
∫ t

0
dt1δ(t1 − t0) fA(t1) − iη f (0)

A

}
P[ fA(t )]. (9)

We perform the integral over the active forces by noting a
Gaussian form of active forces,

P[ fA(t )]

∝ exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2 fA(t1)κ (A)−1

(|t1 − t2|) fA(t2)

]
,

(10)

which results in the expression

P[x|x0; t, t0]

=
∫ x

x0

D[x(t )]
∫

D[w(t )]
∫

dη

× exp

{
−kBT ξ

∫ t

0
dt1[w(t1)]2dt1 + iξ

∫ t

0
dt1ẇ(t1)x(t1)

−iξw(t )x(t ) + iξw(0)x(0) + i
∫ t

0
dt1w(t1) fV [x(t1)]

−1

2

∫ t

0
dt1

∫ t

0
dt2w(t1)κ (A)(|t1 − t2|)w(t2) − iη f (0)

A

−η

∫ t

0
dt1κ

(A)(|t1 − t0|)w(t1) − 1

2
η2κ (A)(0)

}
. (11)

Our development is currently one-dimensional. Extending
this approach to three dimensions (or arbitrary dimensions) re-
quires us to translate from one-dimensional scalar variables to
vector representations, such that x → �r, w → �w, η → �η, and

f (0)
A → �f (0)

A . With these modifications, we write the general
expression as

P[�r|�r0; t, t0]

=
∫ �r

�r0

D[�r(t )]
∫

D[ �w(t )]
∫

d�η

× exp

{
−kBT ξ

∫ t

0
dt1[ �w(t1)]2 + iξ

∫ t

0
dt1 �̇w(t1) · �r(t1)

−iξ �w(t ) · �r(t ) + iξ �w(0) · �r(0)

+i
∫ t

0
dt1 �w(t1) · �fV [�r(t1)]

−1

2

∫ t

0
dt1

∫ t

0
dt2κ

(A)(|t1 − t2|) �w(t1) · �w(t2) − i�η · �f (0)
A

−
∫ t

0
dt1κ

(A)(|t1 − t0|)�η · �w(t1) − 1

2
�η2κ (A)(0)

}
. (12)

While our subsequent analyses focus on one-dimensional
transport, the conclusions and approaches presented here are
amenable to analysis of behavior of arbitrary dimensions.

The current form for the joint probability P[x|x0; t, t0]
adopts a convenient form for our subsequent analyses. How-
ever, it is illustrative to consider the case where we integrate
over w(t ) and f (0)

A . Performing these Gaussian integrals, we
arrive at the expression

P[x|x0; t] =
∫ x

x0

D[x(t )]

× exp

(
− 1

2

∫ t

0
dt1

∫ t

0
dt2{ξ ẋ(t1) − fV [x(t1)]}

×κ (AB)−1
(|t1 − t2|){ξ ẋ(t2) − fV [x(t2)]}

)
. (13)

While the above equation can be intuitively written as a result
of underlying Gaussian processes (both white and colored
noise), the preceding derivation would be instructive to obtain
the conditional probability distribution as a function of any
specific realization of �f (0)

A , which we exploit in our subse-
quent analyses. The active Brownian kernel κ (AB)(t1 − t2) =
2kBT ξδ(t1 − t2) + κ (A)(t1 − t2) gives the combined force cor-
relation for active and Brownian forces, and the kernel inverse
function κ (AB)−1 satisfies∫ ∞

−∞
dt2κ

(AB)(t1 − t2)κ (AB)−1
(t2 − t3) = δ(t1 − t3). (14)

We perform a Fourier transform from t1 − t3 to the frequency
ω, resulting in the Fourier-transformed representation

κ̃ (AB)−1
(ω) = 1

κ̃AB(ω)
= 1

2kBT ξ + κ̃A(ω)
. (15)

This form suggests the stochastic motion exhibits a frequency
(i.e., time) dependence for the weighting of the fluctuating
paths. In this regard, the particle experiences an effective
temperature that depends on the timescale of observation or
the relaxation timescale of the potential. This time-dependent
temperature is valuable in interpreting the impact of active
forces on dynamic processes (discussed further below).
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Our theoretical development so far is general to any form of
the spatially varying potential V (x) and does not assume any
special form for the active-force correlation. We specialize
to the case of the harmonic potential for further analysis and
discussion.

