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Dispersal-induced resilience to stochastic environmental fluctuations in populations with Allee effect
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Many species are unsustainable at small population densities (Allee effect); i.e., below the so-called Allee
threshold, the population decreases instead of growing. In a closed local population, environmental fluctuations
always lead to extinction. Here, we show how, in spatially extended habitats, dispersal can lead to a sustainable
population in a region, provided the amplitude of environmental fluctuations is below an extinction threshold.
We have identified two types of sustainable populations: high-density and low-density populations (through a
mean-field approximation, valid in the limit of large dispersal length). Our results show that patches where
population is high, low, or extinct coexist when the population is close to global extinction (even for homoge-
neous habitats). The extinction threshold is maximum for characteristic dispersal distances much larger than the
spatial scale of synchrony of environmental fluctuations. The extinction threshold increases proportionally to the
square root of the dispersal rate and decreases with the Allee threshold. The low-population-density solution can
allow understanding of difficulties in recovery after harvesting. This theoretical framework provides a unique
approach to address other factors, such as habitat fragmentation or harvesting, impacting population resilience
to environmental fluctuations.
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I. INTRODUCTION

Many species need a minimum population density to be
viable, for example, the island fox [1], the polar bear [2],
American ginseng [3], and the Atlantic codfish [4] among
others. This minimum viable population density is named
the Allee threshold [5], and below it, the population declines
toward extinction, a phenomenon called the (strong) Allee
effect.

Field research has characterized the impact for plants and
animals of reaching population densities below the Allee
threshold. The strength of the impact depends on the strength
of the Allee effect [6], the presence of harvest [7,8], and
the absence of positive human intervention [9,10]. Many of
these depleted populations never recover and become extinct
in some years. Some depleted populations take many years
(much more than the average lifetime of the species) to get out
of this situation and eventually recover. In animals, monog-
amous species with long lifetimes are more likely to show
the Allee effect [1,11], in addition to solitary species with
difficulties for finding a breeding mate or an unbalanced male-
female ratio [2]. Other causes that explain the Allee effect in
animals are nonefficient feeding [12]; difficulties surviving in
an environment with predators, competitors, or human har-
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vest [13,14]; or inbreeding depression [15,16]. In plants, less
efficient pollination or fruit production (decreasing at small
populations) [3] seem to be the principal causes providing
the Allee effect. Most of the articles cited above qualitatively
describe how a particular species in a low-population-density
situation has difficulties surviving due to the Allee effect.

Theoretical papers have addressed the general question of
the eradication of alien species [17], and of spatial patterns’
influence on the spread of invading species [18], observed
in the gypsy moth [19]. These papers show that both the
Allee effect and environmental variability can contribute to
the extinction of a population. Other works have studied the
effects of stochasticity in species vulnerable to the Allee effect
[20–23] describing mean time to extinction, or probability of
extinction after a given time, for a single location. Migration
between locations increases the mean time to extinction, as
it has been shown in a metapopulation model with a 3 × 3
grid [24]. Studies of a locally endangered butterfly sustain
the critical role of immigration in the regional dynamics to
counterbalance the Allee effects [25]. Recently, Dennis et al.
[26] showed that an external constant migration term can
sustain the population in the presence of stochastic environ-
mental fluctuations. Here, we go a step further and show that
a spatially extended population with dispersal between the
locations can be sustainable. We compute the stationary pop-
ulation probability distributions in the mean-field limit (large
dispersal distance), which elucidates the spatially extended
population dynamics for finite dispersal distance. These re-
sults clarify the conditions for sustainability in spatially
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extended habitats, quantifying the effects of dispersal in the
resilience to stochastic environmental fluctuations.

We have studied a one-dimensional model, which is a
good approach for some ecological systems such as rivers
or oceanic water columns [27]. One-dimensional models also
allow a more straightforward yet accurate study of many char-
acteristics of interaction-based population dynamics [28].

The results we present here provide insight into how nat-
ural or human-induced changes in the species’ dynamical
parameters would influence its extinction risk due to envi-
ronmental fluctuations. In particular, they provide information
on how an increase in the amplitude of environmental fluc-
tuations can affect the sustainability of a population. This
problem is of particular present relevance as several regions
of the Earth are increasing its climate variability [29].

II. SPATIALLY EXTENDED POPULATION MODEL

We introduce a spatially extended, one-dimensional pop-
ulation model, including Allee effects, environmental fluc-
tuations, and dispersal. This model allows us to assess the
resilience of populations to environmental fluctuations and the
role played by dispersal in this resilience.

The deterministic Allee model [30,31] gives the local de-
terministic dynamics of the population density N(x, t) at
location x and time t . This dynamics is determined by a
characteristic extinction rate r, a carrying capacity K (stable,
viable population density), and an Allee threshold A (min-
imum viable population density). Note that the population
density N(x, t) is defined as the local number of individuals
per unit of length at a given time. Additionally, environmental
stochasticity is introduced through an additional stochastic
contribution, σNdB, proportional to the population density
[32]. The amplitude of these environmental fluctuations is
given by σ , and dB(x, t ) is a normalized Gaussian random
field with a spatial scale of synchrony le, giving the spatial
scale of synchrony of the environmental fluctuations, which is
the characteristic distance at which environmental fluctuations
remain correlated [33]. Therefore, the local dynamics of a
population density N (x, t ) in the stochastic Allee model is
given by

dN (x, t )|local = rN (x, t )

[
N (x, t )

A
− 1

][
1 − N (x, t )

K

]
dt

+ σN (x, t )dB(x, t ). (1)

The first term corresponds to the deterministic Allee model
[18,30,31]. This equation implies a rate of return to extinction
for populations close to extinction of γ0 = r and a rate of
return to the carrying capacity for populations close to the car-
rying capacity of γK = r(K/A–1). The second term in Eq. (1)
gives the contribution of stochastic environmental fluctuations
to the changes in the local population, with an amplitude of
the environmental fluctuations σ . The random field dB(x, t )
is given by increments of standard Brownian motions in each
position with zero mean and variance dt , and it is spatially
correlated with an exponential autocorrelation of length le,
which is the spatial scale of synchrony of environmental fluc-
tuations [33].

