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High-order correlations in species interactions lead to complex
diversity-stability relationships for ecosystems
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How ecosystems maintain stability is an active area of research. Inspired by applications of random matrix
theory in nuclear physics, May showed decades ago that in an ecosystem model with many randomly interacting
species, increasing species diversity decreases the stability of the ecosystem. There have since been many
additions to May’s efforts, one being an improved understanding the effect of mutualistic, competitive, or
predator-prey-like correlations between pairs of species. Here we extend a random matrix technique developed
in the context of spin-glass theory to study the effect of high-order correlations among species interactions.
The resulting analytically solvable models include next-to-nearest-neighbor correlations in the species in-
teraction network, such as the enemy of my enemy is my friend, as well as higher-order correlations. We
find qualitative differences from May and others’ models, including nonmonotonic diversity-stability relation-
ships. Furthermore, inclusion of particular next-to-nearest-neighbor correlations in predator-prey as opposed to
mutualist-competitive networks causes the former to transition to being more stable at higher species diversity.
We discuss potential applicability of our results to microbiota engineering and to the ecology of interpredator
interactions, such as cub predation between lions and hyenas as well as companionship between humans and
dogs.
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I. INTRODUCTION AND BACKGROUND

Many ecosystems are composed of a large number of
species that interact with each other in a plethora of ways. The
extreme case of the Amazon rainforest is estimated to house
several million species, ranging from carnivorous plants [1]
to freshwater sharks [2]. Our own gut microbiome contains
hundreds of microbial species that coevolve with us [3–5].
The complexity of such ecosystems makes it challenging to
model and understand them [6].

A celebrated attempt to understand large ecosystems was
made by May in the early 1970s [7–9], which we detail here.
Consider an ecosystem with N species, each with continu-
ous, time-dependent abundance zi(t ) where i = 1, 2, . . . , N ,
which represent the elements of the abundance vector �z. The
species interact with each other, which determines how their
abundances change over time. Assume that the dynamics of
zi(t ) are governed by a system of coupled ordinary differ-
ential equations admitting a steady-state vector of species
abundances �z = �s, around which the system can be linearized.
Thus, the introduction of small changes in species abundances
around the steady state, denoted xi(t ) = zi(t ) − si with corre-
sponding vector �x, will dictate the dynamics according to

d�x
dt

= M�x, (1)

where M is the Jacobian matrix evaluated at �s. Following
precedent, we will refer to this matrix as the community

*elgink@stanford.edu

matrix [8] where element mi j of M encodes an interaction
between the species pair j and i.

May considered a community matrix model of the form
M1 = G − R. Here −R is a diagonal matrix representing the
self-regulation of the species, which for convenience is taken
to be −R = −RI where I is the identity matrix and R is a
positive constant. G is a random matrix with independent and
identically distributed entries: The entry distribution has mean
0 and finite standard deviation σ and is otherwise arbitrary.
The parameter σ sets the range of the interaction strength
between species pairs and we will simply refer to it as the
interaction strength [10]. Note that M1 is not symmetric; the
effect of species i on j will differ from that of j on i. May
focused on the local stability (hereafter referred to as stabil-
ity) of the steady-state species abundance of this ecosystem
model. In general, small perturbations of abundances around
a stable steady state are suppressed and the system returns
back to the steady state, while those around an unstable one
lead to divergence from the steady state. The stability can
simply be determined from the eigenvalues of M1: If none of
its eigenvalues have a real part greater than 0, then the steady
state is stable. Thus, one can address the question of stability
in May’s model through the distribution of eigenvalues of M1.

According to the circular law conjecture [11,12], in the
limit of large N , the eigenvalues of G are uniformly distributed
on the disk of radius σ

√
N centered at the origin in the

complex plane, with the largest real part of its eigenvalues
consequently being σ

√
N . The circular law conjecture has

been proven in its most general form only a decade ago by
Tao, Vu, and Krishnapur [13], who provide a universal result
agnostic to the details of the matrix entry distribution. Thus,
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FIG. 1. May’s model and three-species correlations. (a) The eigenvalues of May’s community matrix M1 are uniformly distributed in a
disk of radius σ

√
N centered at the point (−R, 0) on the real axis in the complex plane. We have dropped the connectivity fraction C in May’s

original model for the remainder of the manuscript. As drawn, the system is stable. When σ > σc (purple radius larger than orange radius),
the largest real eigenvalue component is larger than 0, and the ecosystem is unstable. (b) The interspecies interactions encoded in G can be
represented in a weighted directed graph (left panel) where each node represents a species and each directed link weight equals the interaction
effect of one species on another. Here only one of the two links (one direction) between species pairs is shown. Left panel shows an arbitrary
subset of the three-species paths from species i to k. In the right panel, hik is the modification to the interaction effect of k on i introduced when
going from May’s model M1 to M2,1.

