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Gene expression in individual cells is inherently variable and sporadic, leading to cell-to-cell variability in
mRNA and protein levels. Recent single-cell and single-molecule experiments indicate that promoter architec-
ture and translational bursting play significant roles in controlling gene expression noise and generating the
phenotypic diversity that life exhibits. To quantitatively understand the impact of these factors, it is essential to
construct an accurate mathematical description of stochastic gene expression and find the exact analytical results,
which is a formidable task. Here, we develop a stochastic model of bursty gene expression, which considers
the complex promoter architecture governing the variability in mRNA expression and a general distribution
characterizing translational burst. We derive the analytical expression for the corresponding protein steady-state
distribution and all moment statistics of protein counts. We show that the total protein noise can be decomposed
into three parts: the low-copy noise of protein due to probabilistic individual birth and death events, the noise
due to stochastic switching between promoter states, and the noise resulting from translational busting. The
theoretical results derived provide quantitative insights into the biochemical mechanisms of stochastic gene
expression.
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I. INTRODUCTION

Gene expression is a fundamentally programmed and
stochastic process. Recent single-cell and single-molecule
experiments have demonstrated that gene expression often
occurs in a “burst” manner: genes appear to be transcribed
or translated during short periods interspersed by silent in-
tervals [1,2]. At the DNA level, transcriptional bursts have
been documented among organisms ranging from bacteria to
vertebrates [3–12]. Simultaneously, single-molecule studies
have demonstrated that individual mRNA’s translation out-
put is either sporadic or bursty, called “translational bursts”
[13–18]. For example, mRNAs in primary neurons can rapidly
switch between a translating state in proximal dendrites and a
nontranslating state in distal dendrites, displaying “bursting”
translation [17]. These bursting variabilities can be propagated
to protein and the downstream target gene, which provides
critical functions in cell fate decisions [19–21]. Given its
importance, understanding how mRNA and protein bursting
influence the variabilities of protein abundance is a critical
challenge.

In the past decade, much effort has been invested in the-
oretical modeling and analysis for characterizing the burst
size, burst frequency, and the variabilities of mRNA and
protein abundance [22–24]. In a Markovian framework, the
gene expression processes such as promoter states switching,
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transcription, translation, degradation of mRNA or protein
are modeled as explicit states-switching with the chemical
master equation [25–32]. Alternatively, in a non-Markovian
framework, the complex gene expression processes are
mapped implicitly into queueing theory models [33–39] or
continuous-time random walk models [40] by waiting time
distributions and burst size distributions. And the noise in
protein abundance can be decomposed into different sources,
e.g., molecular memory and bursting [33,34,40].

Despite some progress, many questions remain as to how
promoter architecture and translation-bursting kinetics dictate
cell-to-cell variability in gene expression. On the one hand,
promoter architecture, defined by the number, strength, and
regulatory role of the operators governing a gene, maybe con-
tain many states that complicate the model [41]. For example,
the number of regulatory states of the Promoter for Repressor
Maintenance (PRM) promoter of phage lambda in E. coli
may be up to 128 [42]. On the other hand, translation is a
complex biochemical process involving multiple factors, such
as cis-elements encoded in mRNAs, post-transcriptional mod-
ifications of mRNAs, kinases, and other signaling molecules
[14]. For example, the complex multiprotein regulation leads
to sharp protein bursts in contrast to the geometric distribu-
tions [18].

To that end, we develop a theoretical model of bursty
gene expression which considers the promoter architecture of
arbitrary combinatorial complexity governing the variability
in mRNA expression and a general distribution characteriz-
ing translation burst. With the help of the binomial moments
method that we previously developed [43,44], we derive an-
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(a) (b)

FIG. 1. Gene expression model with arbitrary promoter architecture and general translational bursting. (a) Generalized gene expression
process: the promoter switches among different states, transcription occurs during active promoter states, translation from mRNA in bursting
manner, mRNA decays faster than protein. (b) Simplified sketch of protein production with a multistate model. The upper figure shows an
example of the distribution of protein bursts.

alytical results of all moment statistics of protein counts.
The total protein noise can be decomposed into three parts:
the low-copy noise of protein due to probabilistic individual
birth and death events, the noise due to stochastic switching
between promoter states, and the noise resulting from trans-
lational bursting. Furthermore, we study the effect of the type
of translational burst distribution on the bimodality of protein
distribution. Finally, a well-predicted outcome for the protein
moment statistics and distribution is verified from real data
[45]. The proposed approaches and results derived will help
interpret the experiments and probe gene expression bursting
and its phenotypic consequences.