Dispersal couples the dynamics in the different locations.
We consider that individuals disperse away with a rate m to a
characteristic distance lm. Thus, dispersal gives an additional
contribution to the dynamics of

dN (x, t )|dispersal = −mN (x, t )dt+mdt
∫

N (x−y, t ) f (y)dy,

(2)
which makes the dynamics nonlocal. The first term represents
the population decrease at position x due to individuals that
disperse away with probability mdt. The second term gives
the population increase due to individuals that disperse to
position x from a position displaced a distance y where the
population is N (x−y, t ). Therefore, m is the rate of random
dispersal to a position at a distance y with probability f (y),
where f (y) has been taken as a Gaussian with variance l2

m
and zero mean. Dispersal rate m is the same in both terms
in Eq. (2) because our model assumes no external migration:
Every individual leaving a patch moves to another within
the ecosystem, whereas every individual arriving at a patch
must have come from the same ecosystem. Furthermore, we
consider a homogeneous habitat, so neither the dispersal rate
m nor the dispersal profile f (y) (nor any other parameter of
the model) depends on position x. Hence, individuals disperse
at a rate m to typical distances of the order of lm. As the
dispersal term in Eq. (2) is proportional to the population
density N (x, t ), depleted regions will receive a net population
flux from nearby nondepleted regions.

The combination of local and dispersal contributions to
the change in population density gives the complete spatially
extended dynamics,

dN = dN |local + dN |dispersal. (3)

Typical late time population distributions given by this
dynamical equation can be seen in Figs. 1(a), 1(c), and 1(e).
Table I gives a summary of the variables and parameters used
and their units.

III. NUMERICAL SIMULATIONS

The numerical simulations of the previously described dy-
namical equation are performed taking the scale of synchrony
of environmental fluctuations, le, as reference length, i.e., le =
1, and 20 lattice nodes per unit length. The total length of the
simulation box was 140 times the maximum of le and lm, and
we consider periodic boundary conditions (aiming to obtain
results for infinite habitat). The time resolution was 50 times
smaller than the minimum of the characteristic times of the
dynamics (i.e., the minimum of the inverses of the rates r and
m). These resolutions, simulation boxes, and boundary con-
ditions guarantee that the dynamics is well resolved (in time
and space) and mimics an infinite habitat for better compari-
son with the results found with the mean-field approximation
[34,35] described below. In this way, we performed numerical
simulations of spatially extended populations, starting from a
population density equal to the carrying capacity in each node
of the simulation box. We ran several simulations for each set
of parameters with different amplitudes of the environmental
fluctuations. See Appendix C for further details on the simu-
lation algorithm.
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FIG. 1. Spatial profiles of population density, and their associated averaged population density histograms compared with mean-field
population probability distributions. (a,c,e) Spatial profile of the population density for simulation at a long time, t = 1000, with extinction rate
r = 0.1, Allee threshold A = 0.1, carrying capacity K = 1, dispersal rate m = 1, and dispersal distance equal to the spatial scale of synchrony
of environmental fluctuations, lm = le = 1. (b,d,f) Population density histograms for the spatial profiles of population densities shown in (a,c,e),
respectively. The curves in (a,c,e) show the patches in extinction (black), high-population (green), and low-population states (red), according
to the histograms in (b,d,f). Panels (b,d,f) also show the fit to a linear combination of the mean-field population probability distributions.
The results for these fits are p(N ) = phigh(N ) in (b), p(N ) = 0.08plow(N ) + 0.92phigh(N ) in (d), and p(N ) = 0.06p0(N ) + 0.22plow(N ) +
0.72phigh(N ) in (f). Each contribution is represented with its fitted weight. plow(N ) (red line) and phigh(N ) (green line) correspond, respectively,
to the low- and high-density mean-field population probability distribution solutions. They are given by the two nonzero branches of solutions
of the mean-field equations for values of σ below the extinction threshold (see also Fig. 2). p0(N ) (black point) is the zero population density
solution (i.e., extinction). Red dashed lines indicate Allee threshold value A = 0.1, green dashed lines indicate carrying capacity K = 1, and
black dashed lines indicate N = 0. Note the similarities between the population density histograms obtained from direct numerical simulation
and the fit to the linear combination of the population probability distributions obtained with the mean-field limit approximation (i.e., the
large dispersal distance limit, lm/le → ∞). However, the real histograms are displaced to the left due to the border effects, which are effects
beyond the mean-field approximation (i.e., due to finite dispersal distance, lm/le = 1). Note also that increasing the environmental fluctuations
σ increases the presence of regions where the population is depleted or extinct, as σ approaches the extinction threshold (σextinction = 0.80 for
the parameter values in this figure).

We define the extinction threshold, σextinction, as the charac-
teristic amplitude of environmental fluctuations above which
the environmental fluctuations lead to the global extinction
of the population. The environmental fluctuation extinction
threshold σextinction is obtained from long time simulation (t =
1000 = 100 r−1) as the center of the transition interval from
the never extinct to the always global extinct final state.

Besides, relevant information of a spatially extended pop-
ulation is how probable it is to find a given population density
in a given location, i.e., to determine the population prob-
ability distribution. We have assumed homogeneous habitat
conditions, represented by location-independent population
dynamics parameters (extinction rate r, carrying capac-
ity K , Allee threshold A, and amplitude of environmental
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TABLE I. Variables and parameters used in this article (definitions and units).