a simple change of variables in the eigenvalue distribution for
G leads to σ

√
N − R for the largest real eigenvalue part of

M1. This implies that the ecosystem is stable when σ
√

N < R.
One way to incorporate the fact that not all species pairs nec-
essarily interact with each other is to introduce a connectivity
fraction C, which randomly sets a fraction C of the entries of
G to 0. This simply modifies the inequality to σ

√
NC < R,

bringing us to the particular diversity − stability relationship
proposed by May [7], which emphasizes a trade-off among
σ , N , and C within this ecosystem model. Thinking of the
species interaction strength σ as a control parameter, we can
define a critical interaction strength σc after which the ecosys-
tem is always unstable [10]. For May’s model, σc = R√

NC
[see Fig. 1(a) where connectivity C is dropped following rest
of the manuscript; see Results]. It is important to note that
this analysis does not say anything about “feasibility,” i.e.,
having physically allowable (positive) values for the abun-
dances in the steady-state vector around which the system
is linearized. The study of feasibility requires consideration
of the original system before linearization, which the mod-
els in this manuscript will be mostly agnostic to. Relatedly,
the models discussed in this manuscript, including those by
May [7] and Ref. [14], do not take into account any effect of
the steady-state vector of abundances on the Jacobian matrix
at steady state and hence any effect of it on stability [8].
It is interesting to contrast this to the case of simple gen-
eralized Lotka-Volterra models, where species interactions
are typically linear with respect to species abundances [8,15]
and the steady-state Jacobian matrix accordingly has an ex-
plicit dependence on the steady-state abundances. We refer
interested readers to a fraction of many revealing pieces of

work on different models regarding feasibility and stability by
Refs. [16–20].

While the assumptions underlying May’s approach have
been questioned [8,9,17,21–23], it provides an interesting null
model and has inspired further investigations using random
matrix approaches. An avenue of interest in ecology is the
study of the effects of correlations among species interac-
tions, which is assumed to not exist in May’s model. This
is potentially one way nature avoids May’s diversity-stability
constraint, with species interactions in different ecosystems
having empirically different correlations [21,24–26]. A com-
mon example of correlations in an ecosystem can be seen in
ecosystems rich in predator-prey (also known as exploitive
interaction) pairs, where it is expected to find more pairs of
species that directly affect each other in an opposite manner,
that is, through an interaction beneficial for one but detri-
mental to the other. Beyond that, it is possible that there are
prevalent higher-order correlations in the direct interactions
of species, such as those between the common predators of
a prey, though this is not well understood at the ecosystem
level, potentially due to difficulties in experimental ecology
(see Discussion).

An important case of correlations in ecosystems was ad-
dressed by Allesina and Tang [14] in a May-like model where
diagonally symmetric elements of the community matrix were
set to have pairwise correlations by drawing the pair of ele-
ments from a general bivariate distribution with correlation ρ.
Through theory and simulations, they showed that the func-
tional form of May’s diversity-stability relationship undergoes
simple modifications in the presence of such correlations.
For example, a perfect predator-prey limit of the community

014406-2



HIGH-ORDER CORRELATIONS IN SPECIES … PHYSICAL REVIEW E 105, 014406 (2022)

matrix (ρ chosen such that mi jmji < 0 with marginal means
of interactions 0) was shown to increase the critical interac-
tion strength σc to R√

NC(1−|ρ|) compared to the R√
NC

in May’s
model. Empirical evidence suggests that correlations con-
tribute to stability in more ways than described in Ref. [14],
but the theoretical basis is not clear [24]. There have in-
deed been other computational and theoretical advances on
the effect of correlations among species interactions [26–31].
However, the topic is far from exhausted and enjoys only a
small collection of analytical results [21]. More generally, the
addition of complexity to models of large numbers of interact-
ing species has proven challenging but is critical to understand
and make predictions regarding complex ecosystems [3,5,6].