II. MODEL FORMULATION

We model the stochastic gene expression processes based
on a master equation approach [46]. The transcriptional regu-
lation is regarded as a stochastic process where the promoter
transitions between different states [Fig. 1(b)]. The left box
in Fig. 1(a) shows an example where the promoter comprises
several inactive (OFF) states and one active (ON) state that
form a loop. In addition, the translational regulation is mod-
eled as a stochastic bursting process in which each mRNA
generates a burst of proteins, whose number is arbitrarily dis-
tributed, such as geometric distribution [top inset in Fig. 1(b)].
In our model, the transcription and translation processes can
be integrated into one single-step process with translational
bursting [Fig. 1(b)]. In fact, mRNA degradation is much faster
than that of protein, which ensures that protein production can
be approximately done in one step [26,47,48].

To make this idea precise, we assume that there are N
promoter states, each of which can produce proteins with
a translation rate μi(i = 1, . . . , N ) in a bursting manner.
The probability distribution of a burst with k proteins is
h(k)(k = 0, 1, 2, . . .) which can be an arbitrary discrete prob-
ability distribution. The protein degradation rate is denoted by
δ. We denote the number of protein molecules as m and let
Pi(m; t ) denote the probability distribution that protein has m
molecules at time t at state i of the promoter and let P(m; t ) =

[P1(m; t ), . . . , PN (m; t )]T represent the column vector. Denote
by λi j the transition rate from the state j to state i (λi j =
0 means that no transition occurs), the size of which may
be regulated by transcription factors, and the diagonal ele-
ments are λ j j = −∑

i �= j λi j ( j = 1, . . . , N ), which represent
the sum of the rates flowing in from other states in the current
state j. Denote by A = (λi j ) the N × N transition matrix and
� = diag(μ1, . . . , μN ) describes exits of translation (called
translation matrix) with μi representing the translation rate in
the state i (μi = 0 means that no translation takes place). Note
that matrix A is an M matrix. Protein decays with a first-order
rate constant δ which is set to 1. Then, the biochemical master
equation describing protein dynamics takes the matrix form as

dP(m; t )

dt
= AP(m; t ) + (E − I)[mP(m; t )]

+ �

[
m∑

k=0

h(k)P(m − k; t ) − P(m; t )

]
, (1)

where E and E−1 are shift operators and I is the identity
operator. The first term in this equation is the rate at which
the gene states transition through promoter state switching,
and the second term is the net rate at which the gene enters
and goes out of the state P(m) through the degradation of one
protein. The last term is the net rate at which the genes enter
and go out of the state P(m) through the production of a burst
of proteins distributed by h(k). Note that Eq. (1) represents
a set of homogeneous linear ordinary differential equations
for the evolution with time of the probability distribution. But
analytically and numerically solving these linear equations
becomes infeasible because the number of equations in Eq. (1)
proliferates exponentially with the number of promoter states.
In the next section, we will analyze Eq. (1) using the binomial
moment approach.

III. BINOMIAL MOMENTS

The binomial moment approach is a popular moment
closure method, with which the moments above a cer-
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tain order are expressed in terms of lower-order moments.
Thereby the closed moment equations can then be solved
either analytically or numerically [43,44]. We set a(i)

n (t ) =∑
m�n (m

n )Pi(m, t )(n = 0, 1, 2, . . .), therefore each fixed i,

a(i)
n (t ) is called a binomial moment corresponding to the prob-

ability Pi(m; t ); let an(t ) = [a(1)
n (t ), . . . , a(N )

n (t )]T represent
the column vector. In particular, bprotein

n (t ) = ∑N
i=1 a(i)

n (t ) is
called the total binomial moment corresponding to the total
probability P(m, t ) = ∑N

i=1 Pi(m, t ). The binomial moments
an(t )(n = 1, 2, . . .) satisfy the following equation (see Ap-
pendix A for details):

dan(t )

dt
= Aan(t ) − nan(t ) + �

[
n∑

i=1

an−i(t )
∞∑

k=i

(
k
i

)
h(k)

]
.

(2)

Similarly, we define bburst
i = ∑∞

k=i (k
i )h(k) as binomial mo-

ments corresponding to the probability h(k) of burst size B,
with 〈B〉 = bburst

1 representing the average burst size. Further-
more, the convolution formula is introduced, that is an(t ) ∗
bburst[n] = ∑n

i=1 an−i(t )bburst
i . Thus, Eq. (2) can be rewritten

as
dan(t )

dt
= Aan(t ) − nan(t ) + �an(t ) ∗ bburst[n]. (3)

Note that Eq. (3) enables the computation of binomial
moments up to any desired order without any approximation
because the higher-order moments depend on only the lower-
order ones. At steady state, we can immediately know that
the steady-state binomial moments an satisfy the following
iterative equations

an = (nI − A)−1�an ∗ bburst[n]. (4)

Because A is an M matrix, bprotein
n = ∑N

i=1 a(i)
n can be

rewritten as

bprotein
n = 1

n
uN�an ∗ bburst[n], (5)

where uN = (1, 1, . . . , 1), n = 1, 2, . . . . Combing Eqs. (4)
and (5) yields all binomial moments of protein (bprotein

n ) it-
eratively. We can obtain each order raw moment and center
moment with Eqs. (4) and (5) in hand. In the next section,
we will compute several main statistics: mean, noise intensity,
skewness, and kurtosis of protein abundance.