Variables Description

N (x, t ) Population density at a given position x and a time t . Units of length–1.
A Allee threshold of the species; below it, the species has negative growth. Units of length–1.
K Carrying capacity of the species, meaning stable, viable population density. Units of length–1.
r Extinction rate (at very low population densities). Units of time–1 .
γ0 Rate of return to extinction. Units of time–1.
γK Rate of return to carrying capacity. Units of time–1.
m Dispersal rate of the species. Units of time–1.
le Spatial scale of synchrony of environmental fluctuations. Units of length.
lm Mean distance traveled by the dispersed individuals (characteristic width of the Gaussian dispersion function). Units of length.
σ Amplitude of the environmental fluctuations, giving the standard deviation of the environmental fluctuations. Units of time–1/2.
σextinction Extinction threshold for the amplitude of environmental fluctuations (minimum amplitude of the fluctuations that ensures

global extinction). Units of time–1/2.

fluctuations σ ). Thus, the population probability distribution
p(N) does not depend on location and gives the probability
to find the population density N in any site. The population
probability distribution p(N) is computed from numerical
simulations doing population density histograms, like those
shown in Figs. 1(b), 1(d), and 1(f).

IV. ANALYTICAL POPULATION PROBABILITY
DISTRIBUTION

Additionally, we can get further insight into the population
dynamics through a more analytical approach to the computa-
tion of the population probability. The stochastic differential
equations for the stochastic Allee model with and without
dispersal, Eqs. (1) and (3), have the form dN = F (N ) dt +√

v(N ) dB. For equations of this form, if a stationary popula-
tion probability distribution exists, it is given by [36]

p(N ) = n

v(N )
exp

[
2

∫
F (N )

v(N )
dN

]
, (4)

where n is a normalization factor.
Therefore, for the stochastic Allee model without dispersal,

Eq. (1), the stationary population probability distribution is

p(N ) = n exp
[

1
σ 2

(
2rN
K + 2rN

A − rN2

AK

)]
σ 2N2+2r/σ 2

. (5)

This population distribution has a divergence in N = 0 and
is not normalizable, which means that a population with an
Allee-type growth will always become extinct in the absence
of dispersal (m = 0). (The extinction is faster for larger envi-
ronmental fluctuations. See Appendix B.)

Only populations with dispersal may be stable in the long
term. For the stochastic Allee model with dispersal, Eq. (3),
the stationary population probability distribution with disper-
sal is

p(N ) = n exp
[

1
σ 2

(
2rN
K + 2rN

A − rN2

AK − 2mI
N

)]
σ 2N2+ 2(r+m)

σ 2

, (6)

where the coupling term I (x) = ∫ N (x–y) f (y)dy makes the
population probability in one location depending on the val-
ues of the population density in the surrounding region. This
additional dispersal term makes the population distribution

normalizable and with a no-zero mean for certain ranges of
values of m and σ .

V. MEAN-FIELD APPROXIMATION

We propose here to combine the analytic expression in
Eq. (6) with the mean-field approximation to deal with the
coupling term I (x). When the dispersal length is much larger
than the spatial scale of synchrony of environmental fluctua-
tions, lm � le (for example, the case of long-distance migrant
birds), the mean-field approximation is a good approxima-
tion. The mean-field approximation assumes the stationary
population probability is approximately equal in all points of
space. (Long-distance dispersal, lm � le, makes the popula-
tion density more homogeneous, recolonizing low-populated
points from those that are “overpopulated.”) The mean-field
approximation implies that the coupling term I in Eq. (6)
can be treated as position independent, I (x) = I , and we can
approximate it by the mean value of the population density,

I =
∫ ∞

0
N p(N )dN. (7)

This approximation mimics the dynamics of long-distance
dispersal (see Fig. 6 in Appendix A). The extinction
threshold, σextinction, was defined here as the amplitude of
environmental fluctuations above which the environmental
fluctuations lead to the global extinction of the population. In
the mean-field approximation, the extinction threshold can be
computed directly, obtaining the value of the environmental
amplitude where there is no longer a solution of the system
of equations formed by Eqs. (6) and (7) [i.e., the point where
the green and the red curves merge in Fig. 2(a)], except the ex-
tinction in the all space solution (non-normalizable divergence
in N = 0). Thus, when the amplitude of environmental fluc-
tuations exceeds the extinction threshold, the only possible
solution implies global extinction [we find population at N =
0 for long times with probability 1, p(N = 0) = 1], and it
is not normalizable. Therefore, the mean-field approximation
allows us to compute the stationary probability distribution
and to estimate the extinction threshold for a particular set of
parameters (which is a close upper limit of the real extinction
threshold when the dispersal distance of the species is large
enough). We get two branches of solutions, which represent
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FIG. 2. Solutions in the mean-field approximation. (a) Mean population density I as a function of environmental noise amplitude σ for the
two nonzero branches of solutions at the mean-field approximation (lm � le): high-density (green) and low-density (red) branches (shown in
logarithmic scale). Extinction rate r = 0.1, carrying capacity K = 1, Allee threshold A = 0.1, and dispersal rate m = 0.5 (solid line), m = 1
(dashed line), and m = 2 (dash-dotted line). (b) High-density (green) and low-density (red, divided by 10 to make the figure more visible)
population probability distributions, phigh and plow, respectively. They are calculated at the mean-field approximation for the same parameters
of (a) and m = 1, for values of the environmental fluctuations amplitude σ = 0.3 (solid line), σ = 0.7 (dashed line), and σ = 0.75 (dash-dotted
line). Vertical lines show N = 0 (black), N = A = 0.1 (red), and N = K = 1 (green). (c) Position of the maximum of mean-field distributions
Nmax as a function of environmental noise amplitude σ , for the two nonzero branches of solutions at the mean-field approximation (shown in
logarithmic scale) with the same parameters as in (a). (d) Fitted contribution of each mean-field distribution in stationary distributions simulated
by population dynamics assuming mean-field limit (see Appendix C) such as p(N )simulated = alow plow(N ) + ahigh phigh(N ) + a0 p0(N ), where
p0(N) is the zero population density solution (i.e., extinction) and alow + ahigh + a0 = 1, for extinction rate r = 0.1, carrying capacity K = 1,
Allee threshold A = 0.1, and dispersal rate m = 1. Vertical red dashed line shows the amplitude of environmental fluctuations which gives
the position of the minimum in the lower branch of Nmax (panel C), and vertical black dashed line shows the extinction threshold σextinction

