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Effect of receptor cooperativity on methylation dynamics in bacterial chemotaxis
with weak and strong gradient
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We study methylation dynamics of the chemoreceptors as an Escherichia coli cell moves around in a
spatially varying chemoattractant environment. We consider attractant concentration with strong and weak spatial
gradient. During the uphill and downhill motion of the cell along the gradient, we measure the temporal variation
of average methylation level of the receptor clusters. Our numerical simulations we show that the methylation
dynamics depends sensitively on the size of the receptor clusters and also on the strength of the gradient. At
short times after the beginning of a run, the methylation dynamics is mainly controlled by short runs which are
generally associated with high receptor activity. This results in demethylation at short times. But for intermediate
or large times, long runs play an important role and depending on receptor cooperativity or gradient strength,
the qualitative variation of methylation can be completely different in this time regime. For weak gradient, both
for uphill and downhill runs, after the initial demethylation, we find methylation level increases steadily with
time for all cluster sizes. Similar qualitative behavior is observed for strong gradient during uphill runs as well.
However, the methylation dynamics for downhill runs in strong gradient show highly nontrivial dependence on
the receptor cluster size. We explain this behavior as a result of interplay between the sensing and adaptation
modules of the signaling network.

DOI: 10.1103/PhysRevE.105.014411

I. INTRODUCTION

An Escherichia coli cell uses run-and-tumble motion to
climb up the concentration gradient of a nutrient or a chemical
attractant [1–3]. This directed migration, guided by chemical
environment surrounding the cell, is known as chemotaxis
[4]. The signaling network inside an E. coli cell consists
of two principal modules: sensing and adaptation [5]. These
two modules are coupled to each other via the activity of
the chemoreceptors. When the transmembrane chemorecep-
tors bind to the attractant molecules, their activity decreases.
This input signal is processed by the sensing module of the
network, and the run-and-tumble motion of the cell is in turn
modulated such that the cell shows a net drift toward the
region with higher attractant concentration [6–8]. The adap-
tation part of the network implements a negative feedback
mechanism to ensure that the receptor activity does not get
too high or too low. This is done by controlling the methy-
lation level of the chemoreceptor such that the activity level
is restored to its adapted value. An important aspect of the
chemotactic signaling network is the cooperativity or clus-
tering tendency of the chemoreceptors, which allows them to
form clusters or “signaling teams” [9]. All receptors in a team
change their activity in unison which results in significant
amplification of the input signal. This makes it possible for
an E. coli to sense even weak concentration gradient of the
attractant [10,11].

Recent experimental and theoretical studies [12–14] have
shown that receptor clustering is also an important source of
intracellular fluctuation. In other words, enhanced sensitivity
comes at the cost of increased biochemical noise. This results

in an optimum size of the receptor cluster, or equivalently, an
optimum strength of the cooperative interaction between the
receptors, for which the cell shows the most efficient chemo-
taxis. The origin of this optimality is distinctly different from
the optimal signaling team size observed for a noisy input
signal, when due to amplification of that noise the chemotactic
performance gets adversely affected for very large signaling
teams [15]. We had shown in an earlier work [14] that even in
absence of any noise in the ligand environment, there exists an
optimal size of the signaling team when the chemotactic per-
formance is at its best. We had calculated different quantities
characterizing the chemotactic performance and shown how
each of them reaches a peak at a specific size of the signaling
team [14].

In the present work, we investigate how the cooperativ-
ity of the chemoreceptors affects their methylation levels.
More precisely, we study the temporal variation of the recep-
tor methylation levels as the cell navigates through spatially
varying attractant environment. Our extensive numerical sim-
ulations on a detailed theoretical model [14,16] show that the
nature of variation depends sensitively on the level of coop-
erativity present among the receptors. We explicitly consider
two different types (directions) of runs: uphill and downhill.
As the names suggest, during an uphill run the local attractant
concentration increases along the cell trajectory and during a
downhill run it decreases. We monitor the average change in
methylation level of a receptor cluster as a function of time
during these runs.

Although there have been a lot of studies on E. coli
chemotaxis [8,17–21], very little is known about how the
methylation level of the chemoreceptors vary with time as

2470-0045/2022/105(1)/014411(15) 014411-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9969-373X
https://orcid.org/0000-0002-1314-2951
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.014411&domain=pdf&date_stamp=2022-01-19
https://doi.org/10.1103/PhysRevE.105.014411


SHOBHAN DEV MANDAL AND SAKUNTALA CHATTERJEE PHYSICAL REVIEW E 105, 014411 (2022)

the cell samples different attractant concentrations during its
run-and-tumble motion. Due to the complex nature of the
signaling network, it is not straightforward to predict this tem-
poral variation. The chemoreceptor activity which controls the
tumbling bias, depends on local ligand concentration through
the sensing module of the network: an increase (decrease)
in ligand concentration tends to reduce (raise) the activity.
Through the adaptation module of the network, activity also
depends on the methylation level: active (inactive) receptors
get demethylated (methylated) which in turn lowers (raises)
the activity. Because of this coupled dynamics, the temporal
variation of methylation level can be quite complicated. Our
study unravels this complex dynamics and provides useful
insights into the interdependence of different dynamical vari-
ables in the signaling network.

Our numerical simulations show how methylation dy-
namics is controlled by the direction and strength of the
concentration gradient of the attractant, as well as the receptor
cooperativity. Defining time t = 0 at the start of an uphill or a
downhill run, we monitor the change in average methylation
level as a function of time t during those runs. We mainly
use two different quantities to measure the above change. At
time t we calculate the average methylation level for all those
runs which persist (i.e., do not tumble) till time t and subtract
from it the initial average methylation level of those same set
of runs. Or alternatively, we can subtract the average initial
methylation levels of all runs starting at t = 0, irrespective
of their durations. We find the choice of initial ensemble is
crucial and can lead to qualitatively different nature of tempo-
ral variations. This difference is particularly pronounced for
small sizes of the receptor clusters. Our data also show that the
interplay between the sensing and adaptation modules of the
signaling network manifests itself in different ways depending
on the strength of the attractant concentration gradient and
on the size of the receptor clusters. This interplay strongly
affects the temporal variation of the methylation levels. We
explain our numerical observations from a detailed analysis
of the coupled time evolution of receptor activity, methylation
and ligand concentration within the signaling network. To
the best of our knowledge, such a systematic investigation of
methylation dynamics along the cell trajectory has never been
done before. Our study reveals a rich methylation dynamics
and its sensitive dependence on receptor cooperativity and
gradient strength.

We also suggest possible experiments to verify our con-
clusions. Note that our study is based on a swimming cell,
whereas most experiments are performed on tethered cell.
Therefore, we propose an experimental protocol involving a
tethered cell and a time-varying attractant level [22] that mim-
ics the situations experienced by a swimming cell. In Sec. II
we present our model. In Sec III we present our results on
methylation dynamics for weak and strong gradient cases in
two different subsections. In Sec IV we summarize our results,
discuss their significance and suggest possible experimental
verification. In Appendices A and B we present additional
details of model, parameters, simulations, and protocol of
suggested experiments. We also present additional supporting
data in Appendices E–I.