III. ACTIVE BROWNIAN PARTICLE IN A HARMONIC
POTENTIAL

Here, we specialize to the case of the harmonic poten-
tial V (x) = 1

2 kx2 and the potential force fV [x(t )] = −kx(t ),
where k is the force constant. The quantities x, t , and f
are made nondimensional by x0 = √

kBT/k, t0 = x2
0ξ/(kBT ),

and f0 = kBT/x0 = √
kBT k, respectively. This results in the

dimensionless variables u = x/x0, τ = t/t0, and F = f / f0.
The path integral over position variable u(τ ) is carried out,

resulting in a δ functional over the conjugate field, such that

P[u|u0; τ, τ0]

=
∫

D[w(t )]
∫

dη exp

{
−

∫ τ

0
dτ1[w(τ1)]2

−iw(τ )u + iw(0)u0 − iηF (0)
A

−1

2

∫ τ

0
dτ1

∫ τ

0
dτ2w(τ1)κ (A)(|τ1 − τ2|)w(τ2)

−η

∫ τ

0
dτ1κ

(A)(|τ1 − τ0|)w(τ1) − 1

2
η2κ (A)(0)

}

×
∏
τ

δ[ẇ(τ ) − w(τ )]. (16)

The δ functional over the conjugate field w results in
the condition ẇ(τ ) = w(τ ). Therefore, we write w(τ1) =
w(τ ) exp[−(τ − τ1)] = W exp[−(τ − τ1)] for any arbitrary

time τ1 < τ . For the OU process, we have

κ (A)(|τ1 − τ2|) = 〈FA(τ1)FA(τ2)〉
= F 2

A exp(−KA|τ1 − τ2|), (17)

where F 2
A defines the strength of active drive, and KA = τB/τA

is the dimensionless rate of active force relaxation.
The argument of the exponential of Eq. (16) can now be

evaluated based on the functional form of w(τ ). We first
evaluate the following term:

−η

∫ τ

0
dτ1κ

(A)(|τ1 − τ0|)w(τ1) = −F 2
A ηW GA(τ, τ0), (18)

where

GA(τ, τ0) = 1

KA + 1

(
e−τ+τ0 − e−KAτ0−τ

)
+ 1

KA − 1

(
e−τ+τ0 − e−KAτ+KAτ0

)
. (19)

We now write Eq. (16) as

P[u|u0; τ, τ0] =
∫ ∞

−∞
dW

∫ ∞

−∞
dη

× exp

{
−W 2

2

[
1 − e−2τ + F 2

A HA(τ )
]

− iW (u − u0e−τ ) − F 2
A GA(τ, τ0)ηW

− 1

2
η2F 2

A − iηF (0)
A

}
, (20)

where

HA(τ ) = 1

1 − K2
A

[(
1 + e−2τ

) − KA
(
1 − e−2τ

) − 2e−(1+KA )τ ].
(21)

Integrating over the η and W variables, we arrive at

P[u|u0; τ, τ0] = 1

N exp

{
−

(
u − u0 exp (−τ ) − GA(τ, τ0)F (0)

A

)2

2{1 − exp (−2τ ) + F 2
A [HA(τ ) − GA(τ, τ0)2]} −

(
F (0)

A

)2

2F 2
A

}
, (22)

where the normalization constant N follows from∫ ∞

−∞
du

∫ ∞

−∞
dF (0)

A P[u|u0; τ, τ0] = 1. (23)

This results in the expression

N = 2πFA

√
1 − exp (−2τ ) + F 2

A [HA(τ ) − GA(τ, τ0)2].

(24)

The probability P[u|u0; τ, τ0] provides the joint probability
that a particle with position u0 at time τ = 0 is located at
position u at time τ given that there is a force F (0)

A at time
τ0. To help interpret this, we consider a particle that is located
at u0 and is subjected to the force F (0)

A = 10 at the initial time
τ0 = 0 with the average active-force magnitude FA = 10 (i.e.,
F (0)

A = FA = 10). While it should be noted that there is no
knowledge available on the specific realization of F (0)

A = 10 or
any particular value of F (0)

A for that matter in any real system,

use of F (0)
A properly accounts for the history-dependent force

the system feels at τ = τ0. Eventually the distribution has to
be accounted for by integrating over all possible realizations
of the initial force F (0)

A . Here, our choice F (0)
A = 10 has been

used to illustrate the effects on the dynamical properties of
the system for a particular such realization. We define the
most likely position u
 = u0 exp (−τ ) + GA(τ, τ0)F (0)