IV. MEAN EXPRESSION AND PROTEIN NOISE

First, we compute the a0. We let Mi denote an (N−1) ×
(N−1) matrix, which is the minor one of the N × N matrix
A by crossing out the ith row and ith column of its entry aii.
Denote by 0,−α1,−α2, . . . ,−αN−1 the eigenvalues of matrix
A and by −β

(i)
1 ,−β

(i)
2 , . . . ,−β

(i)
N−1 the eigenvalues of matrix

Mi [28]. The kth component of a0 is given by

a(i)
0 =

N−1∏
j=1

β
(i)
j

α j
, 1 � i � N . (6)

Substituting the expression of a0 into Eqs. (4) and (5),
we obtain the following equations for the mean (〈protein〉)
and noise strength [η2

protein = Var(Protein)/〈Protein〉2] of
the protein probability distribution in steady state (see
Appendix B for details),

〈protein〉 = uN�a0〈B〉, (7)

η2
protein = 1

〈Protein〉︸ ︷︷ ︸
Low copy noise

+ uN�(I − A)−1�a0 − (uN�a0)2

(uN�a0)2︸ ︷︷ ︸
Promoter noise

+ 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
)

︸ ︷︷ ︸
Translational burst noise

, (8)

where

η2
burst = Var(B)

〈B〉2 = 1

bburst
1

+ 2bburst
2(

bburst
1

)2 − 1

is the noise strength of burst size.
We emphasize here that Eqs. (7) and (8) are exact for arbi-

trary promoter architecture and arbitrary translational bursting
dynamics. Equation (7) establishes that the mean steady-state
protein level only depends on the promoter architecture and
average translational burst size. Equation (8) highlights the
different contributions to the protein noise. The first noise
term on the right side of Eq. (8) represents the low copy
noise of protein due to probabilistic individual birth and death
events. If protein abundance 〈protein〉 is low, relative protein
levels spontaneously fluctuate, then it has a more significant
relative effect on the total. The second term describes the
promoter noise, which results from stochastic switching be-
tween promoter states. The last term captures the translational
burst kinetics, the function of mean burst size and burst noise.
Interestingly, Eq. (8) is identical to the previous result apart
from the second term corresponding to the promoter noise
[33,34]. Our results can capture the promoter noise with an
explicit promoter architecture instead of an implicit waiting
time distribution.

Next, we consider a promoter architecture with only one
active state, as an example, which is a widely studied stochas-
tic gene expression [23]. Assume that the promoter transition
matrix is arbitrary, but the transcription matrix is diagonal
with only one nonzero element (i.e., only one active state).
Without loss of generality, we set � = diag(0, . . . , 0, μ). Af-
ter some algebra (see Appendix C for details), we obtain the
protein noise,

η2
protein = 1

〈Protein〉 +
∏N−1

i=1

(
1 + β

(N )
i

)
αi − ∏N−1

i=1 (1 + αi )β
(N )
i∏N−1

i=1 (1 + αi )β
(N )
i

+ 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
)
. (9)
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Note that the promoter noise in the second term is indepen-
dent of the transcription rate matrix �.

As the simplest promoter circle model, the telegraph
model is widely studied and can effectively simulate the
experimental observation. This model considers two promoter
states: an OFF state an ON state. Protein is produced at the rate
μ when the gene is activated. Protein decays with a first-order
rate constant δ which is set to 1. The model consists of the
following four reactions:

OFF
kon−→ ON,

ON
koff−→ OFF,

ON
μ−→ ON + B · Protein,

Protein
δ−→ ∅, (10)

where B is the burst size which can be an arbitrary discrete
random variable, e.g., geometric random variable. After some
algebra, we obtain the analytical expressions for the mean and
noise of proteins,

〈protein〉 = μkon

kon + koff
〈B〉, (11)

η2
protein = 1

〈Protein〉 + koff

kon(1 + kon + koff )

+ 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
)
. (12)