II. MODEL DESCRIPTION

There are a few thousand chemoreceptors in an E. coli cell
which exist in the form of dimers [23,24]. Each receptor dimer
can be in two different states: active or inactive. According to
Monod-Wyman-Changeux (MWC) model [25–27], the free-
energy difference between these two states (in the units of
KBT ) can be written as

ε[c(x), m] = log
1 + c(x)/Kmin

1 + c(x)/Kmax
+ ε0 − ε1m, (1)

where x denotes the location of the cell and c(x) is the con-
centration of the attractant at that location, m stands for the
methylation level of the dimer which can take any integer
value between 0 and 8 [16,28–30] and ε0 and ε1 are two con-
stants whose values are listed in Table I. The parameters Kmin

and Kmax set the range of sensitivity, i.e., the cell can sense any
concentration as long as Kmin < c(x) < Kmax is satisfied. A
receptor cluster of size n contains 3n dimers, where the factor
3 accounts for the formation of trimer of dimers. The total free
energy of the cluster is the sum of individual free energies of
all 3n dimers

F = 3n log
1 + c(x)/Kmin

1 + c(x)/Kmax
+ 3nε0 −

3n∑

i=1

ε1m(i), (2)

where m(i) is the methylation level of the ith dimer. Due to co-
operativity, all dimers in one cluster change their activity state
simultaneously and this transition probability depends on the
free energy of the cluster (see Appendix A for more details).
The activity of a cluster is defined as the probability to find the
cluster in the active state and its long-time average is given
by [1 + exp(F )]−1. The total activity of the cell is obtained
by averaging over activities of all clusters. When clusters are
larger in size, they are fewer in number and the total activity
is then a result of averaging over a smaller number of clusters.
This is why activity fluctuations increase for large n [13,14].

The total activity determines the tumbling bias of the cell.
In the run mode the cell swims smoothly, and it can tumble
with a certain probability which takes a large value if the
activity is high. In the tumble mode the cell undergoes random
rotation about its body axis when it reorients itself and can
switch back to the run mode again [31,32]. The tumble to run
switching rate is high if the activity is low. During the motion
of the cell its position x changes and hence c(x) changes. It
follows from Eq. (1) that if c(x) increases, activity decreases
and runs tend to get longer. Similarly, for decreasing c(x)
runs tend to get shorter. This gives rise to a net migration
up the gradient of c(x). In this work, we have considered a
linear concentration profile: c(x) = c0(1 + x/x0) where c0 is
the background concentration and x0 measures the strength
of the gradient. We perform agent-based simulations where
we consider the movement of the cell in both one and two
dimensions with reflecting boundary walls. In the main paper
we present results for the one-dimensional motion of the cell,
and in Appendix I we present the two-dimensional case. Our
main conclusions remain same in both cases.

The other dynamical variable in Eq. (1) is m, which is
controlled by methylating enzyme CheR and demethylating
enzyme CheB-P. A dimer can bind to one enzyme molecule
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at a time. An active dimer gets demethylated by CheB-P
which lowers its m value by 1, provided m > 0. Similarly,
an inactive dimer gets methylated by CheR which raises its
m by 1, provided m < 8. From Eq. (2) it follows that methy-
lation increases activity and demethylation decreases it. This
constitutes the negative feedback which is responsible for
adaptation in the network. In Appendix A we provide details
of the binding-unbinding kinetics of the enzyme molecules.
One important point that needs to be considered here, is the
very low concentration of enzyme molecules, as compared
to very large number of receptor dimers [33]. Because of
this the methylation level of a dimer changes very slowly
and in fact methylation-demethylation process is the slowest
step in the whole reaction network. However, this does not
adversely affect the adaptation capability of the cell and E.
coli cell is known to show near-perfect adaptation [34,35].
To explain this a number of mechanisms have been proposed
experimentally and theoretically, like assistance neighbor-
hood and brachiation [36–40]. In an assistance neighborhood
model, one enzyme molecule can tether to one receptor dimer
and can modify the methylation levels of the dimers in its
neighborhood. In brachiation model, the enzyme molecule,
once bound to a dimer can perform random walk on the
receptor array and move from one dimer to others and mod-
ify their methylation levels. We include a flavor of these
mechanisms in our model, as explained in more details in Ap-
pendix A. We list the values of all parameters we used in the
Table I.

III. TEMPORAL VARIATION OF METHYLATION LEVELS

In this section, we present our results on temporal variation
of methylation level of a receptor cluster during uphill and
downhill runs of the cell. We consider a large enough number
of uphill and downhill runs of variable durations and average
over them to measure the methylation variation. Let N+(t ) and
N−(t ) be the number of uphill and downhill runs, respectively
whose duration is larger than t where t = 0 is set at the start
of the run. Our data in Fig. 8 of Appendix C show that N±(t )
decrease exponentially with time. Let m+

i (t ) be the methyla-
tion level of a particular receptor cluster measured at time t
during the ith uphill run. In a similar way, m−

i (t ) can also be
defined. We define the following quantities:

�m±(t ) =
N±(t )∑

i=1

m±
i (t ) − m±

i (0)

N±(t )
(3)

and

δm±(t ) =
∑N±(t )

i=1 m±
i (t )

N±(t )
−

∑N±(0)
i=1 m±

i (0)

N±(0)
, (4)

where all upper (lower) signs in the superscripts correspond
to uphill (downhill) runs. �m+(t ) [�m−(t )] considers those
uphill (downhill) runs which persist at least till time t and
measures the average change in methylation in those runs.
However, δm+(t ) [δm−(t )] considers average methylation
level of all uphill (downhill) runs persistent till time t and
subtracts from it the average methylation level of all uphill
(downhill) runs which started at time t = 0, irrespective of

their durations. More simply,
∑N±(t )

i=1
m±

i (t )
N±(t ) is a quantity that
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FIG. 1. Temporal variation of �m±(t ) for different n: left panel
shows plots for �m+(t ) for the uphill runs and the right panel shows
�m−(t ) for the downhill runs. Initial demethylation is due to short
high activity runs and later methylation is due to long runs with low
activity. These data are for a one-dimensional motion of the cell
in a box of size L across which a linear concentration profile c(x)
of the attractant is set up with weak gradient. The red solid lines
represent the data for a homogeneous attractant environment. All
simulation parameters are listed in Table I in Appendix A. These
data are averaged over at least 8 × 105 histories.

tracks average methylation level of a running cell at time t
and just by subtracting the initial value of this quantity gives
us δm±(t ). As clear from Eqs. (3) and (4) the main difference
between �m±(t ) and δm±(t ) is in the choice of the initial
averaging at t = 0. For �m±(t ) we subtract the average initial
methylation of only those runs which persist till t , while for
δm±(t ) we subtract average initial methylation of all runs.
As we show below, this is an important difference and can
result in completely different nature of time-dependence of
these two quantities. We are interested in the effect of receptor
cooperativity on the temporal variation of these quantities. We
find the effect is very different for weak gradient case and
strong gradient case. We separately present these two cases
below. For comparison, we also show results for the homoge-
neous attractant environment for which �m+(t ) and �m−(t )
become identical. Similarly, δm+(t ) and δm−(t ) also become
same in this limit. One might expect that the methylation
variation for the homogeneous environment lies in between
the uphill and downhill variation. But we show below that it
is not always true.