A , which
gives the position with the highest probability P . For the
conditions under consideration, we have u
 = GA(τ, τ0 = 0),
demonstrating that GA dictates the trajectory of a particle at
time τ given the active force F (0)

A at τ0. This accounts for the
initial active motion, since GA ≈ τ for short times τ (note,
τ0 = 0), and the eventual decay to 0 for times τ � 1/KA

relates to the eventual loss of correlation of the active forces.
The top plot of Fig. 1 shows the most likely position u
/F (0)

A

for the current conditions (u0 = 0 and F (0)
A = 1 at τ0 = 0)

for varying values of KA from KA = 100 to KA = 10−5.
As KA → 0, the most likely position follows the athermal
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A B

C D

τ=10 τ=10

τ=10 τ=10

KA=10 KA=10

KA=10

KA=10

KA=10

KA=10

A
B

C

D

FIG. 1. Top plot shows the most likely position u
/F (0)
A versus

time τ for a particle that begins at position u0 = 0 subject to an initial
active force F (0)

A = 10 for varying active-force rate constants ranging
from KA = 10−5 to KA = 100. The average active-force magnitude
is FA = 10, such that F (0)

A = 10 is within the typical range of values.
The bottom plots show the probability P[u|u0; τ, τ0] versus u for four
times ranging from τ = 10−3 to τ = 103 for KA = 10−3, as labeled
as A, B, C, and D in the top plot.

trajectory u
/F (0)
A → 1 − e−τ , reflecting the lack of decorre-

lation of the active force FA.
Our dimensionless time τ = t/t0 gives the time relative to

the relaxation time of the particle in the harmonic potential.
For the active-force time τA = 1/KA � 1, the intermediate
timescale of observation (1 < τ < τA) results in the most
likely position u
 ≈ 1. This regime is followed by a precip-
itous drop to u
 → 0 at later times τ � τA as the active forces
lose correlation. As τA → 1, the particle is unable to reach
u
 ≈ 1 prior to loss of correlation in the active force, resulting
in a u
 that cannot reach u
 ≈ 1 prior to dropping to 0 (e.g.,
KA = 100 curve in the top plot of Fig. 1).

The bottom plot of Fig. 1 shows the probability distribution
P[u|u0; τ, τ0] at four time points τ = 10−3, 10−1, 101, and
103 for KA = 10−3 (labeled A, B, C, and D in the top plot of
Fig. 1). These plots show the nonmonotonic behavior of the

most likely position u
, and the variance of these distributions
progressively increases with time. At short times (τ � 1),
the variance increases from 0 to 1, which is the thermal
variance (i.e., independent of active forces). At intermediate
times (1 < τ � τA), there is a plateau in the variance at 1 until
the active forces decorrelate as τ → τA. Thereafter, the vari-
ance increases to a value 1 + F 2

A /(1 + KA) as τ → ∞. This
progression of behaviors is specific to a large separation in
timescales, such that τA � 1. Conditions where τA � 1 leads
to a monotonic increase in the variance to 1 + F 2

A /(1 + KA)
without an intermediate plateau.

Our inclusion of the fixed force F (0)
A is critical in resolving

the appropriate distribution of initial positions u0. This initial
distribution must account for the memory of the active forces
at all times prior to the initial time (i.e., all times from −∞
to τ0 = 0). Alternatively, we shift the fixed-force time to the
end time (τ0 = τ ) and take the limit as time approaches ∞,
resulting in a stable distribution that represents the temporal
memory of all correlated active forces. This leads to the initial
distribution

P0(u0) = lim
τ→∞P[u0|u−∞; τ, τ0 = τ ]

= 1

N exp

{
−

[
u0 − F (0)

A /(1 + KA)
]2

2[1 + F 2
A KA/(1 + KA)2]

−
(
F (0)

A

)2

2F 2
A

}
.

