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Intermittent trapping of spiral waves in a cardiac model
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Spiral waves are found in many excitable systems and are thought to play a role in the incoherent electrical
activation that underlies cardiac arrhythmias. It is well-known that spiral waves can be permanently trapped by
local heterogeneities. In this paper, we demonstrate that spiral waves can also be intermittently trapped by such
heterogeneities. Using simulations of a cardiac model in two dimensions, we show that a tissue heterogeneity of
sufficient strength or size can result in a spiral wave that is trapped for a few rotations, after which it dislodges
and meanders away from the heterogeneity. We also show that these results can be captured by a particle model
in which the particle represents the spiral wave tip. For both models, we construct a phase diagram which
quantifies which parameter combinations of heterogeneity size and strength result in permanent, intermittent, or
no trapping. Our results are consistent with clinical observations in patients with atrial fibrillation that showed
that spiral wave reentry can be intermittent.

DOI: 10.1103/PhysRevE.105.014404

I. INTRODUCTION

Spiral waves are a common feature in excitable media and
have been observed in several chemical systems, including
the Belousov-Zhabotinsky reaction system [1,2] and surface
catalytic oxidation reaction systems [3]. They are also com-
mon in biological systems, for example, in the form of waves
of chemoattractants during the aggregation process of Dic-
tyostelium discoideum cells [4] and as waves of depolarization
in chicken retinas [5], where they have been associated with
the progression of macular degeneration [6]. Spiral waves
also play a major role in cardiac arrhythmias [7]. Specifically,
they are believed to underlie fibrillation, during which orga-
nized electrical activity is disrupted and replaced by wave
propagation that is fast and irregular and compromises the
primary mechanical function of the heart. When occurring in
the ventricles, fibrillation is lethal within minutes [8], while
atrial fibrillation (AF), the most common arrhythmia in the
U.S. [9], results in an elevated risk for stroke and increased
morbidity and mortality [10,11].

Modeling studies using homogeneous domains, i.e., do-
mains where all model parameters are the same, have shown
that a single spiral wave can destabilize through a variety
of mechanisms [12]. When the electrical wave of the spi-
ral locally breaks, it results in waves that reenter previously
excited tissue, thus forming new spiral waves. The resulting
dynamical state can be classified as spiral defect chaos, with
a stochastically fluctuating number of spiral waves and spiral
wave tips that meander through the domain [13–15]. Reentry
in homogeneous domains or tissue is classified as functional
[16] and can be contrasted with anatomical reentry, during
which a spiral wave rotates around a tissue heterogeneity.
In models, these heterogeneities can be easily introduced
by modifying one of the model parameters, while in ac-
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tual tissue these heterogeneities can take on the form of
anatomical obstacles or fibrotic scar [17,18]. A number of
numerical studies have investigated the conditions for the
anchoring of spiral waves to heterogeneities [19–25], while
the permanent trapping of reentry waves to obstacles has also
been demonstrated in in vitro and in in vivo experiments
[26,27].

Although anchoring of spiral waves to obstacles has been
well studied in numerical models, it is less clear if spiral waves
can also attach intermittently to heterogeneities. In this case,
a spiral wave would meander through the tissue and would be
trapped to a heterogeneity for several rotations, after which
it would dislodge again. This question is relevant since in
vitro experiments have demonstrated that spiral waves can pin
and unpin from obstacles [27]. Moreover, results from clinical
work suggest that intermittent spiral wave trapping may play a
role in AF [28–30]. More precisely, these clinical studies have
found that spiral waves in humans can appear intermittently
in certain regions of the heart and that their tips can migrate
over considerable distances.