While random matrix theory has helped achieve milestones
in the modeling of ecological systems [9,10,14,17,20,26], it
has also been extensively applied in finance [32], neural in-
formation processing [33], and throughout physics [34–39].
One application includes the introduction of a “squared inter-
action matrix” to study the effect of next-to-nearest-neighbor
correlations in a fully connected spin-glass model in a simple,
analytically tractable manner [40]. Here we extend this ap-
proach to study three-species (next-to-nearest-neighbor) and
higher-order correlations in direct interspecies interactions
using a particular set of correlation structures, which are easily
generated by incorporating random matrices raised to integer
powers in our models. For clarity, we would like to note that
we do not study indirect interactions [41–43]. Indirect interac-
tions arise, for example, when species A directly interacts with
species B and alters the abundance of species B, which then
leads to species A indirectly affecting the other species, C, that
is directly interacting with species B (“linked chains of direct
interactions”) [42]. We also note that the high-order correla-
tions we study are distinct from what are defined as high-order
“interactions,” where there is a direct interaction between
two species that is governed by a third species through, for
example, its abundance [10,44–46] (this at times has been
referred to as an indirect interaction as well [42]; for a rig-
orous discussion of high-order interactions, see Ref. [47]).
In contrast, we instead study a system of linearized differ-
ential equations, with high-order correlations among terms
corresponding to the direct pairwise interactions of species.
We show that with one correlation structure, the addition of
high-order correlations beyond three species to May’s model
(such as the friend o f the enemy o f my enemy helps me) can
cause the critical interaction strength to vary nonmonoton-
ically with species diversity. Thus the maximum critical
interaction strength is achieved at finite values of species
diversity, unlike in May’s model. We then show that for a
related correlation structure, predator-prey networks transition
to being more stable than mutualist-competitive networks at
higher species diversity. Overall, the correlation structures in
our linear models give rise to analytically tractable, complex
diversity-stability relationships. We discuss how our results
may fit into broader ecological and evolutionary frameworks.

II. RESULTS

We build on May’s model [7], where we drop the
connectivity fraction C, which gives the diversity-stability
relationship σ

√
N < R. Following literature, we refer to σ as

the interaction strength and focus on the critical interaction
strength σc above which the ecosystem is always unstable for
given N [10]. In May’s model, σc = R√

N
where the critical

interaction strength is seen to decrease linearly with increas-
ing

√
N [Fig. 1(a)]. Throughout the manuscript, we analyze

modifications to May’s model, and keep working in the large-
N limit. Finally, we refer to entries of G in May’s model
as pairwise interactions between species unless we need to
distinguish gi j from g ji. In this case, we refer to gi j as the
interact ion e f fect of species j on i.

A. Positive n-species correlations

Now, instead of May’s model M1 = −R + G, we first
analyze a modified ecosystem with community matrix

M2,β = −R + G + β

N
G2, (2)

where, again, each matrix is of dimensions N × N with N
being species diversity. β is a positive constant (0 < β � 1)
determining the level of mixing of the rightmost term with
the rest of the terms. We will be looking at the effect of
increasing β, which we will show to correspond to increasing
next-to-nearest-neighbor correlations in M2,β . Note that for
a given instantiation of the random community matrix M2,β ,
G2 is simply the square of the random matrix G whose en-
tries are already drawn. First, let us focus on the rightmost
term, β

N G2. The introduction of + β

N G2 implies a particular
next-to-nearest-neighbor correlation structure in the ecosys-
tem. Each element hik of the matrix 1

N G2 by definition equals
to 1

N

∑
j gi jg jk where gi jg jk is the product of the interaction

effect of species j on i (in G) and the interaction effect of
species k on j (in G). Thus the element hik of 1

N G2 repre-
sents the average of all pairwise interaction effects (in G) of
k on other species, each weighted by the interaction effect
(in G) of those species on species i. N corresponds to the
number of three-species paths between the two species i and k
[Fig. 1(b)]. Finally, note that the operator norm of 1

N G2 is σ√
N

fold that of G. Dean and Ritort, in a similar vein, introduced
GGT (instead of G2) to the respective Hamiltonian in the
squared interaction matrix Sherrington-Kirkpatrick model of
spin glasses to study another form of next-to-nearest-neighbor
correlations [40].

Coming back to the community matrix M2,β = −R +
G + β

N G2, we see that increasing β decreases the critical
interaction strength σc at which the ecosystem destabilizes
[Fig. 2(a)]. This is not surprising since we are simply in-
creasing the largest real eigenvalue component of May’s
community matrix by βσ 2. This is seen from a fact that
we will be repeatedly using throughout the manuscript: In
general, if v is an eigenvalue of G, and χ is a polynomial,
then χ (v) is an eigenvalue of χ (G) (see the Appendix). In this
case, σc = 1

2β
(
√

4βR + N − √
N ) which for large N behaves

like the critical interaction strength of May’s model, R√
N

. Now
let us set β = 1, M2 ≡ M2,1 and consider the inclusion
of higher-order correlations in May’s model, that is, longer
species paths when modifying the direct interspecies inter-
actions. Instead of only including three-species correlations,
we will include up to (F+1)-species correlations with the
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FIG. 2. Nonmonotonic stability relationships arise from beyond three-species correlations. (a) Increasing β decreases the critical inter-
action strength σc of community matrix M2,β . As β approaches 0, σc for May’s community matrix M1 is recovered (dashed blue). (b) The
critical interaction strengths of M2 and May’s community matrix M1 monotonically decrease, while the community matrices including beyond
three-species correlations have a nonmonotonic relationship between their critical interaction strength and species diversity. The inset shows
the same plot with different scaling of the axes. R is set to 106 for all curves.