A. Weak gradient

For weak gradient we consider x0 = 20 mm. In this case we
expect the long-time distribution of the cell position inside the
box to be well-approximated by a linearly varying function.
We present our data for �m±(t ) in Fig. 1 for different values
of the receptor cluster size n.

To analyze these data, it is useful to consider separately the
runs starting with different ranges of activity values. To this
end, we show in Fig. 2 the distribution of activity a0 values
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FIG. 2. Distribution of activity a0 at the start of a run. The plus
symbols show data for weak gradient. The cross symbols are for the
zero gradient case, which almost overlap with the weak gradient data.
The low (L), medium (M) and high (H) ranges of values of a0 have
been shown. These ranges are defined with reference to the mean a0

value shown by the red point. The empty circle on the x axis shows
the adapted activity value which also belongs to the medium range.
Each data point has been averaged over at least 106 histories. All
simulation parameters are listed in Table I in Appendix A.

at the beginning of a run. The distribution is unimodal and
gets wider with increasing n, which is consistent with earlier
results known for steady-state activity distribution [12–14].
The distribution is also roughly symmetric about the peak.
The mean value of a0 (shown by a red filled circle in Fig. 2),
as well as the adapted level of activity (shown by an empty
circle), lie close to the peak position. Therefore, the activity
values near the peak can be considered to be in the medium
range, the ones near the left (right) tail belong to low (high)
range. In Fig. 9 of Appendix D we show the distribution of
run durations which start with low, medium or high activity
values. As expected, the long runs are least probable for high
a0 and most probable for low a0. The integrated quantity, i.e.,
the number of runs persisting at least till time t , starting with
a0 values belonging to these three different ranges has been
plotted in Fig. 10. As we show below, these variations play a
crucial role in �m±(t ) behavior.

In Fig. 3 we plot �m±(t |a0), defined as the methylation
variation during a run starting with low, medium or high a0.
We expect that for small a0 we should have methylation, for
large a0 we should have demethylation and for medium a0

change in methylation should have small magnitude. This is
exactly what we find for small n, as shown in Fig. 3(a). For
large n the behavior is same as above for small t but for large
t our data in Figs. 3(c) and 3(d) of Fig. 3 show positive values
of �m±(t |a0) which indicates methylation. This is consistent
with our data in Fig. 1(e)–1(h). It may appear counter-intuitive
why for large a0 even downhill runs show methylation at
large times. Actually, the initial strong demethylation lowers
the activity significantly since for large n flipping of activity
states of even few signaling teams can cause the activity value
to fall below its adapted level. This triggers methylation for
large t . In Fig. 3 we also show the data for flat attractant
profile. As expected, it lies between the uphill and downhill
curves.
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FIG. 3. �m±(t |a0) for runs starting with three different activity
ranges. The discrete points present data for the weak gradient case
and the solid lines are for the flat concentration profile of the attrac-
tant. The square, triangular and circular symbols correspond to low,
medium and high a0 values while the empty (filled) symbols are for
uphill (downhill) runs. Among the solid lines, the top (red), middle
(yellow) and the bottom (black) ones correspond to low, medium and
high a0 runs for the flat profile. Each data point has been averaged at
least 105 histories. All simulation parameters are listed in Table I in
Appendix A

Aided by the insights obtained from looking at the methy-
lation variation for different activity range, we can now
explain the data for �m+(t ) in Fig. 1. For n = 10 Fig. 1(a)
shows that �m+(t ) starts from 0, decreases slightly to become
negative for small t and then increases steadily with t . This
means for small t the uphill runs show demethylation and
then they switch over to methylation. Note that our data in
Fig. 3(a) show that the demethylation trend for high a0 runs
are stronger than the methylation trend for low a0 runs. This
is also consistent with our observation that mean value of a0

is higher than the adapted activity [see Fig. 2(a)]. In other
words, the short-time behavior of �m+(t ) is dominated by
high a0 runs which undergo demethylation. However, these
runs are short and as time goes on, these short runs end
and drop out of N+(t ) population and only the longer runs
remain, as seen in Fig. 10(a). These runs are associated with
low activity and hence receptor methylation. Moreover, due to
increasing c(x) along the cell trajectory in this case, activity
is lowered further. Thus methylation takes over and �m+(t )
shows positive growth. In Fig. 1(b) we show the data for
�m−(t ) for the same cluster size. The qualitative behavior
remains same here also. However, the late time growth due
to methylation is much weaker in this case. This is expected
since even for those runs with low activity which persist till
late times, c(x) keeps decreasing with t which tends to raise
the activity. Because of this opposing effect coming from the
ligand free energy, activity remains higher than the uphill runs,
and average methylation shows a slower growth. To filter out
the effect of the ligand concentration gradient, in Fig. 1 we
also plot the methylation variation in absence of a gradient
(red lines). As expected, we find the curve in this case lies in
between �m+(t ) and �m−(t ).

For larger values of n, qualitative behavior remains the
same, although the quantitative variation of �m±(t ) happens
over a larger range now. This is expected since the number of
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FIG. 4. Temporal variation of δm±(t ) for different n: left (right)
panel corresponds to uphill (downhill) runs. Increasing methylation
level for long runs tends to increase average methylation, while
dropping out of high methylation trajectories from N±(t ) tends to
decrease average methylation. In this competition the former wins for
small n and the later wins for large n. These data are averaged over
at least 5 × 105 histories. Other simulation details are as in Fig. 1.

receptors per cluster increases, the total change in methylation
level of a cluster also increases. The negative values observed
at small t also show similar trend, the minimum in �m±(t )
at small t becomes deeper as n increases. We also notice that
for n = 10, 30 the range of variation of �m+(t ) and �m−(t )
are significantly different, but for n = 100, 200 the ranges are
not as different for the uphill and downhill runs. Methylation
is still slower for the downhill curve, but the values are much
closer to the uphill curve. This is because for large n the ac-
tivity fluctuations increase and then adaptation plays a bigger
role in the signaling network and ligand free energy becomes
less important [13,14]. The difference in the cell behavior
during an uphill and downhill run therefore decreases for large
n. In Appendix E Fig. 11 we show this explicitly by plotting
the difference between average activity during an uphill and
downhill run, and as expected, this difference decreases with
n for large n. This explains why the temporal variation of
methylation follows a similar course for large n, irrespective
of whether the cell is running uphill or downhill.

Surprisingly, the temporal variation of δm±(t ) shows a
completely different behavior. Our data for n = 10 in Fig. 4
show that δm±(t ) starts from 0 and then it decreases with
time for both uphill and downhill runs. This indicates up-
hill and downhill runs show demethylation on an average,
which is opposite to what we had seen in Fig. 1 for the same
cluster size. The reason behind this apparently contradicting
observation is explained below. Since more and more runs
terminate with time, N±(t ) decreases with t . Since the tum-
bling bias increases with activity, it follows that majority of
those terminated runs correspond to high activity. Our data
in Fig. 10(a) of Appendix D clearly show this trend, where
high activity runs show sharpest decline at small t . A high
activity state is in turn associated with high methylation level,

as follows from Eq. (2). Therefore, those runs which drop out
of N±(t ) population, have high methylation level. Although
positive values of �m±(t ) for moderate or large t ensure that
runs which persist till such times undergo methylation, due to
dropping out of high methylation states from the population,
the average methylation level still decreases with time, mak-
ing δm±(t ) negative. Our data also show that δm−(t ) takes a
larger negative value at late times, compared to δm+(t ). This
is consistent with the fact that the positive growth of �m−(t )
is slower than that of �m+(t ) for large t [see Figs. 1(a) and
1(b)].