In this paper, we used simulations of a cardiac model to
investigate the dynamics of a spiral wave in the presence of a
circular heterogeneity of variable sizes, modeled by reducing
the local excitability. We show that, depending on the size and
strength of the heterogeneity, the spiral wave is either perma-
nently, intermittently, or not trapped at all. Furthermore, by
computing a phase diagram, we show that a minimum size and
strength is required for intermittent trapping. We also show
that this qualitative behavior can be captured by a particle
model, representing the dynamics of the spiral wave tip. In this
model, the particle moves under the influence of two forces,
resulting in a tip trajectory that is consistent with the full, spa-
tially extended model, and a potential well, representing the
heterogeneity. As is the case for the full model, we constructed
a phase diagram and showed that intermittent trapping in only
possible for heterogeneities of intermediate size and strength.
Our results suggest that the heterogeneities of medium size
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and strength may be responsible for the clinically observed
intermittency during AF.

II. RESULTS

A. 3D simulations

In a first simulation and acting as a motivation for further
investigation, we explored wave propagation in a clinically
derived geometry of the left atrium. In this simulation and
following previous literature (see, e.g., Ref. [7]), the potential
u of cardiac cells is described as

∂u

∂t
= D∇2u − Iion

Cm
. (1)

Here, Cm is the capacitance of the membrane, D is a diffusion
coefficient, responsible for the spreading of the activation
front, and Iion represents membrane currents. In this paper,
we chose to model the membrane currents using the Fenton-
Karma (FK) model [31], a simple model with only three
currents: Iion = Jfi(u, v) + Jso(u) + Jsi(u,w). There, currents
are written as

Jfi(u, v) = − v

τd
�(u − uc)(1 − u)(u − uc), (2)

Jso(u) = u

τo
�(uc − u) + 1

τr
�(u − uc), (3)

Jsi(u,w) = − w

2τsi

(
1 + tanh

[
k
(
u − usi

c

)])
, (4)

where � is the standard Heavyside function. The gating vari-
ables v and w are given by

∂v

∂t
= �(uc − u)(1 − v)/τ−

v (u) − �(u − uc)v/τ+
v ,

∂w

∂t
= �(uc − u)(1 − w)/τ−

w − �(u − uc)w/τ+
w ,

where τ−
v (u) = �(u − uv )τ−

v1 + �(uv − u)τ−
v2 [31]. This

model has been extensively used in cardiac modeling
literature and its parameters can be adjusted and fitted to
different electrophysiological data, including human [12,32].
The parameter values used in this paper are detailed in Table I.

The atrial shell was constructed using patient data using
three-dimensional electroanatomic imaging (NavX, St. Jude
Medical, Sylmar, CA) [33]. The shell was rendered into a
triangular mesh with 39749 nodes and an average internode
distance of 0.04 cm. The electrophysiological model was then
simulated using a finite volume algorithm fully described
in Ref. [34]. As a temporal discretization, we used �t =
0.0015 ms, well below the critical discretization for which
the simulation became unstable (�t = 0.005 ms). Within this
atrial geometry, we included a circular region of depressed ex-
citability, modeled by increasing one of the model parameters,
τd . As an initial condition, we projected a spiral wave obtained
using a 2D simulation onto the shell and varied the size of the
heterogeneity and the degree of excitability depression. We
found that for certain combinations of these parameters, the
spiral wave was intermittently trapped by the heterogeneity.
Increasing the size or depressing the excitability further was
found to result in permanently trapped spiral waves while
decreasing the size or depressing the excitability less was ob-
served to lead to spiral waves that were not trapped at all. An

TABLE I. Parameters used for the Fenton-Karma model simu-
lations. All time constants τ are in milliseconds, all voltages are in
rescaled, arbitrary units, k is dimensionless, D is in units of cm2/ms,
and Cm in units of μF/cm2.