In addition, the higher-order moments associated with the
probability distribution of protein numbers, such as skew-
ness and kurtosis, can also be computed using Eqs. (4)
and (5). To verify the analytic results and examine the
effect of the bursting stochasticity on the protein dynam-
ics, we consider three different probability distributions
for burst size B: (1) geometric distribution with proba-
bility distribution h(k) = 〈B〉k/(1 + 〈B〉)k, (k = 0, 1, 2, . . .),
(2) Poisson distribution with probability distribution h(k) =
〈B〉k exp(−〈B〉)/k!, (k = 0, 1, 2, . . .), and (3) negative bi-
nomial distribution with probability distribution h(k) =
Ck

k+r−1(1−p)k pr, (k = 0, 1, 2, . . .) and average burst size
〈B〉 = (1−p)r/p. Many previous experimental observations
and mathematical models support these three burst size dis-
tributions. We usually consider the burst size distribution as
a geometric distribution under the assumption that mRNA
is degraded in a single step [4,16,49,50]. However, in some
studies, a nongeometric distribution of burst size is predicted
in eukaryotic cells [35,51,52] and the degradation of mRNA is
considered as a multistep process (i.e., nonexponential mRNA
lifetime) [5,53]. Therefore, assuming that the mRNA lifetime
corresponds to an Erlang distribution, this results in a negative
binomial distribution for the burst size [52,54]. In the particu-
lar case where mRNA lifetime is a deterministic constant, the
burst size obeys a Poisson distribution [52]. We confirm the
analytical results using Gillespie simulations [55], as shown
in Fig. 2. Figure 2(a) shows that the mean steady-state protein
level depends linearly on the average burst size. Figures 2(b)–
2(d) illustrate that noise strength, skewness, and kurtosis
for protein number decrease as mean expression increases,
respectively. These results support the canonical mean-noise

inverse correlation [56–59] and extend the statistical rela-
tionship to skewness or kurtosis-noise inverse correlations.
Interestingly, we find that Poissonian bursting can produce
less protein noise than geometric and negative binomial burst-
ing for the same average burst size.

It implies that the dynamics of burst kinetics can be propa-
gated into protein and encode the stochastic protein dynamics.
In the next section, we will show how the bursting distribution
affects the probability distribution of protein abundance.

V. PROBABILITY DISTRIBUTION

For a gene model with arbitrary promoter architecture and
arbitrary bursting dynamics, the steady-state probability dis-
tribution of protein counts can be reconstructed according to
the following binomial moment method [43,44]:

P(m) =
∑
n�m

(−1)n−m

(
n
m

)
bprotein

n , m = 0, 1, 2, . . . , (13)

where the binomial moments bprotein
n (n = 0, 1, 2, . . .) are com-

puted with Eqs. (4) and (5).
While Eq. (13) is valid for general gene expression models,

it is interesting to consider specific examples. We consider
the case where the promoter has only one ON and multiple
OFFs and the protein burst size is geometrically distributed.
Specifically, the transition matrix is � = diag(0, . . . , 0, μ),
and the probability distribution of burst size B with k pro-
teins is h(k) = 〈B〉k/(1 + 〈B〉)k, (k = 0, 1, 2, . . .), with 〈B〉
representing the average burst size. In this case, the bino-
mial moments corresponding to burst size are bburst

i = 〈B〉i.
And setting Qn = (nI − A)−1�, n = 1, 2, . . ., we can obtain
an expression for an without iteration from Eq. (4) (see
Appendix C for details),

an = Qn

n−1∏
i=1

(Qi + I)a0〈B〉n. (14)

Substituting Eq. (14) into (5) yields

bprotein
n = 1

n
uN�

n−1∏
i=1

(Qi + I)a0〈B〉n. (15)

To compute the explicit expression bprotein
n , we introduce

two characteristic polynomials fA(n) = det(nIN − A) =
n

∏N−1
i=1 (n + αi ) and fMk (n) = det(nIN−1 − Mk ) = ∏N−1

i=1

(n + β
(k)
i ). Assume that the sum of two polynomials can be

factorized as fA(n) + μ fMN (n) = ∏N
i=1 (n + γi ). Then we

can obtain (see Appendix C for details)

bprotein
n = 〈B〉n

n!

∏N
i=1 (γi)n∏N−1

i=1 (αi )n

, (16)

where (�)n is the (rising) Pochhammer symbol. Substituting
Eq. (16) into (13), we get the probability distribution of pro-
tein abundance,

P(m) = 〈B〉m

m!