calculated in the mean-field limit. The vertical axis is shown in logarithmic scale and values below 0.01 are not represented. The figure
shows that contributions of plow(N ) start to appear for sigmas equal or greater than the position of the minimum in the lower branch of Nmax.
Additionally extinction appears for amplitudes of environmental fluctuations greater than σextinction.

two different equilibria: the high mean population density
solution, phigh, and low mean population density solution,
plow. See Figs. 1 and 2.

The diagram of the mean population densities I for the
two branches of solutions depends on the parameters of the
model (Fig. 2). Lower Allee thresholds A displace the diagram
toward higher amplitudes of environmental fluctuations σ ,
but lower the mean population I and make more prominent
the minimum of the lower branch. Higher dispersal rates m
displace the diagram to higher amplitudes of environmental
fluctuations σ and slightly to higher mean population densities
I , marking the role of dispersal as a stabilizing factor of the
population. (See Fig. 2, and Fig. 4 in Appendix A.)

VI. MAXIMUM APPROXIMATION

The maximum approximation assumes the extinction
threshold is the value of the amplitude of environmental fluc-

tuations σ that locates the maximum of pI (N ) [where pI (N )
is is the population probability for a given I] at the Allee
threshold A. Adding the maximum approximation allows a
quick estimation of the extinction threshold,

σextinction =
√

m
( I

A
− 1

)
. (8)

This expression points out that the extinction threshold
approximately increases with the square root of the dispersal
rate and decreases with the Allee threshold A (Fig. 3). To
obtain the value of σextinction estimated with the mean-field
and maximum approximations, we must simultaneously solve
numerically Eqs. (6)–(8). It should be noted that the maximum
approximation is only an additional approximation, which can
be added to the method introduced in the previous section
[σextinction is the value of the environmental amplitude where
there is no longer a solution for the set of equations (6) and
(7)]. The maximum approximation allows a faster estimation
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(a) (b)

(c) (d)

FIG. 3. Extinction threshold σextinction versus different parameters. (a) Extinction threshold versus Allee threshold for the mean-field
approximation (black dots) (i.e., large dispersal length, lm � le), for the mean-field and maximum approximations (red dots), and for a
simulation with lm = le (i.e., dispersal length lm equal to the spatial scale of synchrony of environmental fluctuations le), all with dispersal rate
m = 1. (b) Extinction threshold versus dispersal rate using the same color code as the previous panel, all with Allee threshold A = 0.1. The
dispersal rates considered, m = 0.3 to 5.3, are similar or higher than the characteristic extinction rate for these simulations, r = 0.1, providing a
significant contribution to population recoveries. (c) Extinction threshold σextinction as a function of the ratio between the characteristic dispersal
distance and the spatial scale of synchrony of environmental fluctuations lm/le, using the same color codes as the previous panels, all with m = 1
and A = 0.1. (d) Scaling of the extinction threshold at large dispersal rate verified plotting the ratio σextinction/

√
m versus the dispersal rate m

[in the same m interval as in (b)] for Allee thresholds A = 0.1 (black), A = 0.35 (green), and A = 0.6 (purple) obtained for the mean-field
approximation. For all panels, the extinction rate is r = 0.1 and the carrying capacity K = 1.

of the extinction threshold and shows that the extinction
threshold approximately grows with the root of the dispersal
rate m. However, the method described in the previous section
is more accurate and is preferred to compute the extinction
threshold in the mean-field limit.

VII. DISPERSAL MAKES THE POPULATION RESILIENT
TO ENVIRONMENTAL FLUCTUATIONS

In a closed local population, environmental fluctuations
eventually lead the population density below the Allee
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threshold A, and to extinction. Our results show that dispersal
allows the recovery of a region with a depleted population
thanks to population arriving from nearby nondepleted re-
gions. This dispersal-induced population recovery makes the
species resilient to population depletion caused by environ-
mental fluctuations. Resilience to environmental fluctuations
is enhanced increasing dispersal (either with larger dispersal
rate or with larger dispersal length), stressing the relevance of
the rescue effect of dispersal. See Fig. 3, where the extinction
threshold σextinction is represented. When environmental fluctu-
ations are larger than the extinction threshold, the population
becomes globally extinct.

From the mean-field approximation, we obtain that in
the absence of dispersal, m = 0, the population probability,
Eq. (5), diverges in N = 0 as N−2(1+ r

σ2 ), indicating that the
population always goes extinct (after a certain transition time).
However, when dispersal is present, the dispersal term with
I suppresses the divergence at zero population density, and
the species can be sustained. Then, dispersal (or migration)
is necessary to maintain a population at long times. This
result is consistent with previous results found with a constant
migration term in [26]. They considered a constant external
migration in the growth equation, instead of the spatial ex-
tended diffusion within the habitat that we considered. In
the case with dispersal, the system of equations formed by
Eqs. (6) and (7) is numerically found to have either two roots
or no root (different from the zero root). [See Fig. 2(a).] The
two regimes are separated by a critical value of the amplitude
of environmental fluctuations, σextinction. (The results obtained
with the mean-field approximation are shown with black dots
in Fig. 3.) For values above this extinction threshold, σextinction,
populations become extinct in all the locations. In contrast,
for values below the extinction threshold, there is an equilib-
rium between extinction and recovery from extinction due to
dispersal from other regions. The two branches of solutions
represent two different equilibria. The high mean population
density solution, phigh [green curves in Figs. 1(b), 1(d), and
1(f)] has most regions of space with population densities
above the Allee threshold, and local extinction is rare. The
regions above the Allee threshold have population densities
below the carrying capacity due to the cost of recovering
areas with local extinction. The low mean value solution plow