analogous structure, which gives the community matrix

MF = −R + G +
F∑

p=2

1

N p−1
Gp. (3)

The term Gp takes into account all possible (p+1)-species
paths between a pair of species, which total to N p−1 terms.
In the case of M3 we find that σc no longer monotonically
decreases with N , as opposed to the case of M2, and it peaks
at a nonzero species diversity [Fig. 2(b); see the Appendix].
This is interesting in part due to its qualitative difference from
May’s model where the highest possible critical interaction
strength occurs at species diversity N = 0.

We should note that the observed nonmonotonicity in σc

in the case of F = 3 is, as expected, due to the emergence
of a high integer power of σ , with a cooperating factor of
N , in the equations to solve for the largest eigenvalue real
component and thus is not particularly special to the inclusion
of correlations (see the Appendix 1). However, it is possible
that the correlation structure we use is a natural way in which
those terms can arise (see Discussion). In any case, we see that
this approach allows for relatively easy analytical treatments
of random matrix models with high-order correlations among
the direct interspecies interactions.

We now look at the community matrix containing up to
even higher-order correlations, where we take lim F −→ ∞ in
MF . If we assume σc <

√
N , then, using the Taylor series

for (1 − x)−1, we easily find σc =
√

NR
N+R (see the Appendix).

This limit exhibits a broader peak for σc than in the M3 case
[Fig. 2(b)]. One may be further interested in modifying the
community matrix MF , such as with certain prefactors to
the terms. A simple case is when we penalize each 1

N p−1 Gp

term (p!)−1 fold, resulting in the community matrix ME =
−R + G + ∑F

p=2
1

N p−1
Gp

p! . Here, using the Taylor series for

the matrix exponential of G, it is straightforward to find
σc = √

N log(1 + R
N ) for ME [Fig. 2(b); see the Appendix].

B. Negative three-species correlations in predator-prey,
mutualistic, and competitive networks

We move on to analyze a different correlation structure.
First, instead of May’s community matrix M1 = −R + G,
following Allesina and Tang [14], we start with a more general
community matrix, Mc = −R + Gc. The N × N matrix Gc

has pairwise correlation ρ among its diagonally symmetric
entries gi j and g ji (i �= j). In the construction of Gc, its en-
tries gi j and g ji (i �= j) are sampled from a general bivariate
distribution with correlation −1 < ρ < 1, marginal means
0 and marginal standard deviation (interaction strength) σ .
When ρ < 0, Mc is biased toward having more predator-
prey-like (gi jg ji < 0) interactions. When ρ > 0, Mc is instead
biased toward having more mutualistic (gi j > 0; g ji > 0)
and competitive (gi j < 0; g ji < 0) interactions which we call
mutualist-competitive biased. The case of ρ = 0 reduces to
May’s model.

To investigate the stability of the ecosystem governed by
the community matrix Mc, we need to determine its largest
real eigenvalue components. This was done by Allesina and
Tang [14] with the help of preceding theoretical results [48].
The eigenvalues of Gc were shown to be distributed uniformly
inside an ellipse centered at the origin in the complex plane,
where the ellipse intercepts the real axis at ±σ

√
N (1 + ρ) and

the imaginary axis at ±σ
√

N (1 − ρ). The stability criterion
for Mc is thus σ

√
N (1 + ρ) < R and the critical interaction

strength σc = R√
N (1+ρ)

. This analysis reveals a simple rela-
tionship where predator-prey biased interactions provide more
stability than mutualist-competitive biased interactions.

We will now modify Mc to introduce a different form of
three-species correlations than we studied before, which is the
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FIG. 3. Mutualist-competitive and predator-prey correlations shape effect of a three-species correlation structure. (a) Critical interaction
strength σc for community matrix Mc decreases with increasing ρ for all N . (b) σc for community matrix Mc,−2 is described by a piecewise
function, with the two pieces joining at the respective threshold species diversity for the given curve, marked with a black dot. For Mc,−2,
increasing ρ increases σc for small N while it decreases σc for large N . R is set to 3000 for all curves.

addition of − 1
N G2

c to Mc where we note the choice of the
minus sign. This choice is partially due to the rich stability
behavior it will be shown to generate. We will thus focus
on the stability of the ecosystem governed by the community
matrix

Mc,−2 = −R + Gc − 1

N
G2

c . (4)

Following a similar procedure to the previous section leads
to a piecewise analytical solution for the critical interaction
strength σc for Mc,−2 (Fig. 3; see the Appendix). An important
feature of this solution is that as the species diversity de-
creases, including more positive as opposed to more negative
pairwise correlation ρ in Gc will transition from decreasing σc

to increasing σc [Fig. 3(b)]. This is as opposed to Mc where
decreasing ρ increases σc for all N [Fig. 3(a)].