∏N
i=1 (γi)m∏N−1

i=1 (αi )m
N FN−1

×
(

m + γ1, . . . , m + γN

m + α1, . . . , m + αN−1

∣∣∣∣; −〈B〉
)

. (17)

014405-4



EXACT DISTRIBUTIONS FOR STOCHASTIC GENE … PHYSICAL REVIEW E 105, 014405 (2022)

(a) (b)

(c) (d)

FIG. 2. Moments statistics of protein abundance for different bursting kinetics. (a) Mean protein abundance as a function of average burst
size. Noise (b), skewness (c), and kurtosis (d) as a function of mean protein abundance with different bursting distributions. Parameters used for
calculations are kon = 1, koff = 1, μ = 20, δ = 1, and r = 3 for negative binomial distribution. Negative binomial distribution is abbreviated
to NB.

where nFn(a1, . . . , an

b1, . . . , bn
|; σ ) is a generalized hypergeometric func-

tion. And the corresponding generating function is G(z) =
N FN−1( γ1, . . . , γN

α1, . . . , αN−1
|; 〈B〉(z−1)). As a concrete example, the

probability distribution of protein number of telegraph model
(10) is

P(m) = 〈B〉m

m!

(γ1)m(γ2)m

(α)m
2F1

(
m + γ1, m + γ2

m + α

∣∣∣∣; −〈B〉
)

,

(18)

where γ1,2 = 1
2 (μ + koff + kon±

√
(μ+koff+kon)2 − 4μkon),

α = kon + koff . Note that Eq. (18) is the same as a result
obtained in Ref. [24] in the absence of feedback.

We verified Eqs. (13) and (18) with stochastic simulations
by using the Gillespie algorithm [55]. Specifically, we ob-
tain the probability distribution using three different methods:
(1) computing the analytic probability distribution using
Eqs. (17) and (18), (2) approximating the probability distri-
bution using the binomial moment method [Eq. (13)], and
(3) estimating the probability distribution with stochastic sim-

(a) (c)(b)

FIG. 3. Stationary distributions of protein molecules in various state-switching rates. (a) Fast state-switching case. Parameters used for
calculations are: kon = 10, koff = 10, μ = 5, δ = 1, 〈B〉 = 1. (b) Middle state-switching case. kon = 1, koff = 1, μ = 5, δ = 1, 〈B〉 = 1.;
(c) Slow state-switching case. Parameters used for calculations are kon = 0.4, koff = 0.1, μ = 5, δ = 1, 〈B〉 = 1, r = 3. Binomial moments
method is abbreviated to BMM.
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(a)

(b)

(c)

(d)

FIG. 4. Analysis results from GAL1* promoter in yeast. (a) The illustration of four-state promoter architecture kinetic model with
translational burst for GAL1* promoter. PC1 is an inactive or OFF state during the transcription cycle and PC2 is active state which can
transcribe mRNA and translate it into protein with bursting. RC1 and RC2 are two states with different degrees of repression when tetR binds to
the promoter. We have used the kinetic parameters for calculations provided by [25,45] k1 f = 0.02 + 0.2[gal], k2 f = 200[tet]2/(1 + c4

l [atc]4)
2
,

k1b = 0.01 + 0.1[gal] + 0.077/[gal], k2b = 10, a = 0.025, cl = 0.1, [tet] = 100, kp = 1, γ = 0.0125. (b) Moment statistics comparison
between data simulated by Gillespie algorithm (circle) and theoretical value (solid line) under three different distributions of burst size:
geometric (orange), Poisson (green), and NB (blue) with mean burst size 〈B〉 = 3.75. Mean expression, noise, skewness, and kurtosis of
protein abundance is computed as a function of [gal] at the condition of [atc] = 500 ng/ml. (c) Similar to (b), mean expression, noise,
skewness and kurtosis of protein abundance is computed as a function of [atc] at the condition of [gal] = 2%. (d) A comparison between
the probability density function of the data generated by the kinetic model (orange circle) with geometric burst size distribution (〈B〉 = 3) and
the experimentally observed distribution of fluorescence (green line) at steady state, induced with 2% galactose and 40 ng/ml of Atc for 440
min [45].

ulations. Figure 3 shows that all the results from different
methods agree well. And the bursting kinetics with the same
average burst size can shape the probability distribution of
protein abundance. Interestingly, geometric bursting can pro-
duce a heavier-tailed distribution than Poissonian and negative
binomial bursting, implying more protein noise, as shown in
Fig. 2.

VI. ANALYSIS RESULTS FOR THE GAL1*
PROMOTER IN YEAST

In the actual biological process, the abundance of ex-
pressed proteins is usually influenced by regulatory factors,
and consequently, kinetic models are often used to character-

ize the gene regulation process. Depending on the regulators’
different regulatory effects (promotion or repression), we as-
sume promoters at different concentrations of regulators as
multiple states, which can switch between each other, and the
translation process is carried out as a bursting.