[red curves in Figs. 1(d) and 1(f)] has most of the regions
below the Allee threshold, and they are just prevented from
extinction due to the dispersal contributions from the regions
with population densities above the Allee threshold. These
two ideal solutions have been obtained in the mean-field
approximation, which assumes large dispersal lengths (lm �
le). Nonetheless, this approximation is a limit case that can
help understand populations with shorter dispersal lengths,
because their extinction thresholds have similar parameter
dependences [Figs. 3(a) and 3(b)].

For finite dispersal length (Fig. 1), a much more com-
mon situation, simulations may present low- and high-density
solutions at different regions of the same habitat, together
with regions of extinction [regions of zero population density
in Fig. 1(e), reflected as peaks at zero in the histogram of
Fig. 1(f)].

The additional maximum approximation explained in
the methods section works well for low values of A,

reproducing the results of the mean-field approximation (lm �
le), as shown in Fig. 3.

On the one hand, the extinction threshold is found to de-
crease as the Allee threshold increases [Fig. 3(a)], as both
simulations and mean-field approximation show. On the other
hand, increasing the dispersal rate increases the extinction
threshold, which at large values of the dispersal rate grows
as

σextinction ∼ √
m, (9)

as we expected from Eq. (8), obtained by the mean-field
and maximum approximations [see Figs. 3(b) and 3(d)]. This
dependence of the extinction threshold with the square root of
the dispersal rate is related to the stochastic nature of the envi-
ronmental fluctuations (which is here modeled with a Wiener
process). Finally, maximum values of the extinction thresh-
old are found in the mean-field limit, where characteristic
dispersal distance is much larger than the spatial scale of en-
vironmental synchrony, lm � le [right-hand side of Fig. 3(c)].
For values of the dispersal distance of the order of the spatial
scale of environmental synchrony, the extinction threshold is
reduced [for example, to half the value given by the mean-
field approximation in the simulation shown in the blue dots
of Fig. 3(c)]. Therefore, resilience to environmental noise is
reduced when dispersal is less frequent (lower m) or more
local (lower lm).

VIII. DISCUSSION

We have shown that dispersal can make a population with
an Allee threshold more resilient to environmental noise-
induced extinction. This resilience can be characterized by
the extinction threshold σextinction for the amplitude of environ-
mental fluctuations, above which the species becomes extinct.
This extinction threshold increases if the dispersal rate m in-
creases, or if the relative dispersal length lm/le increases. This
result is consistent with the relevance of the rescue effect of
dispersal, which is proven to be an effective mechanism reduc-
ing local and global extinction risk in spatially extended popu-
lations [37,38] and has been studied in Allee effect dynamics
[39,40]. The rescue effect entails that dispersal or migration
can help repopulate extinct patches, reduce extinction risk,
and improve the long-term sustainability of a species [41].

Mean-field approximation leads us to identify two
branches of sustainable population distributions. For one of
the branches, the high-population-density state, the population
distribution has most regions above the Allee threshold and
some regions below it. [See blue curve in Fig. 1(f).] For the
other branch, the low-population-density state, the population
distribution has most regions with a population below the
Allee threshold but is sustained by dispersal from the regions
above the Allee threshold. [See red curve in Fig. 1(f).] Dennis
et al. [26] already identified the two branches, of low- and
high-population-density states, but for one location with exter-
nal migration. Here, this analysis has been done for a spatially
extended population with only internal dispersal, allowing
recolonization of regions with local extinction by neighboring
populations. We also show that the path to global extinc-
tion is a path through the emergence of local depletions and
extinctions, which spatially coexist with nondepleted regions
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(even for homogeneous habitats). In this path to global extinc-
tion, low-density and extinct regions cover a more significant
fraction of the area as the amplitude of environmental fluc-
tuations increases toward the extinction threshold. Different
spatial domains are close to different mean-field steady state
solutions, as shown in Figs. 1(a), 1(c), and 1(e). Finite
dispersal length decouples distant regions allowing for the co-
existence of different solutions in different regions. However,
the migrations between regions through the borders modifies
the distribution in each region from the ideal mean-field distri-
butions. A linear combination of both mean-field distributions
appears in finite dispersal simulations and in mean-field sim-
ulations (with theoretically infinitely large spatial scales of
population synchrony; see Appendix A), suggesting that low-
and high-density metapopulations may coexist in neighboring
regions. In the mean-field limit, the zero population den-
sity solution (i.e., extinction) does not coexist with low- and
high-density solutions, while for finite dispersal length, ex-
tinct regions coexist (with low- and high-density solutions)
for amplitudes of environmental fluctuations close to global
extinction.

The typical size of the population depleted zones is given
by the spatial scale of population synchrony [32,42]. The
spatial scale of population synchrony arises by environmental
fluctuation synchrony and can be modulated by dispersion and
trophic interactions [33,43–45]. The characteristics of the spa-
tial and temporal environmental correlations can modulate the
characteristics of the transition to extinction [46]. Identifying
the causes of population synchrony in natural populations is
a challenge for ecologists due to the complexity and amount
of data, which are sometimes incomplete and inaccurate, and
thus it is difficult to identify all the factors involved [43].
Additionally, spatial scales of population synchrony give the
typical size of the areas affected by local extinction, and
seem to be related to transitions to extinction in population
dynamics [47–49]. In the case of infinitely long dispersal
distances (i.e., mean-field approximation) we would have also
infinitely large spatial scales of population synchrony, and
thus infinitely large areas with local extinction (i.e., the whole
habitat). This infinite typical size of areas affected by extinc-
tion is coherent with our results in the mean-field limit, where
either the population becomes globally extinct or no regions
present local extinction after long times.