For n = 30 the trend remains similar, except δm+(t ) after
an initial decrease tends to saturate at larger t . This is because
�m+(t ) for this n shows a strong growth for large t [see
Fig. 1(c)] and although high methylation states continue to
drop out of the population of N+(t ), due to large rise in
methylation level during the individual long runs, the decrease
of average methylation level of all uphill runs gets arrested.
This effect is even more prominent for n = 100, 200 where
due to even stronger growth of �m±(t ), we find a trend
reversal: δm±(t ) after an initial decrease, show upward swing
and start increasing with time. Here the decreasing tendency
of population averaged methylation level due to tumbling is
overcompensated by large growth in methylation in individual
persistent runs. As expected, this effect is stronger for the
uphill runs, and somewhat weaker for the downhill runs.

B. Strong gradient

To investigate the case of strong gradient we use x0 =
2 mm, which is ten times stronger than what we had consid-
ered in the previous subsection. The steady-state distribution
of the cell position in this case has an exponential form. We
present our data for �m±(t ) in Fig. 5. We find qualitatively
different dynamics compared to the weak gradient case.

To explain this variation, we first look into the activity
distribution at the start of the run and define low, medium,
and high ranges of activity as done in the previous subsection.
In Fig. 6 we present the data for P(a0) which is wider than the
weak gradient case [28,30,41–43] and identify the ranges of
low, medium and high a0. In Fig. 7 we plot �m±(t |a0) with
a0 in one of these three ranges. The solid lines in these plots
show the data for the zero gradient case where we have used
same ranges of a0 as in Fig. 6 which are significantly different
from a0 ranges for the flat attractant profile shown in Fig. 2.
Because of this difference we sometimes find in Fig. 7 the
solid lines do not lie between the uphill and downhill curves.

For small n the behavior of �m±(t |a0) is qualitatively
similar to the weak gradient case. For large n, we find all uphill
runs, irrespective of their a0 range, show methylation at large
t . The uphill runs starting with large a0 show initial demethy-
lation which lower the activity. Moreover, increasing ligand
concentration along the trajectory also tends to lower the ac-
tivity. Due to these two effects activity falls below the adapted
level and methylation takes over. For downhill runs our data
in Fig. 7(b) show that low a0 runs show weak methylation at
large t and for medium and high a0 we have demethylation.
In this case, the already strong gradient, further amplified by
receptor cooperativity controls the behavior at large times,
initial activity plays a less significant role. The fast falling
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FIG. 5. Temporal variation of �m±(t ) for different n and strong
gradient case: left (right) panel corresponds to uphill (downhill) runs.
While �m+(t ) shows qualitatively similar time-dependence as in the
weak gradient case, the behavior of �m−(t ) is completely different.
Unlike the weak gradient case, �m−(t ) shows significantly varying
dynamics depending on the value of n. Such behavior is a result of
interplay between the sensing module and adaptation module of the
signaling network. The red lines show the data for the zero gradient
case. We have here presented the data for zero gradient only in the
left panel and skipped inclusion of the same data in the right panel for
convenience in the choice of scales. Here, one-dimensional motion of
the cell is considered in presence of a strong gradient of c(x). Other
simulation parameters can be read off from Table I in Appendix A.
These data have been averaged over at least 105 histories.

ligand concentration along the trajectory raises the activity
resulting in demethylation. For n = 100 Fig. 7(c) shows that
small a0 runs show methylation for small times followed
by a dip at larger times, medium a0 runs show negligible
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attractant gradient. The low (L), medium (M) and high (H) ranges
of values of a0 have been shown. These ranges are defined with
reference to the mean a0 value shown by the red point. The empty
circle on the x axis shows the adapted activity value which also
belongs to the medium range. Each data point has been averaged over
at least 106 histories. All simulation parameters are listed in Table I
in Appendix A.
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FIG. 7. �m±(t |a0) for runs starting with three different activity
ranges. The discrete points present data for the strong gradient case
and the solid lines are for the flat concentration profile of the attrac-
tant. The square, triangular and circular symbols correspond to low,
medium and high a0 values while the empty (filled) symbols are for
uphill (downhill) runs. Among the solid lines, the top (red), middle
(yellow) and the bottom (black) ones correspond to low, medium and
high a0 runs for the flat profile. Each data point has been averaged at
least 105 histories. All simulation parameters are listed in Table I in
Appendix A

change in methylation and high a0 runs show demethylation.
For n = 200 we find medium and high a0 runs show initial
demethylation, followed by an upswing at late times.

Above detailed measurements help us to understand the
data in Fig. 5. Here an uphill (downhill) run experiences
a steep increase (decrease) of attractant concentration with
time because of the strong gradient present. For n = 10 both
�m+(t ) and �m−(t ) decrease to become negative for small t .
From exponential decay of N±(t ) (see Fig. 8 of Appendix C)
it follows that the small time statistics are dominated by short
runs which control the behavior of �m±(t ) for small t . These
short runs are associated with high activity (or large tumbling
bias) which is supported by our data in Fig. 9 of Appendix D
right panel where the high activity runs show highest proba-
bility for short durations. Such runs undergo demethylation.
For moderate or large t , due to fast increasing ligand free
energy during uphill runs, the receptor clusters tend to switch
to inactive states and hence methylation takes over, making
�m+(t ) positive again. Interestingly, in Fig. 5(a), the red solid
line that shows the methylation variation for zero gradient
of the attractant, passes above the �m+(t ) curve at small t ,
unlike what we had seen for the weak gradient case. Although
at larger t , the zero gradient data fall below the strong gradient
data as seen in Fig. 1 earlier, the short-time behavior seems
counter-intuitive. To explain this effect, we consider Figs. 2(a)
and 6(a) where initial activity a0 distribution at the start of a
run is shown. The difference between mean a0 and adapted
a0 is significantly larger for the strong gradient case and
this makes the demethylation more pronounced. For downhill
runs the short-time decrease of �m−(t ) is expectedly more
pronounced because in addition to those runs which started
off with high activity, there are runs which undergo a rise
in activity due to rapidly decreasing c(x). The demethylation
is therefore stronger in this case. As time goes on, we see
�m−(t ) reaches a minimum and then starts increasing again.
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This behavior can be explained as follows. The downhill runs
which persist till large times even though a strong gradient is
present in the system, need to have very low activity at the
start of the run and as time goes on, the fraction of such runs
in N−(t ) population increases with time [see data in Fig. 10(b)
of Appendix D where the number of low activity runs overtake
that of high activity runs for moderate or large t]. These runs
undergo methylation at short times and even if their activity
increases with time, leading to demethylation at large times,
the net change �m−(t ) has a smaller magnitude. This explains
the negative minimum and subsequent rise of �m−(t ) (also
see Appendix F for supporting data). However, in the time
range we have observed, �m−(t ) does not change its sign
and continue to remain negative. For the purpose of suitable
choice of scales, we have not plotted the zero gradient data
with �m−(t ) in Fig. 5. From the red lines in the left panels
of Fig. 5 it is clear that �m−(t ) always lie below the zero
gradient curve.