III. DISCUSSION

A. Summary

In this manuscript, we modified May’s random commu-
nity matrix model [7] with simple high-order correlations
among species interactions by using random matrices raised
to integer powers. We showed in Sec. II A that high-order
correlations can lead, in a number of ways, to maximum
possible critical interaction strengths occurring at finite values
of species diversity. One implication of this is that, unlike
May’s model, systems with fewer species can be more unsta-
ble. A similar effect has also been observed when high-order
species interactions, instead of correlations, were included in
May-like models [10]. In Sec. II B, we studied a three-species
correlation structure which resulted in predator-prey networks
transitioning to being more stable than mutualist-competitive
networks at higher species diversity. Our work adds to the
limited number of analytical studies that involve application
of random matrices with high-order correlations among their
elements [14,40,49].

B. Motivating the models

It is interesting to think about how high-order correlations
in species interactions may arise in nature. Lions, hyenas,
and cheetahs, who compete for many prey species, actively
kill each others’ cubs, suggestive of similarities with high-
order (three-species) negative correlations as in Sec. II A. To
illustrate how parts of our models could potentially map to
such biological settings, we provide a few speculative exam-
ples. Let us focus on a hypothetical scenario inspired by the
interaction between lions and hyenas and show one specific
way increased interspecies aggression may come about in an
ecosystem where high-order correlations are developing in a
manner consistent with our models. What we will effectively
be doing is restating the mathematics of our model in words.
The species names are mostly symbolic for our purposes. In-
terspecies aggression is known to have evolved between lions
and hyenas. Let us assume that they exist in an ecosystem with
some “initial” community matrix Q (where we will ignore
the self-regulation term), and that lions eat prey A (qLA > 0;
qAL < 0 where L is the index for lion, A is the index for prey
A, and q is an element of the matrix Q) and hyenas also eat
prey A (qHA > 0; qAH < 0 where H is the index for hyenas).
The lions and hyenas also exhibit some initial but small level
of direct interaction, such that qHL and qLH are approximately
zero.

We are interested in high-order correlations in an ecolog-
ical network. High-order correlations could in theory come
about in numerous ways—for example, new interactions
may simultaneously emerge through evolution and change
predator-prey and predator-predator interactions altogether to
new “values” that are unrelated to the pre-evolved values
of the interactions that lacked high-order correlations. Or
high-order correlations may have already been part of the
ecosystem from its original formation and could continue
remaining within an ecosystem, as the ecosystem evolves.

However, perhaps an alternative attractive possibility is
that ecological networks vary in their level of interspecies
interaction correlation over time, and correlations arise due to
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previous (pre-evolved) interactions feeding into how the new
interactions evolve. So in the lion and hyena example, one
way this could happen is if qLA and qAH feed into the evolved
kLH (where k is an element of the newly evolved matrix K)
in this new, evolved ecological network and likewise for qHA,
qAL, and kHL. A simple model would be to take the new kLH to
be proportional to qLA and qAH , which gives kLH ∼ qLAqAH —
that is, the interaction of each with their common prey feeds
into the interaction they are developing, and it does so in a
directly proportional manner. If there are multiple common
prey species (prey A, B, C, and D), then a simple model would
be to take the average of qLAqAH , qLBqBH , qLCqCH , qLDqDH . At
the same time, kHL would also evolve in an analogous manner,
in addition to interactions of other pairs of species. Thus, this
reasoning shows how one can arrive to a term similar to the
addition of 1

N Q2 in our random matrix models [Fig. 1(b)]. If
the mechanism described here for the arising of correlations
repeats over time as the ecosystem (and consequently its com-
munity matrix) evolves further, then higher powers of Q than
2 will also arise. This can be seen through the following logic:
Say the evolved ecosystem with correlations as above has
the community matrix αQ + βQ2 (where α, β are arbitrary
constants), as opposed to the original starting ecosystem with
interaction matrix αQ (the addition of βQ2 is responsible for
the already evolved correlations). If this evolved ecosystem
with community matrix αQ + βQ2 undergoes another “step”
of evolution to generate correlations (just like the starting
interaction matrix did), then the new community matrix in
this second step of evolution will include a term proportional
to (αQ + βQ2)2 and thus will include higher powers of Q,
namely Q3 and Q4. Mechanistically, when considering the
evolution of interspecies aggression among predators, a high-
order correlation, it is interesting to consider the historical
selection pressure of indirect interactions (e.g., depletion of
the common prey population by the other predator) and high-
order interactions (e.g., driven by physical encounters of the
common prey, hyena and lion). Similar arguments can be
made for potential prey species that share a common predator
and need to compete for sheltering territory (a high-order
interaction), which may be expected to later correlate with
evolution of interspecies aggression among the prey species.
However, whether and how our models may apply to the
full variety of species interactions in large ecosystems is an
interesting avenue for future investigation.