To confirm that our model and conclusions can predict and
analyze the regulatory impact of those with complex promoter
architectures, we apply the analytical results of the previ-
ously mentioned mathematical models of arbitrary promoter
architectures and translational bursting to a realistic example:
the GAL1* promoter in yeast. As the concentration of galac-
tose increases, GAL1* is activated by the transcription factor
Gal4; however, it carries the TetO operator upstream from
the promoter, which inhibits the initiation of transcription
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of Gal1* when Tet repressor (TetR) binds to it. Conversely,
anhydrotetracycline (Atc) attenuates the binding of TetR and
thus indirectly upregulates the transcription of GAL1. This
complex activation process constitutes the multistate promoter
architecture of GAL1* [45].

Because the mRNA degradation rate is much greater than
the protein degradation rate (γR = 1, γ = 0.0125) [25,45], we
can approximately eliminate mRNA production and use a
model with a four-state promoter with translational bursting
to portray the regulation of GAL1*. The model is illustrated
in Fig. 4(a), where PC1, RC1, and RC2 are inactive states.
Translation occurs only in the activated state (PC2), and the
burst size obeys a geometric, Poisson, or negative binomial
distribution. We predict the mean expression, noise, skewness,
and kurtosis of proteins from the theoretical results using
the parameters reported in Refs. [25,45] and compared them
with stochastic simulations as shown in Figs. 4(b) and 4(c).
The theoretical and simulated values fit perfectly for a wide
range of regulator concentration variations ([gal] and [Atc]).
Further, we observe the mean protein expression as a func-
tion of the concentration of regulatory factors with the mean
burst, 〈B〉 = 3.75, in excellent agreement with that reported
by Ref. [45]. Finally, our model also produces a steady-state
distribution consistent with real experimental observations
[45], as shown in Fig. 4(d).

VII. DISCUSSION

Delineating gene regulatory mechanisms in vivo are contin-
uing challenges for systems biology. The rapid development
of single-cell and single-molecule technologies is greatly
accelerating such research, given its power to provide com-
prehensive descriptions of gene expression dynamics and the
kinetics of the underlying molecular processes. By keeping
pace with these experimental advances, theoretical models en-
able us to reveal the dynamics of stochastic gene expression.

In this paper, we have studied an exactly solvable stochastic
model that integrates two key features of gene regulation,
specifically: arbitrary promoter architecture and general trans-
lational bursting kinetic, in a single model. We derive the
analytical expression for the corresponding protein steady-
state distribution and all moment statistics of protein counts.
We show that the total protein noise can be decomposed into
three parts: low-copy noise, promoter noise, and translational
busting noise. We also show that the bursting kinetics with
the same average burst size can shape the probability dis-
tribution of protein abundance. We also applied the results
of our analysis to a real observed example, GAL1*promoter,
and obtained excellent prediction results. Our work has the
following special features: (1) the promoter states transition
matrix is an arbitrary network structure which can model the
wide variety of promoter architectures; (2) the translational

bursting distribution assumed by the model are of a very gen-
eral form which can fit experimentally measured distributions;
(3) the binomial moments method used allows the derivation
of protein distribution and all moment statistics of protein
counts rather than the mean and variance.

We emphasize that some special cases of our model can
be found in the literature: (1) for an arbitrarily complex
cis-regulatory motif, the production of a burst of proteins
is geometrically distributed, and expressions for the mean
and variance have been obtained in Refs. [25,60]; (2) for
a promoter architecture with only one state modeled by
queuing theory, distribution of protein burst is arbitrary, ex-
pressions for the mean and variance have been derived in
Refs. [33,34,36]. Note that promoter architecture models can
capture the regulation details, but they are complicated with
many parameters. On the contrary, queuing models concen-
trate the promoter architecture into a probability distribution
but lose promoter switching information and have difficulty
modeling the feedback regulations. Furthermore, we omitted
the process of mRNA production based on the assumption that
mRNA degradation is much faster than protein degradation. In
fact, mRNA production has the same burst process as proteins.
And it is interesting to discuss the combined effect on the
mean and noise of protein counts when transcriptional burst
and protein burst are present simultaneously. In addition, some
important biological processes such as cell division, replica-
tion, and mRNA maturation are ignored in the model [61–64].
How to overcome these limitations and establish effective
models is the subject of ongoing research.

In conclusion, as outlined in this work, the theoretical anal-
ysis and results are essential ingredients for linking stochastic
gene expression mechanisms with single-cell measurement
data and gaining mechanistic insights into gene regulation.
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APPENDIX A: DERIVATION OF EQ. (2)
IN THE MAIN TEXT

We can obtain the following equation representing the time
evolution of the binomial moment equations by multiplying
both sides of Eq. (1) by (m

n ) and taking summation over all m,

d
∑

m�n

(m
n

)
P(m; t )

dt
=

∑
m�n

(
m
n

){
AP(m; t ) + (E − I)[mP(m; t )] + �

[
m∑

k=0

h(k)P(m − k; t ) − P(m; t )