Parameter Value

τ+
v 3.33

τ−
v1 19.6

τ−
v2 1000

τ+
w 50

τ−
w 11

τd,0 0.39
τo 8.3
τr 50
τsi 45
k 10
usi

c 0.85
uc 0.13
uv 0.055
D 0.001
Cm 1

example of a simulation that resulted in intermittent trapping
is shown in Fig. 1(a), where we visualized the heterogeneity
with a radius of Rhetero = 0.3 cm as an orange patch, the mem-
brane voltage using a color code with red (blue) corresponding
to depolarized (repolarized) tissue, and the path of the spiral
wave tip using gray symbols. In this case, the model parameter
was increased from a baseline value of τd,0 = 0.39 ms to
τd = 0.42 ms.

To further visualize the trapping event, we plotted the
distance between the spiral wave tip and the center of the
heterogeneity, r, as a function of time in Fig. 1(b). This plot
shows that the spiral wave tip moves freely and remote from
the heterogeneity before it is captured at t ≈ 2.2s. It subse-
quently rotates around the heterogeneity for several rotations,
after which it dislodges and moves away. This sequence is
then repeated, resulting in another transient trapping event. In
this figure, the time in which the tip is trapped by the hetero-

(a) (b)

FIG. 1. (a) Snapshot of a computer simulation of the FK car-
diac model in a patient-derived left-atrial geometry. The potential
is shown using a color scale with red (blue) corresponding to depo-
larized (repolarized) tissue. The circular heterogeneity (with radius
Rhetero = 0.3 cm) is shown as an orange patch and the trajectory of
the spiral wave tip is plotted in gray. (b) Distance from the hetero-
geneity as a function of time during trapping events, indicated by the
red bars.
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geneity is indicated by red bars. Thus, this sample simulation
shows that for certain parameter values, the introduction of a
heterogeneity can intermittently trap a spiral wave.

B. 2D simulations

To systematically determine for which parameters a spi-
ral wave can be intermittently trapped, independent of a
patient-specific geometry, we next simulated the model on an
isotropic 200 x 200 square grid with no-flux boundary condi-
tions. We verified that the qualitative behavior is unchanged
when using larger domains (300 x 300 and 400 x 400), in-
dicating that it is independent of computational boundaries.
Simulations were carried out with a spatial discretization
of �x = 0.025 cm and a temporal discretization of �t =
0.05 ms. The equations were solved using the forward Euler
scheme and a five-point spatial stencil. As in the 3D sample
simulation, we introduced a circular heterogeneity, placed in
the middle of the computational domain. As parameters that
specify the heterogeneity, we used its radius Rhetero and the
deviation of τd from its baseline value: �τd ≡ τd − τd,0. We
varied Rhetero from 0.25 to 3.75 cm in steps of 0.25 cm and �τd

from 0.01 ms−1 to 0.26 ms−1 in steps of 0.01 ms−1. Increasing
�τd to even larger values did not change the outcome of the
simulations any more. As an initial condition, the simulation
was started with a spiral wave, obtained using cross-field
stimulations [35], present in the computational domain. In the
absence of a heterogeneity and for the parameters chosen in
this paper, the spiral wave meanders through the domain.

In Figs. 2(a)–2(c), we show a sequence of three snapshots
of a typical simulation in which a spiral wave is intermittently
trapped. The tissue potential is represented by gray scale, with
white corresponding to fully depolarized and black to fully
repolarized tissue, while the location of the heterogeneity is
indicated as a dashed white line. The spiral wave tip shows
as a cyan dot and the trajectory of the spiral wave during the
entire interval captured by the three snapshots is shown in red.
The spiral wave tip is initially distant from the heterogene-
ity [Fig. 2(a)], meanders through the domain, and, when it
encounters the heterogeneity, is trapped for several rotations
[Fig. 2(b)]. The trapping is not permanent, however, and the
spiral wave eventually dislodges and meanders away from
the heterogeneity [Fig. 2(c)]. As in the 3D simulation, the
trapping of the spiral wave can also be visualized by plotting
the distance from the tip to the center of the heterogeneity,
r, as a function of time. This is demonstrated in Fig. 2(d),
which shows that during three intervals, indicated by the red
bars, the spiral wave is trapped. In between these intervals,
however, the spiral tip is moving away from the heterogeneity
and meanders through the domain.