(25)

The normalization constant N is found to be N = 2πFA[1 +
F 2

A KA/(1 + KA)2]1/2.
We define the most likely initial position u


0 = F (0)
A /(1 +

KA), which gives the position of the maximum probability
P0(u0), and the position variance in the initial distribution
σ 2

0 = 1 + F 2
A KA/(1 + KA)2. The top plot of Fig. 2 shows the

properties of the initial distribution P0(u0) by plotting the

most likely position u

0/F (0)

A and the variance
√

σ 2
0 − 1/FA

versus KA. The bottom plots in Fig. 2 show P0(u0) versus the
initial position u0 for the four values of KA identified in the top
plot (FA = F (0)

A = 10).
The most likely position exhibits a plateau value

u

0/F (0)

A → 1 as KA → 0. For small values of KA, the active
force remains correlated for sufficient time for the particle to
reach its preferred position u0 = F (0)

A during the time period
prior to arriving at u0 at time 0 (i.e., τ ∈ (−∞, 0]). As KA

increases, the particle experiences a shorter time of correlated
active forces, and the particle is unable to reach its preferred
position. The crossover between these regimes is τA = 1,
since this marks the point where the active-force correlation
time is equal to the relaxation time of the particle in the
harmonic potential.

The variance exhibits a nonmonotonic behavior with a
maximum value at KA = 1. For small values KA � 1, the par-
ticle is able to reach its preferred position u0 = F (0)

A , and the
variance is associated with thermal fluctuations around this
preferred position. This results in the limiting behavior σ 2

0 →
1 as KA → 0. For large values KA � 1, the active forces
decorrelate rapidly, much in the manner of thermal fluctua-
tions. Decorrelation occurs at timescales that are much shorter
than relaxation within the harmonic potential, and the particle
cannot distinguish between thermal fluctuations and active
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KA=10 KA=10

KA=10 KA=10
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C

D

FIG. 2. The top plot shows the most likely position u

0/F (0)

A and
the variance

√
σ 2

0 − 1/FA for the initial-position distribution P0(u0 )
over a range of active-force rates KA. The bottom plots show P0(u0 )
versus u0 for the four values KA = 10−2, 100, 102, and 104 identified
in the top plot.

fluctuations. In this regime, it is useful to define an effective
active temperature � = F 2

A /KA that reflects how the active
forces contribute to the fluctuations within the harmonic trap.
This leads to the initial variance σ 2

0 = 1 + �K2
A/(1 + KA)2,

which saturates to σ 2
0 → 1 + � as KA → ∞.

This leads to a picture where the particle exhibits two
regimes of behavior. For KA � 1, the particle tracks with the
preferred position u0 = F (0)

A when the timescale of relaxation
in the harmonic well is much shorter than τA, and the vari-
ance is dictated by thermal fluctuations around this preferred
position. For KA � 1, the particle experiences random active
fluctuations that are indistinguishable from thermal fluctua-
tions, resulting in an initial distribution that is centered at 0
with the effective active Brownian temperature T eff

AB = 1 + �.
We now have the ingredients to define a two-point dis-

tribution, P2(u|u0; τ ). This distribution captures the joint
probability that a particle that is located at position u0 at time
0 is located at u at time τ , integrated over the active force at
time 0. Based on this definition, the two-point distribution is

given by

P2(u|u0; τ ) =
∫ ∞

−∞
dF (0)

A P (u|u0; τ, τ0 = 0)P0(u0). (26)

The solution of the two-point distribution is rendered as a
Fourier transform (from u to k and u0 to k0) to be

P̃2(k|k0; τ ) = exp
[
− 1

2

(
1 + F 2

A
1+KA

)(
k2 + k2

0

) −Cu(τ )kk0

]
,

(27)

where we define the position correlation function

Cu(τ ) = 〈u(τ )u(0)〉 = e−τ + F 2
A

K2
A − 1

(
KAe−τ − e−KAτ

)
.

(28)

The tilde on the two-point distribution indicates the Fourier
transform from u to k and from u0 to k0.

Upon Fourier inversion, we find the two-point distribution
to be

P2(u|u0; τ )

= 1

N exp

{
−Cu(0)

(
u2 + u2

0

) − 2Cu(τ )uu0

2[Cu(0)2 − Cu(τ )2]

}
, (29)

where Cu(0) = limτ→0 Cu(τ ) = 1 + F 2
A /(1 + KA).

The two-point distribution P2 gives the joint probability
after integrating over the initial force F (0)

A , accounting for
the appropriate initial distributions P0 from all active forces
before τ = 0. The resulting distribution is symmetric in u
and u0, with a temporal correlation that only depends on the
position correlation function Cu(τ ) = 〈u(τ )u(0)〉. Decorrela-
tion of the position arises from two contributions: relaxation
of the particle within the harmonic potential (at timescale
τ ≈ 1) and decorrelation of the most likely position u
 (at
timescale τ ≈ τA). The integration over F (0)

A causes these two
contributions to be convolved within Cu, and their independent
contributions can be inferred from the temporal relaxation
of Cu.