We believe the “mappings” in this section are extremely
speculative, despite being mathematically interesting. The hy-
pothetical lion-hyena example helps motivate the correlation
structure in Sec. II A of our manuscript, and in particular the
positive sign in front of G2 as well as the integer powers
of our matrices. Overall, it would be interesting to study the
interspecies aggression behavior of other higher predators that
occur independent of the abundance of their common prey
species and look for patterns within ecosystems across many
predators for high-order negative correlations in species inter-
actions and their effects on ecological stability (see patterns
discussed in Ref. [50]).

On the other hand, ancient humans and ancient dogs who
shared many prey species likely hunted together: a high-order
interaction, as opposed to a high-order correlation in their
direct interaction, since it depends on presence of another

species. However, they later seem to have developed a di-
rect interaction of companionship independent of their shared
prey; such companionship among predators could be an inter-
esting angle to investigate high-order positive correlations as
in Sec. II B. Thus, in order to motivate the matrix structure in
Sec. II B, we focus on another hypothetical scenario inspired
by the interaction of ancient humans and dogs, which again
is meant to be mostly symbolic. We will take rabbits as their
common prey. Let us assume ancient humans fed on rabbits
(qHR > 0, qRH < 0) and dogs fed on rabbits (qDR > 0, qRD <

0). Then, cooperative hunting evolved (a high-order interac-
tion, not correlation: humans hunted rabbits more efficiently
in the presence of dogs). However, humans then over time also
evolved a direct companionship with dogs, where even in the
absence of rabbits, humans provided shelter for dogs. Here,
if we take the same approach as the lion and hyena model
to calculate the newly evolved kHD, then we see that qHRqRD

would be negative. Thus, for a direct favorable interaction
between humans and dogs, we take kHD to be proportional
to −qHRqRD. This motivates the negative sign in front of G2

in Sec. II B.
In this hypothetical ancient human-dog example, we rea-

soned that the evolution of high-order interactions (e.g.,
cooperative hunting) could lead to evolution of high-order
correlations in direct interactions. We are not aware of any
conclusive evidence for this being a realistic mechanism, but
it seems like an attractive possibility.

C. Future avenues

We dropped the connectivity fraction from May’s model,
effectively setting it to 1, since it becomes more subtle in our
framework—the connectivity in general increases as we raise
our matrices to different powers, which introduces interac-
tions among otherwise noninteracting (disconnected) species.
A future avenue for investigation would thus be the impli-
cations of different levels as well as patterns of connectivity
in our community matrices and the matrices that are used to
construct them. Furthermore, it would be interesting to study
the introduction of matrices with high-order correlations as
community matrices into generalized Lotka-Volterra models.
Likewise, comparing our matrices with steady-state Jacobian
matrices from different models of high-order interactions
should also be informative.

Importantly, as mentioned, future investigations are re-
quired to understand whether and how our models make
sense when the full variety of species interactions in a large
ecosystem are considered. We also acknowledge that even
if high-order correlations do arise in a qualitatively similar
fashion to our models, the appropriate quantitative description
for them may still be different. For example, the propor-
tionality we describe above as well as the way we do our
averaging with N (for example, the 1

N factor in front of G2)
are, after all, particular choices in our model that made sense
to us [see Fig. 1(b) and description in Sec. II A]. Addition-
ally, while it seems likely that high-order correlations among
species interactions do exist in some form in nature, it is of
course unknown whether high-order correlations in practice
even produce any of the various ecological stability behav-
iors that we predict. So our model is a very speculative one.
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Additionally, our models are phenomenological in nature, just
like many other ecological models, and thus mechanistic stud-
ies (e.g., with evolutionary game theory) are required to check
if they at all make sense in the context of evolution.

Although our models can perhaps be modified in the fu-
ture, in their current form they involve introducing high-order
correlations throughout the ecological network for all species,
instead of for a few select group of species. In this light, it
is interesting to consider the case of Amazonian birds, where
many species of birds sharing similar resources, as opposed
to just a few pairs, seem to have developed interspecies ag-
gression [51] where they fight, for example, over territory.
We think these kinds of settings with many species being
involved in interspecies aggression could overall be fitting
starting points to study the effect of high-order correlations
on stability.