Our simulations revealed that a spiral wave is either perma-
nently trapped, not trapped at all, or intermittently trapped by
the heterogeneity. This is demonstrated in the phase diagram
in the Rhetero-�τd space, presented in Fig. 2(e). This phase
diagram was constructed by running a simulation with a dura-
tion of 50 s for each parameter combination. A trapping event
was identified when the spiral wave tip was located within a
distance of 3Rhetero from the center of the heterogeneity and
rotated twice or more around this heterogeneity. A spiral tip
that exhibited at least two trapping events during the simu-

(a)

(d) (e)

(b) (c)

FIG. 2. Results of computer simulations in a square domain with
no-flux boundary conditions. (a)–(c) Snapshots of a simulation of a
spiral wave just before (a), during (b), and after (c) an intermittent
trapping event. The spiral wave tip is shown in red and the potential
is plotted using a gray scale. The circular heterogeneity is indicated
by the white dashed line. Parameter values: Rhetero = 0.275 cm and
�τd = 0.08 ms−1. (d) The distance of the spiral wave tip to the center
of the heterogeneity as a function of time. The intervals during which
the tip is trapped in the heterogeneous zone is indicated by the red
bars. (e) Phase diagram, indicating for which parameter combination
the spiral wave tip is permanently trapped (blue diamonds), intermit-
tently trapped (red squares), or not trapped at all (black circles).

lation was classified as intermittently trapped. In the phase
diagram, we have plotted all parameter combinations that did
not result in trapping as black circles, all combinations that
resulted in permanent trapping as blue diamonds, and those
that produced intermittent trapping as red squares. As can
be seen from this phase diagram, intermittent trapping was
possible for a wide range of sizes and heterogeneity strengths.
Furthermore, the phase diagram revealed that both a minimum
value of Rhetero and a minimum value for �τd are required
for intermittent trapping. In addition, once Rhetero becomes
larger than a second critical value, the spiral wave is trapped
indefinitely.

C. Particle model simulations

To further investigate the dynamics of the spiral wave in
the presence of a heterogeneity, we turned to a particle model,
which only simulates the spiral tip and ignores the spatial
extent of the spiral wave. Such an approach was already
successfully employed when describing the interaction of a
spiral wave with multiple, small-scale heterogeneities [36].
In this approach, the spiral wave tip is modeled as a force-
driven particle moving in a potential. Specifically, the x and y
coordinates of the particle (tip) are described by the following
equations:

d2x(t )

dt2
= F1 cos(ω1t ) + F2 cos(ω2t ) − ξ

dx

dt
− dU (x, y)

dx
,

(5)
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FIG. 3. Results from the particle model. (a) Trajectory of an intermittently trapped particle, moving in a potential surface of depth g =
0.004 cm2/ms4 and width w = 0.4 cm. (b) Distance of the particle to the minimum of the potential well, r, as a function of time for identical
parameter values. The intervals during which the particle is trapped are indicated using the red bars. (c) Phase diagram, showing the different
possible outcomes in the particle models. As in Fig. 2, blue diamonds represent tips that are permanently trapped, red squares correspond to
tips that are intermittently trapped, and black circles represent tips that are not trapped.

d2y(t )

dt2
= F1 sin(ω1t ) + F2 sin(ω2t ) − ξ

dy

dt
− dU (x, y)

dy
,

(6)

where the first terms represent a forcing with frequen-
cies ω1 and ω2 and amplitudes F1 and F2. As we have
shown in our previous study, the parameters of these
forces can be quantitatively determined such that the tra-
jectory in the particle model can faithfully reproduce the
trajectory in the full, spatially extended model [36]. In
our case, the values of these parameters were found to
be ω1 = 3.76 × 10−4 ms−1, ω2 = 4.59 × 10−2 ms−1, F1 =
3.55 × 10−4 cm/ms2, and F2 = 9.92 × 10−4 cm/ms2. The
third term corresponds to a damping with strength ξ that pre-
vents the model from drifting while the last term describes a
potential energy, representing the presence of a heterogeneity.