Figure 3 shows the position correlation function Cu versus
time τ for varying active-force rate constants KA from 101 to
10−4 and the active-force magnitude FA = 1. Here, we choose
FA = 1 to have equal weighting from potential-force relax-
ation and active-force relaxation in Cu. For short active-force
times τA = 1/KA � 1, the position relaxation at time τ ≈ 1
dominates the behavior. These conditions coincide with the
active forces behaving as an effective temperature, leading to
the form Cu → (1 + �)e−τ as KA → ∞.

For long active-force times τA � 1 (i.e., KA � 1), position
decorrelation occurs in two distinct stages. First, the particle
relaxes within its local harmonic potential at time τ ≈ 1,
followed by a plateau in Cu before a terminal relaxation to
0 at time τ ≈ τA. The potential center remains correlated
during the intermediate timescale 1 � τ � τA, and the sub-
sequent relaxation occurs as the active force decorrelates. An
alternative picture is that the active force itself is a diffusing
quantity with a relaxation time for its diffusive motion of
τA. The intermediate- and long-time behavior represents the
contribution of the active-force relaxation processes, which
are much slower than the particle relaxation for KA � 1.
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τ=0.10 τ=0.32

τ=1.0 τ=3.2
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KA=10

KA=10
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FIG. 3. The top plot shows the normalized position correlation
function Cu(τ )/Cu(0) versus time τ for FA = 1 and KA = 10−4 to
KA = 101. The four time points labeled A to D for the KA = 100

curve coincide with values associated with the bottom plots of the
two-point distributions P2(u|u0; τ ).

The bottom plots in Fig. 3 show surface plots of the two-
point function P2(u|u0; τ ) at the four times τ labeled in the
top plot for KA = 1. These plots demonstrate the behavior
as the position correlation function relaxes to 0. Short times
(e.g., τ = 0.10 in Fig. 3) result in considerable correlation be-
tween the initial and final positions, resulting in a probability
distribution that is peaked around u = u0. As Cu → 0 with
increasing time, the two-point function exhibits a spreading
along the axis orthogonal to the line u = u0, demonstrating
the eventual loss of correlation. The symmetric probability
distribution as τ → ∞ reflects the limiting form P2(u|u0; τ →
∞) = P0(u)P0(u0), where

P0(u) =
∫ ∞

−∞
dF (0)

A P0(u)

= 1

N exp

{
− u2

2[1 + F 2
A /(1 + KA)]

}
. (30)

KA=10
KA=10

KA=10

KA=10
KA=10

KA=10

KA=10

FIG. 4. Plot of the mean-square displacement (MSD) versus time
τ for � = F 2

A /KA = 100 and a range of active-force rates KA = 10−2

to KA = 104 (as labeled in the plot).

This Gaussian distribution arises from the combination of
Brownian fluctuations and active forces contributing to the
variance 1 + F 2

A /(1 + KA) = 1 + �KA/(1 + KA), which tends
to 1 + � in the limit KA → ∞. The limiting behavior indicates
the statistically independent nature of the probability distribu-
tion in the long-time limit.

The mean-squared displacement (MSD) is determined
from the position correlation function to be

MSD(τ ) = 〈[u(τ ) − u(0)]2〉 = 2[Cu(0) − Cu(τ )]

= 2(1−e−τ ) + 2F 2
A

K2
A − 1

[
KA(1−e−τ ) − (

1−e−KAτ
)]

.

(31)

In Fig. 4, we plot the MSD versus time τ over a range of
active-force rates from KA = 10−2 to KA = 104 (as labeled in
the plot) for a fixed active-force temperature � = 100. We in-
clude the Brownian-only mean-square displacement MSDB =
2(1 − e−τ ) as the dashed curve. We define the active Brown-
ian mean-square displacement MSDAB = 2(1 + �)(1 − e−τ )
(dotted curve in Fig. 4). This gives the limiting behavior under
conditions where the active forces act as effective thermal
fluctuations (KA → ∞).