The low-population-density state may be related to the
absence of recovery seen in some ecosystems after halting
harvesting [50]. In those ecosystems, the species seems to be
trapped in a low-population-density state, where they have
been led by harvesting. They do not recover to the previ-
ous high-population-density state unless harvesting is stopped
during long periods, usually taking tens of generations. Our
additional simulations with an initial population in the low-
population distribution show that the low-population-density
state alone is unstable in our model. After enough time, it
evolves toward a high-population-density state, a coexistence
of regions with low- and high-population states, or global
extinction, depending on the parameter values. The transi-
tory dynamics presents moving fronts between the low- and
the high-population-density state, which could provide clues
on recovery dynamics [51–53]. The low-population-density
state might be a separatrix between extinction and nonzero

population state, because initial conditions close to the low-
density state seem to be particularly sensitive to stochasticity.
However, the low-population-density state seems to be locally
stable when it is close to a high-population-density state. Den-
nis et al. [26] also showed that external migration can stabilize
the low-population-density state, and lead to basin hopping
between low- and high-population-density states. Similar be-
havior can be present in our model due to dispersal from
a neighboring high-population region. Simulations with am-
plitudes of environmental fluctuations close to the extinction
threshold show the stochastic emergence of extinction regions
inside low-population-density regions, even if initially the
population density was at the carrying capacity in all points in
space. (See Fig. 7 in Appendix A.) Studies concerning similar
growth equations and demographic (instead of environmental)
fluctuations [27,54] show a catastrophic transition between a
high-density state and extinction. However, they did not find
contributions of a low-density state in the stationary distri-
bution of the population. This difference in the presence (or
absence) of this contribution can be due to environmental fluc-
tuations or the different dispersal terms, which are the main
differences with our models. In addition, Villa Martín et al.
[27] suggest that smoother transitions appear in smaller spa-
tial dimensions, and catastrophic shifts are prevented, which
could explain the contribution of a low-population-density
state in one-dimensional models, as the one studied here.

Further studies of transitions between low- and high-
population-density states have to be done to deeply understand
the implications of the two states presented here for these
ecosystems. Our current results already suggest that the re-
population of an area can lead to a change from the low- to
the high-population-density state, if it is intense enough to
lead to a change in the regime of the dynamics in this area.
Further studies could provide additional clues to optimize
repopulation strategies.

It would also be interesting to address the particular case
where the Allee effect arises due to a population-density-
dependent mating rate, as in the studies with lattice models
done in Refs. [55,56]. Our results have similarities (and dif-
ferences) with the results obtained in these studies with lattice
Monte Carlo simulations in an agent-based approach. They
studied the mortality resilience and found three equilibrium
values for the mean site population in the mean-field limit:
high, low, and extinct. Their low-population state was char-
acterized as an unstable separatrix between the high and the
extinct state in the mean-field limit. Here we have gone a step
beyond and shown that this low-population state can be locally
stable in the presence of a nearby high-population state (as
was done in Ref. [26] by external migration). These results
stimulate further research beyond the mean-field limit to get
a deeper understanding of the spatially extended population
dynamics in the presence of environmental fluctuations.

Additionally, the individual-based model in Ref. [57] sup-
ports the crucial role of dispersal to sustain a population. This
model shows that local competition or cooperation among
neighbor individuals lowers the effective Allee threshold com-
pared to global competition or cooperation. Analogously our
study considers local density regulation showing that cou-
pling through dispersal can lead to recovery of patches close
to or below the Allee threshold. (Note we only consider

014413-8



DISPERSAL-INDUCED RESILIENCE TO STOCHASTIC … PHYSICAL REVIEW E 105, 014413 (2022)

mean-field dynamics in dispersal and only for comparison
with limited-range dispersal.) All these results stress the rele-
vance of population spatial structure.

Our results compute the extinction threshold, providing an
approach for assessing extinction risk under an increase of the
amplitude of environmental fluctuations. (An increase in cli-
mate variability was reported for several Earth regions [29].)
The numerical analysis we performed here indicates toward
the low-density state being an unstable state appearing only
at high amplitudes of the environmental fluctuations, close to
the transition to extinction. This low-density state is locally
and transitorily stabilized, probably by dispersal, and it might
play a relevant role in (or be a good indicator of) the dynamics
of populations close to the Allee threshold. These results seem
in accordance with the three types of patches observed in a
locally endangered butterfly [25], where this effect is probably
enhanced and fixed in space due to habitat heterogeneities.
The solutions identified, high- and low-population-density
states, require a future, more detailed analysis of stability
and transitions between them and to extinction, and factors
that influence these transitions, such as harvesting and habitat
suitability (which in nature are generally heterogeneous and
stochastic in space and time).

This theoretical framework also allows studying the im-
pact of fragmentation (i.e., the effects of finite-sized habitats),
which introduces an effective limit in dispersal. Therefore,
fragmentation decreases the potential of dispersion to re-
cover populations and reduces the resilience to environmental
fluctuations [58]. This analysis in the theoretical framework
proposed here will provide information on the resilience of
the high- and low-population-density states in finite-size habi-
tats, assessing the impact of these states and transitions for

the species sustainability on a scenario of increasing climate
variability [29].