For higher values of n the qualitative behavior of �m+(t )
remains same, but �m−(t ) undergoes significant change in
its dynamics. For n = 30 we find �m−(t ) monotonically de-
creases with time till the time range we have observed. In
this case, the signal coming from the strong gradient gets
even more amplified due to large value of n and the activity
state of the receptors is mainly controlled by the ligand free
energy. Along the downhill trajectory of the cell, the ligand
free energy decreases rapidly and this raises the activity of the
receptors. Even those runs which started with a low activity
value, experience an increase in activity due to this effect.
Our data in Fig. 7(b) are consistent with this where we see
low activity downhill runs show a decrease in methylation rate
at long times. The high activity results in demethylation and
�m−(t ) becomes negative.

For n = 100 the behavior is even more interesting: �m−(t )
reaches a negative minimum at short times, then increases to
become positive, reaches a positive maximum at large times
and then starts decreasing strongly again to become negative.
As we explain below, this rich behavior is a result of interplay
between the sensing and adaptation modules of the network
[14]. For large receptor clusters, the activity fluctuation in the
cell is quite strong. When the activity becomes too high or
too low, to restore it to its average level, adaptation needs to
play an important role and can sometimes override the signal
coming from ligand concentration variation in the cell’s en-
vironment. For small t , the behavior of �m−(t ) is controlled
by high activity runs. This can be clearly seen in Fig. 10(f)
of Appendix D where number of high activity runs at short
times is much higher than low activity ones. Note that Fig. 10
show data for uphill runs but we find very similar variation
for the downhill runs as well. High activity runs cause strong
demethylation. However, this demethylation process lowers
the activity significantly and even though ligand concentration
is dropping rapidly, it cannot keep up with the strong demethy-
lation. The resulting low activity triggers methylation (see our
data in Fig. 7(c) where even for high activity downhill runs
the initial demethylation slows down with time). Therefore,
after reaching a minimum, �m−(t ) starts increasing again
and even changes sign to become positive. At large times,
when only very long runs survive in N−(t ) population, the
drop in ligand free energy along such long downhill trajec-

tories becomes quite large which can now compete against
the strong methylation variation experienced by the receptors.
Therefore, the activity starts increasing again, which explains
the maximum of �m−(t ) followed by a drop [our data for low
activity downhill runs in Fig. 7(c) show this trend clearly]. We
have presented additional supporting data in Appendix F.

In Fig. 5 we also show data for n = 200 where the pattern
of variation is almost similar for both �m+(t ) and �m−(t ),
except at very large times when �m−(t ) shows a flattening
tendency. The similarity between the uphill and downhill runs
shows that the methylation dynamics is insensitive to the
ligand density. In this range of n values, the adaptation module
wins over the sensing module of the signaling network be-
cause of large activity fluctuations. Irrespective of whether the
cell is headed uphill or downhill along the ligand concentra-
tion profile, the activity of the receptors remains low in the run
state resulting in overall methylation. The late time flattening
tendency of �m−(t ) is nothing but a remnant of the behavior
seen at n = 100 where very large drop in ligand density during
very long downhill runs finally tends to increase the activity.

Our data for δm±(t ) for the strong gradient case has been
presented in Appendix G. A more detailed quantity which
tracks the distribution of the methylation level with time t
has been shown in Fig. 14 of Appendix H and is found to
be consistent with the variation of δm±(t ).

IV. CONCLUSIONS

In this study we have performed a detailed analysis of
methylation dynamics of chemoreceptors of an E. coli cell
while the cell is swimming in a spatially varying attractant
environment. We have considered attractant concentration
with strong and weak spatial gradient. Our numerical simula-
tions show that the receptor cooperativity strongly affects the
methylation dynamics and the effect is rather dramatic in the
case of strong gradient of the attractant. In all cases we find
that at short times the methylation dynamics is controlled by
short runs which are generally associated with high activity.
This causes the average methylation of the receptors decrease
with time initially after the start of a run. For intermediate or
large times, the methylation dynamics is controlled by long
runs and depending on the receptor cooperativity or strength
of the gradient, the qualitative behavior of methylation can
be completely different in this time regime. For weak gradient
during both uphill and downhill runs, after the initial demethy-
lation, we find methylation level increases steadily with time,
till the time range we have observed. Although the quantitative
range of variation increases with size of the receptor clusters,
the qualitative behavior remains the same. Similar temporal
variation is observed for uphill runs in the strong gradient
case as well. But for downhill runs with strong gradient, the
methylation dynamics shows highly nontrivial dependence on
receptor cooperativity. For relatively small size of the receptor
clusters, the long downhill runs must start with low activity
and hence they undergo methylation at short times. This early
methylation combined with decreasing ligand concentration
with time, raises the activity and hence demethylation happens
at large times. As the receptor cluster size increases, the input
signal coming from ligand concentration gets amplified and
gains control over the activity variation. For downhill runs
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this causes increase in activity, even for those long runs whose
activity was low at the beginning. Therefore, methylation level
monotonically decreases with time in this case. As the cluster
size increases further, adaptation tends to win over sensing.
The cell is less sensitive to ligand concentration variation now:
only when a downhill run has persisted for a really long time,
during which the drop in ligand free energy has been quite
large, the activity gets controlled by ligand concentration. For
even larger receptor clusters, adaptation wins over sensing at
all times and the methylation dynamics for uphill and down-
hill runs start looking almost similar.

To the best of our knowledge, such a systematic, quanti-
tative investigation of methylation dynamics has never been
performed before, even though E. coli chemotaxis is a widely
studied system. Our study provides probing insights into how
the amplification of input signal and a negative feedback
mechanism come together to control the time-evolution of
various dynamical variables which characterize the signaling
network. We find highly interesting and nontrivial methylation
dynamics as a result of this interplay. Our results can be tested
in experiments. Although our study focuses on a swimming
cell, our conclusions can be tested for a tethered cell which
is experimentally more accessible. In Ref. [22] the real time
activity of the receptor-kinase complex was measured using
FRET and by subjecting the tethered cell to time-varying lig-
and concentration such that the FRET output remains constant
in time, the adaptation dynamics was determined. Motivated
by this, we propose an experiment on a tethered cell with
appropriately engineered attractant environment to verify our
conclusions. The counter clockwise rotation of the flagellar
motors of the tethered cell can be considered equivalent to
a run, and by ramping up (down) the attractant level at the
fixed location of the tethered cell one can mimic an uphill (a
downhill) run. We have included a detailed discussion of the
experimental protocol in Appendix B. The activity level of
the tethered cell can be tracked during the changing attractant
concentration from which the temporal variation of methy-
lation level can be determined. Possible future experimental
developments that enable in vivo measurement of methylation
levels directly, can also be useful to test our conclusions.