The mean-square displacement exhibits an initial Brown-
ian diffusion MSD ≈ 2τ for times τ � τA = 1/KA. For cases
where τA � 1, the MSD exhibits an enhanced transport to
an effective active Brownian diffusion MSD ≈ 2(1 + �)τ for
τA � τ � 1, prior to reaching the terminal plateau value of
MSD → 2(1 + �) for τ � 1. Conditions where τA � 1 (i.e.,
KA � 1) lead to the particle reaching the Brownian plateau
MSD ≈ 2 prior to the active-force decorrelation, leading to a
temporary plateau prior to elevating to the active Brownian
plateau MSD → 2[1 + �KA/(1 + KA)] for τ � τA (see the
KA = 10−2 curve in Fig. 4).

Our development of a path-integral representation of active
Brownian motion provides the full statistical description of
particle motion in the presence of correlated active forces. If
one cares only about obtaining the position correlation or the
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MSD in the presence of active forces, we note an alternative
route is possible, as sketched in Appendix A.

We find that Cu(τ ) follows the differential equation

dCu(τ )

dτ
= −Cu(τ ) + F 2

A

KA + 1
exp(−KAτ ). (32)

In the limit FA → 0, the above equation reduces to the dif-
ferential equation for a simple exponential relaxation dCu(τ )

dτ
=

−Cu(τ ) followed by pure Brownian particles in the absence of
active forces.

In all the results presented in this work, the timescale of re-
laxation of the particle or effective dynamics can be explained
in terms of the higher effective temperature of the system,
albeit sometimes time dependent. But this becomes compli-
cated for a system with a spectrum of relaxation timescales,
where some relaxation processes are faster or slower than the
active-force correlation time. Such effects are prevalent for
the dynamics of a polymer chain subjected to both active and
Brownian fluctuations, as we explore in the accompanying
article [59].

IV. CONCLUSIONS

In this paper, we study the dynamics of a particle in
the presence of both active and Brownian fluctuations. We
develop a general framework for predicting the statistical be-
havior of the active-Brownian particle based on a path-integral
approach. The active forces are assumed to be Gaussian
distributed with an arbitrary temporal correlation whose func-
tional form dictates how the active forces communicate in
time. This active-force memory necessitates the inclusion of
the initial active force within the particle statistics, and our
approach appropriately incorporates these correlations in a
manner that acknowledges the non-Markovian nature of the
statistical behavior. Within this approach, we introduce a
field transformation that facilitates the solution of the particle
statistics, which typically exhibit non-Markovian properties
and are not easily formulated as a diffusion equation. We
show within this framework that the active Brownian parti-
cle is driven by a frequency-dependent (or time-dependent)
“temperature” that impacts the particle dynamics based on the
timescale of relaxation of the system. It should be noted that
time-dependent temperature can only be defined in a heuristic
way by ad hoc invoking equipartition theorem at all timescales
and not from a true equilibrium thermodynamic state of the
system. Our current approach is based on a path-integral for-
malism that tracks only the position of the particle and has
been shown to be insufficient in capturing the entropy produc-
tion aspects of a Brownian particle in the presence of active
noise [49]. However, this limitation does not alter the position
distribution that integrates out fluctuating active forces or the
mean-squared displacement of the particle that feels only the
averaged-out time-dependent nature of the active forces.

We then proceed to analyze the active Brownian motion
of a particle in a harmonic potential. This potential has a
single characteristic timescale of relaxation and thus serves
to illustrate the impact of a time-dependent temperature on
particle dynamics. In the case of exponentially correlated

active forces (i.e., with a single characteristic timescale),
our theory predicts a competition between the active-force
timescale and the relaxation time in the harmonic potential.
The initial distribution of particle positions for a given initial
active force retains memory from the correlated active forces
prior to time 0. However, this effect only arises when the
active-force timescale exceeds that of relaxation within the
harmonic potential. The position correlation after the initial
time exhibits relaxation based on two contributions: relaxation
within the harmonic potential and decorrelation of the active
forces. However, these two contributions can only be distin-
guished when the active-force time is much larger than the
harmonic-relaxation time.