The model presented here could shed light on source-sink
dynamics by including external migration and variations in
habitat quality (e.g., adding position dependence of the param-
eters) in this model [59,60]. In source-sink dynamics, some
patches (sources) are more suitable and allow populations to
increase, while others (sinks) have low quality and cannot
sustain populations independently. However, populations in
sinks can be sustained by excess individuals coming from
sources. The source-sink effect has been observed in endan-
gered populations, which present the Allee effect (in some
patches) mitigated by in-migration (from other patches) [25].
Heterogeneous patches coupled through dispersal can give a
nonmonotonic dependence of the extinction probability with
the dispersal rate [61].
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FIG. 4. Solutions in the mean-field approximation: Mean population density I as a function of environmental noise amplitude σ for the two
nonzero branches of solutions at the mean-field approximation, with extinction rate r = 0.1, carrying capacity K = 1, dispersal rate m = 0.5
(solid line), m = 1 (dashed line), and m = 2 (dash-dotted line), for Allee threshold A = 0.25 (a) and A = 0.4 (b). Position of the maximum
of mean-field distributions Nmax as a function of environmental noise amplitude σ for the two nonzero branches of solutions at the mean-field
approximation, with the same parameters as (a,b), and for Allee threshold A = 0.25 (c) and A = 0.4 (d).
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FIG. 5. Simulated population densities for large dispersal distances, lm = 100le, (left panels) and for mean-field (right panels). Panels
(a,c,e) show the spatial profile of the population density at late time, t = 1000 = 100r−1, with dispersal distance lm = 100le, and spatial scale
of synchrony of environmental fluctuations le = 1, and periodic boundary conditions. Panels (b,d,f) show the spatial profile of the population
density for simulation at late time, t = 1000 = 100r−1, and mean-field approximation. For every panel we considered extinction rate r = 0.1,
Allee threshold A = 0.1, carrying capacity K = 1, dispersal rate m = 1, spatial scale of synchrony of environmental fluctuations le = 1, and a
total length of the simulation box L = 4000 (we only represent from x = –100 to x = 100 to improve visualization of spatial structure). The
extinction value for these parameters is σextinction = 1.33, close to the σ = 1.3 of panels (e, f). Green dotted horizontal lines indicates carrying
capacity N = K = 1, red dotted vertical lines indicate Allee threshold value N = A = 0.1, and black dotted horizontal line indicates extinction
value N = 0. The curves represented show the patches in high-density (green), and low-density (red) states (according to which is the dominant
contribution for this value of N in the corresponding histogram of population densities shown in the respective panel of Fig. 6.).
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APPENDIX A: ADDITIONAL FIGURES

This appendix provides additional figures illustrating the
mean-field solution and its application. Fig. 4 illustrates the
dependence of the high- and low-population solutions of the
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FIG. 6. Histograms of the population densities computed in Fig. 5 for large migration (left panels) and for mean-field (right panels). Panels
(a,c,e) show the histograms obtained for the spatial profile of the population density for simulation at a long time, t = 1000, with dispersal
distance equal to 100 times the spatial scale of synchrony of environmental fluctuations, lm = 100le, and periodic boundary conditions. Panels
(b,d,f) show the histograms obtained for the spatial profile of the population density for simulation at a long time, t = 1000, and mean-field
approximation. For every panel we considered extinction rate r = 0.1, Allee threshold A = 0.1, carrying capacity K = 1, dispersal rate m = 1,
spatial scale of synchrony of environmental fluctuations le = 1, and a total length of the simulation box L = 4000. Panels also show the fit
(purple dashed line) to a linear combination of the mean-field population probability distributions. The results for these fits are p(N ) = phigh(N )
in (a–d), p(N ) = 0.20plow(N ) + 0.80phigh(N ) in (e), and p(N ) = 0.23plow(N ) + 0.77phigh(N ) in (f). Each contribution is represented with
its fitted weight. plow(N ) (red line) and phigh(N ) (green line) correspond, respectively, to the low- and high-density mean-field population
probability distribution solutions. They are given by the two nonzero branches of solutions of the mean-field equations for values of σ below
the extinction threshold [σextinction = 1.33, close to σ = 1.3 in (e,f); see also Fig. 2]. Red dashed vertical lines indicate Allee threshold value
A = 0.1, green dashed lines indicate carrying capacity K = 1, and black dashed lines indicate N = 0. Note the similarities between the
population density histograms obtained from direct numerical simulation and the fit to the linear combination of the population probability
distributions obtained with the mean-field limit approximation.

mean-field approximation on the migration rate and on the
Allee threshold. Fig. 5 shows population densities for sim-
ulations for large dispersal distances and for the mean-field
approximation. Fig. 6 compares the histograms of those sim-

ulations with the mean-field probability distribution. Finally,
Fig. 7 uses the classification into extinct-state, low- and high-
population states to illustrate the spatio-temporal population
dynamics.
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FIG. 7. Evolution of the spatial profile of population density from t = 0 to t = 1000 = 100r−1 (left), and zoom on the late evolution
from t = 800 = 80r−1 to t = 1000 = 100r−1 (right). Extinction rate r = 0.1; Allee threshold A = 0.1; carrying capacity K = 1; dispersal rate
m = 1; dispersal distance equal to the spatial scale of synchrony of environmental fluctuations, lm = le = 1; and amplitude of the environmental
fluctuations σ = 0.75 (while the extinction threshold is σextinction = 0.80). The colors in the figure correspond to patches in high-population
(green, N > 0.1), low-population (red, 0.01 < N � 0.1), and extinction states (black, N � 0.01), the criterion used in Fig. 1(e). These states
correspond to high-density, low-density, and extinction distribution in Fig. 1(f).