There are few aspects of the signaling network, which we
have not taken into account in our model. The receptor arrays
are known to show a hexagonal symmetry in their spatial
arrangement [23,24] which we have not considered in our
model. Moreover, it has been observed that receptor clusters
cause curvature of the cell membrane which has an energy
cost [44–46]. We do not include this effect in our simple
model. These assumptions may make quantitative comparison
between our results and experiments difficult, but they are
unlikely to affect our general conclusions. The understanding
of the methylation dynamics that our study provides, is much
more general and simply relies on the coupling between ligand
concentration, activity and methylation, and does not depend
on the details of the model. It will be of interest to see if our
understanding applies to other sensory systems as well.
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APPENDIX A: ADDITIONAL DETAILS OF THE MODEL

In our model, there are three major parts: (a) activity
switching of the receptor clusters, (b) binding-unbinding dy-
namics of the enzyme molecules to the receptor dimers and
(de)methylation of the receptor dimers by the bound enzymes,
(c) run-and-tumble motion of the cell where the switching
probability between the run mode and tumble mode is cal-
culated from the total activity. A detailed description of each
part follows below.

(a) We denote the activity state of the ith receptor cluster
containing n trimers of dimers by the variable ai, which can
take two values. ai = 1 denotes an active state and ai = 0
denotes inactive state. The free energy difference F between
these two states is given by Eq. (2) of the main paper and
the probability to find a receptor cluster in active state is [1 +
exp(F )]−1. From ai = 0 state the receptor cluster switches to
ai = 1 state with the rate wa

wa
[1+exp(F )] and the reverse transi-

tion happens with a rate wa exp(F )
[1+exp(F )] [13]. The choice of these

rates is based on local detailed balance [13]. The parameter
wa is the characteristic timescale of the transition [47].

(b) The total number of CheR and CheB molecules are de-
noted by NR and NB, respectively. An unbound CheR molecule
resides in the cell cytoplasm and can bind to the receptor
dimer if an only if no other enzyme is bound to it. The binding
can take place at the tether site or the modification site of the
receptor dimer [16,17,48]. While both these bindings are slow,
the tether binding is comparatively faster than the binding
at the modification site [16,49] because of which we only
consider tether binding process in our model. The binding
takes place with rate wr and once bound the CheR enzyme
raises the methylation level of the dimer by one unit with
rate kr , provided the dimer belongs to an inactive cluster and
its methylation level is <8. A bound CheR can unbind from
the dimer with rate wu and can either reattach to another
unoccupied dimer within the same cluster, or return to the
cytoplasm. A CheB molecule in the cytoplasm can undergo
phosphorylation by an active receptor with rate wp and an un-
bound CheB-P molecule can dephosphorylate with rate wdp.
The binding, rebinding, and unbinding processes for CheB-
P are very similar to those for CheR, while demethylation
happens if the dimer is active with a nonzero methylation
level. The binding between an enzyme molecule and a dimer
is a slow process and therefore if one binding event results
in only one (de)methylation reaction, then it becomes difficult
for the network to maintain perfect adaptation. The possibility
of rebinding of the same enzyme molecule to another dimer
in the same cluster paves way for multiple (de)methylation
of multiple receptors from a single binding event. This is an
effective way to include the flavor of assistance neighborhood
[37,38,40] and brachiation [36] in our model.

(c) Let a denote the fraction of active receptor clusters in
the cell. Then the phosphorylated fraction of CheY molecules,
defined as YP = [CheY-P]/[CheY] follows the rate equation
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TABLE I. List of parameter values used in simulations.

Symbol Description Value References

Ndim Total number of receptor dimers 7200 [16,33]
NR Total number of CheR protein molecules 140 [16,33]
NB Total number of CheB protein molecules 240 [16,33]
ε0 Basal energy of receptor dimer 1 kBT [16,28–30]
ε1 Receptor energy change per methyl group addition 1 kBT [16,28–30]
Kmin Minimum concentration receptor can sense 18 μM [20], [50]
Kmax Maximum concentration receptor can sense 3000 μM [20,50]
wa Flipping rate of activity 0.75 s−1 Present study
ω Switching frequency of motor 1.3 s−1 [51,52]
�1 Nondimensional constant regulating motor switching 10 [51,52]
�2 Nondimensional constant regulating motor switching 20 [51,52]
Y0 Adopted value of the fraction of CheY-P protein 0.34 [51,52]
KY Phosphorylation rate of CheY molecule 1.7 s−1 [50,53]
KZ Dephosphorylation rate of CheY molecule 2 s−1 [50,53]
wr Binding rate of bulk CheR to tether site of an unoccupied dimer 0.068 s−1 [16,49]
wb Binding rate of bulk CheB-P to tether site of an unoccupied dimer 0.061 s−1 [16,49]
wu Unbinding rate of bound CheR and CheB-P 5 s−1 [16,49]
kr Methylation rate of bound CheR 2.7 s−1 [16,49]
kb Demethylation rate of bound CheB-P 3 s−1 [16,49]
wp CheB phosphorylation rate 3 s−1 [16,54]
wdp CheB-P dephosphorylation rate 0.37 s−1 [16]
L Box length in 1D 2000 μm Present study
v Speed of the cell 20 μm/s [4]
dt Time step 0.01 s Present study
Lx × Ly Box dimension in 2D 2000 × 800 μm2 Present study
D� Rotational Diffusivity 0.062 μm2/s [1,28,55]
c0 Background attractant concentration 200 μM Present study
1/x0 Linear concentration gradient of attractant 0.025 mm−1, 0.25 mm−1 Present study

[50]

dYP

dt
= KY a(1 − YP ) − KZYP, (A1)

where the parameters KY and KZ are rates for phosphorylation
and dephosphorylation, respectively. The run-tumble motil-
ity of the cell is controlled by YP. If the cell is in the run
mode, then it can switch to tumble mode with rate ω exp(−G)
where G = �1 − �2/(1 + Y0/YP ) and the opposite switch
from tumble to run happens with the rate ω exp(G). We have
verified (data not shown here) that our conclusions remain
unaffected even if tumble to run switch is assumed to be
independent of YP and takes a constant value.

We present the values of all model parameters in Table I.

APPENDIX B: SIMULATION DETAILS AND SUGGESTED
EXPERIMENTS

In our agent-based simulations, we consider run-and-
tumble motion of the cell in 1D and 2D box with reflecting
boundary walls. A linear concentration profile for the attrac-
tant is set up along the x direction. During a run the cell moves
with a constant speed v. After each tumble, the direction of the
new run is chosen at random. In 1D case, the trajectory during
a run is a straight line, while in 2D case due to rotational
diffusion the trajectory shows gradual bending. After each
tumble the cell chooses a random direction to start a new run.
We perform all measurements in the long-time limit when the

system has reached a steady state. We average over all runs
that originate beyond a distance from the boundary walls. This
ensures negligible boundary effect. In our simulations we use
xd = 400 μm and yd = 200 μm as the width of the boundary
layers in x and y directions, respectively. We have verified
(data not shown here) that our results are not sensitive to the
choice of boundary layer width.