An important orthogonal avenue for consideration for bi-
ological relevance of our results is when whole ecosystem
properties are under effective selective pressure. Typically,
each species within an ecosystem is considered to be individ-
ually under selection. However, additional effective selection
pressures on whole ecosystems can potentially be the case in
microbiota attached to hosts (where the microbiota are taken
to be ecosystems on their own): Here, selective pressures
may perhaps act on not only individual microbial species but
also on the microbial ecosystem as a whole through outputs
of the ecosystem [5]. Thus, for example, if stability of the
microbial ecosystem is a favorable aspect to the host, then our
frameworks in Secs. II A and II B show recipes for achieving
such favorable regimes that could thus emerge due to selection
because of the advantage provided to the host, whatever the
mechanistic basis. However, this argument would require evo-
lutionary considerations, such as evolutionary game theory, to
test its merits.

Perhaps a particularly important use for our framework
could be in reverse, that is, to utilize the forms of correla-
tion structures we propose to achieve stability in engineered
ecosystems. While this seems out of reach with current
technology, microbiota engineering is a rapidly developing
field [52]. It seems reasonable to think that having stable
microbiota in the human body could be a desirable feature.
As bioengineering progresses, perhaps an improved version of
the framework we propose could be utilized to help determine
what modifications to make in human microbiota to make it
more stable. Our framework is potentially attractive in this
sense because it gives a recipe for modifying the stability
of the ecosystem by introducing the same operation to each
species interaction within the ecosystem, instead of having
to specifically target few strongor weak species or perhaps
having to know details of the species. It is, however, unclear to
us what physical form (e.g., details of what should be included
in a potential plasmid library) such a perturbation would take.

Overall, like many ecological models, ours are phe-
nomenological and await consolidation and complementation
via input from metabolics, genetics, as well as branches
of evolutionary theory [5,53–55]. Understanding finite-size
effects in our models is another avenue for future investi-
gation [56,57]. We hope that as experimental challenges in
studying species interactions are resolved [6,43,58,59], for
example by using microbial communities as models of large

ecosystems [5,60–65], our theoretical predictions will be rig-
orously tested.
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APPENDIX

1. Squared interaction matrix Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick spin-glass model is an Ising
model where infinite-ranged random interactions couple the
spins in the absence of an external field [66]. The ran-
dom spin-spin interaction matrix J (the Hessian of the
Ising Hamiltonian) has entries that are independent and
identically Gaussian distributed. In order to study next-to-
nearest-neighbor correlations, Dean and Ritort [40] replaced
the interaction matrix in the Sherrington-Kirkpatrick model
with a “squared interaction matrix,” namely JJT .

2. Section II A details

When we refer to the eigenvalue distribution of a finite-
sized random matrix, we consider the approximation of the
ensemble average eigenvalue distribution from many instanti-
ations of the matrix. For large N [13], the largest eigenvalue
real part in the eigenvalue distribution of M2,β = −R + G +
β

N G2, where G is defined as in the manuscript, can be found
as follows. Note that the last two terms share the same set of
eigenvectors, which are also eigenvectors of R = RI where
I is the identity matrix. In general, if v is an eigenvalue
of G and χ is a polynomial, then χ (v) is an eigenvalue of
χ (G). Thus the largest eigenvalue real part in the eigenvalue
distribution of M2,β approaches −R + σ

√
N + βσ 2 for large

N . To find the critical interaction strength σc above which the
ecosystem becomes unstable, we equate this limiting largest
eigenvalue real part to 0 and solve for σc, which gives σc =
1

2β
(
√

4βR + N − √
N ) for M2,β .

We will approach the community matrix

MF = −R + G +
F∑

p=2

1

N p−1
Gp (A1)

similarly. For F = 3, that is, M3, the largest eigenvalue real
part approaches −R + σ

√
N + σ 2 + σ 3√

N
for large N . Equat-

ing this to 0 and solving for the critical interaction strength
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gives

σc = 1

6

√
N

⎡
⎢⎢⎣22/3 3

√√√√27R

N
+

√(
27R

N
+ 7

)2

+ 32 + 7

− 4 3
√

2

3

√
27R
N +

√(
27R
N + 7

)2 + 32 + 7

− 2

⎤
⎥⎥⎦. (A2)

In the case of lim F −→ ∞, we rewrite MF as −R −
NI + N

∑F
p=0

1
N p Gp. Thus, using the Taylor series 1

1−x =
limF−→∞

∑F
p=0 xp (convergent for −1 < x < 1), we get the

approached largest eigenvalue real part for limF−→∞ MF as
−R − N + N (1 − σ

N

√
N )−1 for large N as long as σ <

√
N .