]}
. (A1)
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The left side of Eq. (A1) can be written as

d
∑

m�n

(m
n

)
P(m; t )

dt
= dan(t )

dt
. (A2)

The first term on the right side of Eq. (A1) is given by∑
m�n

(
m
n

)
AP(m; t ) = Aan(t ). (A3)

The second term on the right side of Eq. (A1) can be written as∑
m�n

(
m
n

)
(E − I)[mP(m; t )] =

∑
m�n

(
m
n

)
m[P(m + 1; t ) − P(m; t )]

=
∑

m−1�n

(
m − 1

n

)
mP(m; t ) −

∑
m�n

(
m
n

)
mP(m; t ) = −n

∑
m�n

(
m
n

)
P(m; t ) = −nan(t ). (A4)

To obtain the last term on the right side of Eq. (A1), we first change the order of terms in the summation,

∑
m�n

(
m
n

) m∑
k=0

h(k)P(m − k; t ) =
∑
k�0

h(k)
∑
m�n

(
m
n

)
P(m − k; t ). (A5)

Using the combinatorial equality (m + k
n ) = (k

0)(m
n ) + (k

1)( m
n−1) + · · · + (k

k)( m
n−k), we obtain

h(k)
∑
m�n

(
m
n

)
P(m − k; t ) = h(k)

∑
m�n−k

(
m + k

n

)
P(m; t )

= h(k)
∑

m�n−k

[(
k
0

)(
m
n

)
+

(
k
1

)(
m

n − 1

)
+ · · · +

(
k
k

)(
m

n − k

)]
P(m; t ) = h(k)

k∑
i=0

(
k
i

)
an−i(t ).

(A6)

Substituting Eq. (A6) into Eq. (A5) and changing the order of terms in the summation yields

∑
k�0

h(k)
∑
m�n

(
m
n

)
P(m − k; t ) =

∑
k�0

h(k)
k∑

i=0

(
k
i

)
an−i(t ) =

n∑
i=0

an−i(t )
∑
k�i

(
k
i

)
h(k), (A7)

and substituting Eq. (A6) into the last term on the right side of Eq. (A1), we obtain

∑
m�n

(
m
n

)
�

[
m∑

k=0

h(k)P(m − k; t ) − P(m; t )

]
= �

[
n∑

i=0

an−i(t )
∑
k�i

(
k
i

)
h(k) − an(t )

]
= �

n∑
i=1

an−i(t )
∑
k�i

(
k
i

)
h(k). (A8)

Combining Eqs. (A2)–(A4) with (A8), we arrive at the resulting binomial moment equation in the main text,

dan(t )

dt
= Aan(t ) − nan(t ) + �

[
n∑

i=1

an−i(t )
∞∑

k=i

(
k
i

)
h(k)

]
. (A9)

APPENDIX B: DERIVATION OF EQS. (8) IN THE MAIN TEXT

Using the equation bprotein
n = 1

n uN�an ∗ bburst[n], we can get 〈protein〉 = bprotein
1 = uN�a0〈B〉 [i.e., Eq. (7) in the main text]

immediately, and

bprotein
2 = 1

2

N∑
i=1

μi
[
a(i)

1 bburst
1 + a(i)

0 bburst
2

] = 1

2
〈B〉

N∑
i=1

μia
(i)
1 + 〈Protein〉bburst

2

〈B〉 = 1

2
〈B〉2uN�(I − A)−1�a0 + 〈Protein〉bburst

2

〈B〉 .

(B1)

The protein noise can be computed according to the first two binomial moments,

η2
protein=

1

bprotein
1

+ 2bprotein
2(

bprotein
1

)2 − 1. (B2)
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Substituting the expressions of bprotein
1 and bprotein

2 into Eq. (B2) yields

η2
protein = 1

〈Protein〉 +
〈B〉2uN�(I − A)−1�a0 + 〈Protein〉 bburst

2
〈B〉

〈Protein〉2 − 1

= 1

〈Protein〉 + 〈B〉2uN�(I − A)−1�a0

(uN�a0〈B〉)2 + bburst
2

/〈B〉
〈Protein〉 − 1

= 1

〈Protein〉 + uN�(I − A)−1�a0 − (uN�a0)2

(uN�a0)2 + 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
)
. (B3)

APPENDIX C: DERIVATION OF EQ. (9) IN THE MAIN TEXT

We introduce two functions,

fA(n) = det (nIN − A) = n
∏N−1

i=1
(n + αi ), fMk (n) = det (nIN−1 − Mk ) =

∏N−1

i=1

(
n + β

(k)
i

)
, (C1)

which are practically the characteristic polynomial of A and Mk , respectively.
Because the transition matrix is � = diag(0, . . . , 0, μ), we have

an =
( ∗

a(N )
n

)
= 1

det (nI − A)
(nI − A)∗�a ∗ bburst[n]