We use a attractant concentration profile c(x) = c0(1 +
x/x0). In the 1D case when the cell runs rightward, it expe-
riences a linear increase of level with time along its trajectory.
Similarly, during a leftward run, the attractant level drops
linearly with time. At x = 0, L there are reflecting boundary
walls and when a cell hits these walls they reverse their run
directions. To recreate these conditions in experiment with a
tethered cell, one needs to use a suitably engineered attractant
environment. The counter clockwise rotation of the flagellar
motors of the tethered cell can be considered equivalent to a
run. An uphill (downhill) run can be mimicked by ramping
up (down) the attractant level linearly with time at the fixed
location of the tethered cell. The ramping rate can be chosen
to be exactly same as the rate at which a cell running with
speed v experiences change in attractant levels along its path.
Of course for weak and strong gradient, this rate is going
to be different. Every time the flagellar motors switch to a
clockwise rotation, the attractant level should be held fixed
as this corresponds to a tumble mode with zero displacement.
After each tumble, when the motors switch back to counter
clockwise rotation, the sign of the ramp rate can be chosen
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FIG. 8. Number of surviving runs as a function of time for both
uphill (purple solid square) and downhill (green empty circles) runs.
Left panel is for weak gradient and right one is for strong gradient.
It shows that for both weak and strong gradient number of downhill
runs drops faster than number of uphill ones. Each data has been
averaged over at least 105 histories. All simulation parameters are
listed in Table I in Appendix A.

at random. Finally, when the attractant level matches the
boundary values, the ramp rate should simply be reversed,
which corresponds to the cell hitting a boundary wall and
getting reflected back and continuing its run in the opposite
direction. This way by tuning the ramp rate in sync with
the rotational bias of the flagellar motors, we can create the

FIG. 9. Distribution of run durations starting with low (purple
plus), medium (green cross) and high (blue star) values of initial
activity. The left panel shows data for weak gradient and the right
panel is for stronger gradient. The zero gradient data have been
shown by continuous lines in the left panel. The purple, green and
blue lines correspond to low, medium, and high a0, respectively. As
expected, runs starting with lower activity values survive the longest.
Each data point has been averaged over at least 2 × 106 times. All
simulation parameters are listed in Table I in Appendix A.

FIG. 10. Number of surviving runs as a function of time for runs
starting with three activity zones, which are high activity (blue star),
medium activity (green cross), and low activity (purple plus). Left
(right) panel is for weak (strong) gradient. Each data point has been
averaged over at least 105 histories. All simulation parameters are
listed in Table I in Appendix A.

same conditions of a swimming cell for a tethered one. By
tracking the methylation level of the receptor clusters for this
tethered cell during the ramped up and ramped down attractant
level, one can directly measure the quantities like �m±(t ) or
δm±(t ) and test our conclusions. Alternatively, the activity
level of the cell can be tracked and the methylation variation
can be determined from there by using the knowledge of input
variation of ligand concentration.

APPENDIX C: EXPONENTIAL DECAY OF N±(t )

Number of surviving runs N±(t ) in uphill and downhill
directions decay exponentially with time. In Fig. 8 we present
our data for the weak and strong gradient cases.

APPENDIX D: RUNS STARTING WITH LOW, MEDIUM,
AND HIGH ACTIVITY

Figure 9 shows distribution for duration of runs which start
with activity values in high, medium or low ranges. To mea-
sure the persistence of these runs, in Fig. 10 we plot N+(t |a0),
the number of uphill runs which do not tumble till time t .
As expected, for all gradient strength and all cooperativity,
N+(t |a0) is largest for runs starting with medium range of a0

(green filled circles) because that is where the most probable
value of a0 lies (shown by red dot in each panel of Figs. 2 and
6). Figure 10 also shows that N+(t |a0) has sharpest drop for
high a0 (blue empty triangles), specially at small t since these
are the runs associated with high tumbling bias. We find very
similar behavior for N−(t |a0) also (data not shown here).
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FIG. 11. Difference of average activity during uphill and down-
hill runs. The difference decreases with n for large n which reflects
dominance of adaptation module over sensing module. These data
are for 1D motion of the cell with weak gradient of c(x). Each data
point has been averaged over at least 107 histories. All simulation
parameters are listed in Table I in Appendix A.

APPENDIX E: AVERAGE ACTIVITY IN UPHILL
AND DOWNHILL RUNS

Let a+ denote the activity of the cell measured at a random
time during an uphill run. Clearly, a+ is a stochastic quan-
tity and we denote its mean by 〈a+〉. Similarly, for downhill
runs 〈a−〉 can be defined. Our data in Fig. 11 show that
the difference between these two activities decreases with n
for large n. This is consistent with the fact that for large n
adaptation wins over sensing and the cell is less sensitive to
ligand concentration variation in its surroundings.

APPENDIX F: METHYLATION DYNAMICS FOR VERY
LONG RUNS

The time evolution of methylation level during particu-
larly long runs provides an independent verification of the
explanation we have provided for the behavior of �m−(t ) in
Fig. 5. To this end we perform the following measurement.
Let M−(t, τ ) be the methylation level of a receptor cluster
at time t during a downhill run which persists for at least
time τ . In Fig. 12 we present data for average change in
methylation (average calculated over N−(τ ) runs) as a func-
tion of time t for τ = 5 s, which is much longer than average
run duration. These data are for the strong gradient case.
For n = 10 a long run starts with low activity and hence for
short times there is methylation. But decreasing c(x) along
with increasing methylation level finally raises the activity
and demethylation starts at large times. Our data in Fig. 5(b)
show that for large t when long runs dominate, the magnitude
of �m−(t ) decreases with time. This is consistent with our
data in Fig. 12(b) where because of initial methylation and
subsequent demethylation, the net change in methylation level
becomes small. Figure 12(b) shows data for n = 30 where a
monotonic decrease is observed. Because of stronger receptor
cooperativity in this case, the input signal coming from c(x)
is significantly amplified and dominates the free energy in
Eq. (2). So even if the long runs started with low activity, un-
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FIG. 12. Average change in methylation for long downhill runs
with duration longer than 5 s. Here, strong gradient of c(x) is used.
For different values of n these data correctly reflect the long-time
behavior of �m−(t ) shown in Fig. 5. These data have been averaged
over at least 106 histories. Other simulation parameters are as in
Fig. 5.

der the influence of rapidly decreasing c(x), activity increases
and as a result demethylation happens. This is consistent with
our data for n = 30 in Fig. 5. For n = 100 the long runs show
even more interesting behavior. Adaptation plays important
role here and the free energy in Eq. (2) is not controlled by lig-
and density alone, methylation starts playing a more important
role. As we see from the Fig. 12(c), after initial demethylation,
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FIG. 13. Temporal variation of δm±(t ) for different n and strong
gradient: left (right) panel shows data for uphill (downhill) runs.
While for small n both uphill and downhill runs show decreasing
level of average methylation with time, there is a trend reversal for
uphill runs at late times for larger values of n. This is caused by
strong positive growth of �m+(t ) which overcompensates for drop-
ping out of large methylation states from N+(t ) population. These
data have been averaged over at least 106 histories. Other simulation
parameters are as in Fig. 5.
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FIG. 14. Distribution of methylation level at t = 0 (solid purple line), t = 2 s (dashed black line) and t = 5 s (dotted orange line). Left
and middle panels show data for uphill and downhill runs for strong gradient. The right panels show data for the zero gradient case. To clearly
show the shift of the peak position with time, here we have presented the zoomed data near the peak region. Each data point has been averaged
over at least 106 histories. Other simulation parameters are as in Fig. 5.

the activity drops significantly and methylation starts. In this
time regime methylation dominates over ligand free energy.
But at late times, when the downhill run has gone on for
quite long, the drop in c(x) becomes so large that activity is
now controlled by ligand density and demethylation happens
again. This behavior mirrors what we had seen for �m−(t ) in
Fig. 5 for n = 100. Figure 12(d) shows the data for n = 200
where adaptation wins over sensing at all times, and even
through c(x) is decreasing along the cell trajectory, that is not
enough to raise the activity. We find activity remains low and
methylation happens at all times during the long runs.