We show that the mean-square displacement (MSD) for
an active Brownian particle in a harmonic potential exhibits
a distinct transition in behavior from short to long times. The
early-time MSD (i.e., times much shorter than the active-force
time) is diffusive with a characteristic temperature T that
coincides with the thermal temperature. At long times, the
MSD exhibits a progression to a plateau value that is dictated
by the effective active Brownian temperature T eff

AB .
The approaches developed in this manuscript are trans-

ferrable to a wide range of problems involving active
Brownian motion, and the general path-integral framework
can be extended to include multipoint statistics. However, this
requires inclusion of multiple fixed active-force values within
the development to account for the correlations in their impact
on the particle statistics. Regardless, the methods developed
in this work form the basis for analysis of such effects for
arbitrary potentials of interaction. The results for the active
Brownian particle in a harmonic potential serve an important
role in the study of an active Brownian polymer, and we ex-
tend our work to address this problem in a companion work to
this manuscript [59]. Furthermore, the impact of environmen-
tal heterogeneities [60] and fluctuations [61] on particle and
polymer dynamics can be formulated based on our theoretical
approach, and we will exploit these connections in future
work.
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APPENDIX A: SOLUTION FOR POSITION CORRELATION
FROM SPECTRAL DENSITY OF FLUCTUATING FORCES

We provide an alternative derivation of the position-
position time-correlation function and the corresponding
MSD of the particle in the presence of active forces without
information about the full probability distribution or steady-
state solution. A brief sketch of the derivation of correlation
functions in the presence of both thermal and active noise
is given below, which matches previously derived results in
Ref. [62]. The overdamped Langevin equation in dimension-
less units is given as

du(τ )

dτ
= −u(τ ) + FB(τ ) + FA(τ ),
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where

〈FB(τ1)FB(τ2)〉 = κ (B)(τ1 − τ2) = 2δ(τ1 − τ2)

〈FA(τ1)FA(τ2)〉 = κ (A)(|τ1 − τ2|) = F 2
A e−KA(|τ1−τ2|).

Fourier transformation (τ → ω) of the Langevin
equation gives

(1 − iω)û(ω) = F̂B(ω) + F̂A(ω).

The spectral density is given by

Ŝu(ω) = ŜF (ω)

|1 − iω|2 =
(

2 + 2F 2
A KA

K2
A + ω2

)
1

1 + ω2

= 2

1 + ω2
+ 2F 2

A KA

(K2
A + ω2)(1 + ω2)

. (A1)

The corresponding time-dependent correlation function can
be found from the inverse Fourier transform as

Cu(τ ) = 〈u(τ )u(0)〉 = 1

2π

∫ ∞

−∞
dωe−iωτ Ŝu(ω)

= e−τ + F 2
A

K2
A − 1

(
KAe−τ − e−KAτ

)
.

This result agrees with Eq. (28) in our manuscript and results
from Ref. [62]. Mean-squared displacement of the particle can
be calculated using MSD(τ ) = 〈[u(τ ) − u(0)]2〉 = 2[Cu(0) −
Cu(τ )] as written in Eq. (31).

APPENDIX B: ALTERNATIVE DERIVATION OF THE
STEADY-STATE DISTRIBUTION IN EQ. (30)

Following Ref. [48] we propose an alternative way to de-
rive the steady-state distribution in Eq. (30). Positions of a

trapped particle in the presence of Gaussian white and colored
noises follow a set of Langevin equations given as

u̇(τ ) = −u(τ ) +
√

2ξ1(τ ) + FA(τ ),

ḞA(τ ) = −KAFA(τ ) +
√

2�KAξ2(τ ), (B1)

where ξ1(τ ) and ξ2(τ ) represent uncorrelated white noise
Gaussian processes with zero mean and unit variance. We first
write out the Fokker-Planck (FP) operator [48,63] L̂ corre-
sponding to the set of linear equations and for the steady-state
solution note L̂Ps(u, FA) = 0. The FP operator can be split
into several parts involving a pure Ornstein-Uhlenbeck FP
generator that follows L̂OUPn(FA) = −nPn(FA), where Pn(x)
is the nth-order physicist’s Hermite polynomial. The solution
to the steady-state distribution involving both variables can be
written as a perturbation involving u-dependent series terms
and FA-dependent Hermite polynomials. Going through the
process as sketched in Ref. [48], we find

Ps(u, FA) = 1

N exp (−αu2 − βF 2
A + θuFA), (B2)

in agreement with Ref. [64]. The exact expressions of the
coefficients α, β, and θ can be found from manipulating the
expressions given in Ref. [48]. We find the position-dependent
steady-state solution to be

Ps(u) =
∫ ∞

−∞
dF ′

APs(u, F ′
A)

= 1

N exp

{
− u2

2[1 + �KA/(1 + KA)]

}
, (B3)

which matches with Eq. (30).
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