= μ

det (nI − A)

(∗ ∗
∗ det (nIN−1 − MN )

)(
O O
O 1

)( ∗∑n
i=1 a(N )

n−ib
burst
i

)

= μ

fA(n)

( ∗
fMN (n)

∑n
i=1 a(N )

n−ib
burst
i

)
=

( ∗
μ fMN (n)

fA(n)

∑n
i=1 a(N )

n−ib
burst
i

)
. (C2)

Then we obtain

a(N )
1 = μ fMN (1)

fA(1)
a(N )

0 bburst
1 = μ

∏N−1

i=1

(
1 + β

(k)
i

)
(1 + αi )

N−1∏
i=1

β
(N )
i

αi
bburst

1 = μ〈B〉
N−1∏
i=1

β
(N )
i

(
1 + β

(N )
i

)
αi(1 + αi )

. (C3)

Combining Eqs. (5) and (6) in the main text and (C3), we get the second order binomial moment,

bprotein
2 = 1

2
μ

2∑
k=1

a(N )
n−kbburst

k = 1

2
μ

[
a(N )

1 bburst
1 + a(N )

0 bburst
2

] = 1

2
μ

[
μ〈B〉

N−1∏
i=1

β
(N )
i

(
1 + β

(N )
i

)
αi(1 + αi )

bburst
1 +

N−1∏
i=1

β
(N )
i

αi
bburst

2

]
.

(C4)

Then we obtain the protein noise [i.e., Eq. (9) in the main text], given by

η2
protein = 1

bprotein
1

+ 2bprotein
2(

bprotein
1

)2 − 1

= 1

〈Protein〉 +
μ

[
μ〈B〉∏N−1

i=1
β

(N )
i (1+β

(N )
i )

αi (1+αi )
bburst

1 + ∏N−1
i=1

β
(N )
i
αi

bburst
2

]
〈Protein〉2 − 1

= 1

〈Protein〉 +
N−1∏
i=1

αi
(
1 + β

(N )
i

)
β

(N )
i (1 + αi )

+ bburst
2

/〈B〉
〈Protein〉 − 1

= 1

〈Protein〉 +
N−1∏
i=1

αi
(
1 + β

(N )
i

)
β

(N )
i (1 + αi )

+ 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
) − 1

= 1

〈Protein〉 +
∏N−1

i=1

(
1 + β

(N )
i

)
αi − ∏N−1

i=1 (1 + αi )β
(N )
i∏N−1

i=1 (1 + αi )β
(N )
i

+ 1

2

1

〈Protein〉
(〈B〉η2

burst+〈B〉 − 1
)
. (C5)
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APPENDIX D: DERIVATION OF EQ. (17) IN THE MAIN TEXT

Using the specific characteristics of the transition matrix � = diag(0, . . . , 0, μ), matrix Qn can be expressed as the following:

Qn = μ

det (nI − A)

(∗ ∗
∗ det (nIN−1 − MN )

)(
O O
O 1

)
=

(
O ∗
O μ fMN (n)

fA(n)

)
. (D1)

Then, we have

Qn + I =
(

I ∗
O fA(n)+μ fMN (n)

fA(n)

)
. (D2)

Using the equation fA(n) + μ fMN (n) = ∏N
i=1 (n + γi ), we obtain the binomial moments for protein, given by

bprotein
n = 1

n
uN�

n−1∏
k=1

(Qi + I)a0〈B〉n = μ

n

∏N−1
i=1 γi∏N−1
i=1 αi

〈B〉n
n−1∏
k=1

∏N
i=1 (k + γi )

k
∏N−1

i=1 (k + αi )
= 〈B〉n

n!

∏N
i=1 (γi )n∏N−1

i=1 (αi )n

. (D3)

Substituting Eq. (D3) into Eq. (B2) with a bit of algebra yields

P(m) =
∑
n�m

(−1)n−m

(
n
m

)
bprotein

n =
∑
n�m

(−1)n−m

(
n
m

) 〈B〉n

n!

∏N
i=1 (γi )n∏N−1

i=1 (αi )n

= 〈B〉n

m!

∏N
i=1 (γi )n∏N−1

i=1 (αi )n
N FN−1

(
m + γ1, . . . , m + γN

m + α1, . . . , m + αN−1

∣∣∣∣; −〈B〉
)

, (D4)

where nFn(a1, . . . , an

b1, . . . , bn
|; σ ) is a generalized hypergeometric function. Using the relationship between generating function and

binomial moments, we obtain the corresponding generating function

G(z) = N FN−1

(
γ1, . . . , γN

α1, . . . , αN−1

∣∣∣∣; 〈B〉(z − 1)

)
. (D5)
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