APPENDIX G: δm±(t ) FOR STRONG GRADIENT IN ONE
DIMENSION

In Fig. 13 we present data for δm±(t ) (purple squares).
As seen in the case of weak gradient, here also we find
qualitatively different trend from �m±(t ) (see Fig. 5). For
small n, when the variation of �m±(t ) is relatively milder, due
to systematic dropping out of high methylation states from
N±(t ) populations, we find δm±(t ) decrease monotonically.
For n = 30, we have already shown from our data in Fig. 5
that �m−(t ) shows monotonic decrease with t . With drop-
ping out of high methylation states with time, the decrease is
now (quantitatively) stronger for δm−(t ). For the uphill runs,
δm+(t ) remains negative but shows a minimum. The strong
positive growth of methylation level of individual trajectories,
as captured by �m+(t ), together with termination of high

methylation runs with time, lowers the magnitude of δm+(t )
at large times. Similar explanation can be used to interpret the
data for δm+(t ) for n = 100, 200 as well. However, δm−(t )
for n = 200 shows a different behavior. After an initial mini-
mum it shows a shallow maximum followed by a steep drop.
While the explanation for the initial minimum remains same
as in δm+(t ) case, the late time steep drop can be traced back
to the slower growth of �m−(t ) at late times in Fig. 5(h).
This slower growth combined with high drop out rate of high
m runs from N−(t ) population causes the sharp decline in
δm−(t ) at large times.

The red lines in Fig. 13 left panels show data for the
zero gradient case. Since the attractant concentration does
not change with time in this case, one would expect less
pronounced demethylation than an uphill run in strong gra-
dient where the attractant concentration increases with time.
However, our data in Fig. 13(a) show that the zero gradient
data lie above the strong gradient uphill data. The explanation
of this effect can be found in the distribution of initial activity
a0 in Figs. 2 and 6 where the difference between mean a0 and
the adapted activity is larger for the case of strong gradient,
which gives rise to stronger demethylation. From Fig. 6 it also
follows that for larger n values the difference between mean
a0 and adapted activity is comparable for the zero gradient
and strong gradient case. Moreover, the increase in ligand free
energy with time along an uphill run is significantly higher for
large n and strong gradient. This is why the zero gradient data
fall below δm+(t ) for large n and large t .
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FIG. 15. Temporal variation of �m±(t ) for different n in two
dimensions: left panel shows plots for �m+(t ) for the uphill runs
and the right panel shows �m−(t ) for the downhill runs. Here weak
gradient of c(x) is considered and the data look qualitatively similar
to the one-dimensional case, presented in Fig. 1. All simulation pa-
rameters are listed in Table I in Appendix A. These data are averaged
over at least 105 histories.

APPENDIX H: DISTRIBUTION OF METHYLATION
LEVEL AT TIME t DURING A RUN

Let mt be the methylation level of a receptor cluster
(rescaled by the size of the cluster) at time t during a run.
At t = 0 we have m0 that denotes the initial methylation level
at the start of a run. In Fig. 14 left and middle panels we show
the distribution of mt for t = 0, 2, 5 s for the strong gradient
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FIG. 16. Temporal variation of δm±(t ) for different n in two di-
mensions: left (right) column corresponds to uphill (downhill) runs.
As seen in the data for one dimension, δm±(t ) and �m±(t ) show
opposite trends for small n, while for large n their trends become
similar. These data are averaged over at least 9 × 105 histories. Other
simulation details are as in Fig. 15.
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FIG. 17. Temporal variation of �m±(t ) for different n and strong
gradient case in two dimensions: left (right) column corresponds to
uphill (downhill) runs. The qualitative nature of variation is similar to
our data for one dimension in Fig. 5. These data have been averaged
over at least 105 histories.

case. The left panel shows the data for the uphill runs and the
middle panel corresponds to downhill runs. The right panel
in this figure shows data for a flat attractant profile. In this
case for n = 10 and 30 the methylation distribution shows
a distinct second peak. We have not been able to explain
this effect. However, the time-dependence of these curves are
exactly as one would expect from δm±(t ) variation shown in
Fig. 13. In those cases when δm±(t ) decreases monotonically
with t , we find the distribution P(mt ) also shifts leftward
toward smaller mt values as t increases. However, in Fig. 13(e)
or Fig. 13(g), where δm+(t ) shows distinct nonmonotonicity

-0.15

-0.1

-0.05

 0

 0  1  2  3  4  5

(a)
n=10

δm
+
(t

)

t (second)
-0.16

-0.08

 0

 0  1  2  3  4  5

(b)
n=10

δm
- (t

)

t (second)

-0.18

-0.12

-0.06

 0

 0  1  2  3  4  5

(c)
n=20

δm
+
(t

)

t (second)
-0.3

-0.2

-0.1

 0

 0  1  2  3  4  5

(d)
n=20

δm
- (t

)

t (second)

-0.2

 0

 0.2

 0  1  2  3  4  5

(e)

n=48

δm
+
(t

)

t (second)
-0.6

-0.3

 0

 0  1  2  3  4  5

(f)

n=48

δm
- (t

)

t (second)

-0.5

 0

 0.5

 1

 1.5

 0  1  2  3  4  5

(g)
n=100

δm
+
(t

)

t (second)
-0.56

-0.28

 0

 0  1  2  3  4  5

(h)
n=100

δm
- (t

)

t (second)

FIG. 18. Temporal variation of δm±(t ) for different n and strong
gradient in two dimensions: left (right) column shows data for uphill
(downhill) runs. The qualitative behavior is not too different from
Fig. 13 for the one-dimensional case. These data are averaged over
at least 7 × 105 histories.
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along with zero-crossing and change of sign, corresponding
P(mt ) also shows analogous behavior.

APPENDIX I: DATA FOR TWO DIMENSIONS

In this section we present our simulation results for methy-
lation dynamics for two-dimensional motion of the cell. In

a box of size Lx × Ly, with reflecting boundary conditions
at the four walls, a linear concentration profile c(x) for the
attractant is set up along the x direction, and the y direction has
no gradient. Our measurement of �m±(t ) and δm±(t ) show
qualitatively similar behavior as seen in one dimension for
the weak and strong gradient cases. Our data are presented
in Figs. 15–18.
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