APPENDIX B: TIME TO EXTINCTION IN THE ABSENCE
OF DISPERSAL

The stationary population density distribution p(N ) with-
out dispersal is given by Eq. (5). This equation shows that
the population distribution in the absence of dispersal is not
normalizable, because it diverges at zero population density

with N−2(1+ r
σ 2 ). Therefore, the population will die out at long

times. However, Eq. (5) does not indicate when this extinction
will occur. Divergence at zero being greater for smaller envi-
ronmental fluctuations may suggest that extinction happens
faster for lesser environmental variability, but this is not the
case as we show below.
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FIG. 8. Approximation of the extinction time in the absence
of dispersal. Decimal logarithm of the expected time taken for a
population starting from the carrying capacity K to reach a final
population Nf , divided by the inverse extinction rate r–1. We have
considered a carrying capacity K = 1, Allee threshold A = 0.1, and
an extinction rate r = 0.1. We can see in the figure that choosing the
Allee threshold A as final population density yields a very similar
extinction time compared to choosing a final population density 100
times smaller.

Mean first passing time [26,62] can be used to study the
expected time to extinction of the population. Hence, the ex-
pected time taken for a population starting at a specific initial
population density N0 to reach a smaller population density
Nf is described by

τN0→Nf = 2
∫ N0

Nf

∫∞
N p(z)dz

v(N )p(N )
dN, (B1)

where p(N ) is described by Eq. (5), v(N ) = σ 2N2, and N0 is
the initial population density. Replacing p(N ) and v(N ) we
obtain

τN0→Nf = 2

σ 2

∫ N0

Nf

N
2r
σ 2

∫ ∞
N

( exp
[ 1
σ 2

( 2rz
K + 2rz

A − rz2

AK

)]

z
2+ 2r

σ 2

dz
)

exp
[

1
σ 2

(
2rN
K + 2rN

A − rN2

AK

)] dN.

(B2)
Exact time to extinction is reached when the chosen ex-

tinction threshold reference Nf tends to zero. However, the
numerical computation becomes very slow in this case, and
we chose instead a small nonzero value of Nf , for example,
the Allee threshold A, or populations 10 or 100 times smaller,
which in many cases is equivalent to extinction (because it is
of the order of one or a few individuals, unable to survive).
Figure 8 shows that the time needed to reach such a small
population (starting from the carrying capacity K) decreases
with the amplitude of environmental fluctuations σ . Smaller
final population sizes Nf imply slightly longer first passing
times. However, considering for Nf the Allee threshold A, or
100 times fewer individuals, yields almost no difference in the
extinction time.

APPENDIX C: SIMULATION ALGORITHM

We begin by setting the parameters for the simulation:
Allee threshold A, carrying capacity K , extinction rate r,
migration rate m, mean dispersal distance lm, the amplitude

014413-12



DISPERSAL-INDUCED RESILIENCE TO STOCHASTIC … PHYSICAL REVIEW E 105, 014413 (2022)

of environmental fluctuations σ , and spatial scale of environ-
mental synchrony le.

Space and time are discretized. The spatial grid is an ar-
ray of length n (a natural, odd number) from x = −Lend to
x = Lend (representing a box of size 2Lend). The characteristic
spatial scales are the dispersal distance lm, and the spatial scale
of synchrony of the environmental fluctuations le. We chose
Lend (at least) 20 times the larger characteristic timescale (for
example, 20 times lm in Figs. 5 and 6, where lm = 100le, while
for most of the other simulations, 70 times the maximum
spatial scale). The number of spatial nodes, n, is chosen large
enough to make that the distance between neighbor nodes,
�L = 2Lend/(n−1), is (at least) 20 times smaller than the
minimum spatial scale. This spatial resolution and box size
have been shown to provide an accurate description of the
population dynamics in an infinite habitat (results are inde-
pendent of Lend and �L).

The temporal grid is an array from t = 0 to t = tend, with a
distance between nodes of �t , which is taken as 50 times the
minimum temporal scale, and tend is 100 times the maximum
temporal scale. The characteristic temporal scales are 1/r and
1/m.

The initial conditions at t = 0 are all spatial nodes
with a population density equal to the carrying capacity,
N (xi, t = 0) = K , unless stated otherwise.

Once the grid has been defined, and the initial conditions
set, we begin the simulation. The differential equation that
governs the model is defined by Eq. (3). To implement it
numerically, we can calculate the population density at a
specific point in time and space, by using the Euler algorithm
such as

N (xi, t j+1) = N (xi, t j )+�N (xi, t j )�t+σN (xi, t j )ζ (t j )
√

�t,

(C1)

where ζ (t j ) is an exponentially autocorrelated Gaussian field
with zero mean, variance equal to 1, and correlation distance

equal to le, and �N (xi, t j ), the deterministic contribution, is

�N (xi, t j ) = rN (xi, t j )

[
N (xi, t j )

A
− 1

][
1 − N (xi, t j )

K

]
�t

− mN (xi, t j )�t + m�t

n−1
2∑

k=− n−1
2

N (xi−k, t j )

× 1√
2π l2

m

e
−(k�L)2

2l2m �L. (C2)

Note that in the sum xi−k can have values outside of the
spatial grid. We can solve that by setting periodic boundary
conditions, which means that the first and the last point of the
grid behave as neighboring nodes, implying that an individual
which disperses beyond the last patch appears at the beginning
of the grid (and vice versa), i.e.:

N (xi−k, t j ) =
⎧⎨
⎩

N (xi−k+n, t j ) i f 1 > i − k
N (xi−k, t j ) i f 1 � i − k � n
N (xi−k−n, t j ) i f i − k > n

. (C3)

In case we want to simulate the dispersal dynamics in the
mean-field limit (as done in the simulations for Figs. 2, 5, and
6), we change the last term of Eq. (C2), the dispersal term, and
we use instead

�N (xi, t j ) = rN (xi, t j )

[
N (xi, t j )

A
− 1

][
1 − N (xi, t j )

K

]
�t

− mN (xi, t j )�t + m�t

∑n
k=1 N (xk, t j )

n
. (C4)

(For mean-field simulations we have set Lend = 2000 le.)
We have verified the results for these algorithms with

different spatial and temporal resolutions and we found the
results are accurate, stable, and consistent.
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