Under the condition σ <
√

N , we can solve for when the
largest eigenvalue real part, for large N , is equal to 0 which
gives σc =

√
NR

N+R .
In the case of the community matrix ME = −R + G +∑F
p=2

1
N p−1

Gp

p! , we can rearrange to get ME = −R − NI +
N

∑F
p=0

1
N p

Gp

p! . The last term is recognized as simply N
times the matrix exponential of G, which leads to the largest
eigenvalue real part approaching −R − N + N exp( σc

N

√
N ) for

large N . Thus, we can solve −R − N + N exp( σc
N

√
N ) = 0 to

get σc = √
N log(1 + R

N ).

3. Section II B details

As described in Appendix 2, we again consider how
points map to each other in the eigenvalue distributions.
The eigenvalues of Gc lie inside the ellipse ( x

1+ρ
)2 +

( y
1−ρ

)2 = Nσ 2 in the complex plane for large N . We
can calculate real part of eigenvalues of Mc,−2 = −R +
Gc − 1

N G2
c as follows. The eigenvalue x + iy in the eigen-

value distribution of Gc will map to � = −R + x + iy −
1
N (x + iy)2 = −R + x + iy − 1

N x2 + 1
N y2 − 2

N ixy, the corre-
sponding eigenvalue of Mc,−2. At the ellipse boundary
of the approached eigenvalue distribution of Gc for large
N , y = ±(1 − ρ)

√
Nσ 2 − ( x

1+ρ
)2 and the real part of

� becomes −R + x − 1
N x2 + 1

N [(1 − ρ)
√

Nσ 2 − ( x
1+ρ

)2 ]2 =
−R + (1 − ρ)2σ 2 + x − [1 + (1−ρ)2

(1+ρ)2 ] x2

N . This is maximized

when 1 − [1 + (1−ρ)2

(1+ρ)2 ] 2
N x = 0 giving xmax = N

2(1+ (1−ρ)2

(1+ρ)2
)
. How-

ever, the range of possible x is restricted to −(1 + ρ)σ
√

N �

x � (1 + ρ)σ
√

N , so when xmax > (1 + ρ)σ
√

N , that is,
1

(1+ρ)

√
N

2(1+ (1−ρ)2

(1+ρ)2
)
> σ , the maximization within the range oc-

curs at (1 + ρ)σ
√

N .
The largest eigenvalue real part, for large N , thus ap-

proaches

m1 = −R + (1 − ρ)2σ 2 + γ N

2

for σ � 1
(1+ρ)γ

√
N , and

m2 = −R + (1 − ρ)2σ 2 + (1 + ρ)σ
√

N − 1

2γ
(1 + ρ)2σ 2

for σ < 1
(1+ρ)γ

√
N where γ = 1

2[1+ (1−ρ)2

(1+ρ)2
]
.

Thus, when σ � 1
(1+ρ)γ

√
N , the ecosystem is stable

under the condition m1 � 0. This gives a critical interaction
strength σc =

√
(1 − ρ)−2(R − γ N

2 ) = 1
2

√−N+4R
(ρ−1)2 + N

2(1+ρ2 )
down to the threshold species diversity N = NT where√

(1 − ρ)−2(R − γ NT

2 ) = 1
(1+ρ)γ

√
NT . Rearranging, we find

NT = [ γ

2 + (1−ρ)2

(1+ρ)2 γ
2]−1R = 16R(ρ2+1)2

(ρ+1)2(ρ(3ρ−2)+3) .

When σ < 1
(1+ρ)γ

√
N , the ecosystem is stable

as long as m2 � 0. To find the critical interaction
strength, we start with solving m2 = 0, which gives
the curves σ = ω± = 1

2((1−ρ)2− 1
2γ

(1+ρ)2 )
{−[(1 + ρ)

√
N] ±√

(1 + ρ)2N + 4R[(1 − ρ)2 − 1
2γ

(1 + ρ)2]} =
√

N∓√
(N−4R)

2(ρ+1) .

Note that when σ = ω−, σ < 1
(1+ρ)γ

√
N is not satisfied.

Thus in this regime, σc = ω+.
To summarize, after rearranging and simplifications, the

final piecewise function for the critical interaction strength σc

is

1

2

√
4R − N

(ρ − 1)2
+ N

2(1 + ρ2)
, N � NT

√
N − √

(N − 4R)

2(ρ + 1)
, N > NT

for −1 < ρ < 1.

4. Software

Analytical results were found by hand, using Wolfram
Mathematica version 12 and WolframAlpha search engine.
Plots were made using Matlab version R2019a and further
labeled in Microsoft PowerPoint. Figure 1 was partially made
in BioRender (biorender.com).
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