To mimic heterogeneities, we chose a potential energy term
with circular symmetry and a minimum at the location of the
heterogeneity [36]. Specifically, we introduced a potential in
which the heterogeneity was described by a Gaussian well
centered at x = 0 and y = 0:

U (x, y) = − g√
2π

(
exp

[
− (x2 + y2)

2w2

])
. (7)

In this description, the strength of the heterogeneity is param-
eterized by the depth of the potential well, g, and its size by
the width, w.

For specific values of g and w, we found that the parti-
cle was intermittently trapped by the potential well. This is
demonstrated in Fig. 3(a), where we show the trajectory of the
particle during a trapping event, along with the potential. This
is further shown in Fig. 3(b), where we plot, as a function of
time, the distance of the particle to the center of the potential
well, r. For the plotted interval, the particle is trapped during
three intermittent intervals, as indicated by the red bars.

Further comparing the full 2D simulations to the parti-
cle model, we next determined the parameter combinations
for which the particle is permanently, intermittently, or not
trapped in the potential well. We ran simulations for 50 s

and a particle was considered trapped if the distance of its
trajectory to the minimum of the potential was smaller than
three times the width of the potential (i.e., 3w) for at least
two consecutive rotations. Furthermore, a particle was con-
sidered to be intermittently trapped if at least two trapping
events occurred within the simulation interval. The results
are plotted in Fig. 3(c), where we used the same color and
symbol convention as in Fig. 2. As was the case for the 2D
simulations (cf. Fig. 2), there exists a region in parameter
space for which the particle was intermittently trapped by the
potential. For these parameter values, the particle trajectory
entered the potential well and was rotated several times within
this well, after which it escaped from the well. Also as in the
2D case, this intermittent trapping required both a minimal
heterogeneity size as well as a minimal potential well depth.

III. SUMMARY AND DISCUSSION

To summarize, we demonstrated for certain parameter val-
ues in a spatially extended cardiac model, a spiral wave tip
can be intermittently trapped by a tissue heterogeneity. During
these intermittent trapping events, the spiral wave tip circles
around the heterogeneity for a variable amount of time but
eventually becomes dislodged and moves away from the het-
erogeneity. After meandering through the domain, the tip is
then again trapped at the heterogeneity for a brief period,
after which the sequence repeats itself. In our simulations, the
heterogeneity was introduced by varying one of the model pa-
rameters that parametrized tissue excitability. We should note,
however, that we have verified that changing other parameters
in the full model can also result in intermittent trapping, intro-
ducing a region of reduced values of the diffusion constant D.

Using simulations, we obtained a phase diagram, which
quantifies for which parameter values the spiral wave can
be intermittently trapped. This phase diagram revealed that
intermittent trapping requires a minimum size of the hetero-
geneity. This is expected since for these very small sizes,
the front of an attached spiral wave will encounter the back
of the wave, resulting in detachment and no trapping. The
phase diagram also showed that above a certain size, the
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spiral wave is permanently trapped. This is consistent with
experimental and computational work, which demonstrated
that the tip of a spiral wave can become permanently attached
to heterogeneities that are larger than a certain minimum
size [19,37]. Thus, intermittent trapping is only possible for
intermediate heterogeneity sizes. For these sizes, when the
meandering spiral wave encounters the heterogeneity, it can be
captured, resulting in the tip rotating around the heterogeneity.
However, the distance of the spiral tip to the center of the het-
erogeneity slowly increases with each rotation [see Fig. 2(d)].
When this distance becomes too large, the spiral wave de-
taches from the heterogeneity and meanders away from it.
When the spiral tip encounters the heterogeneity again, this
scenario can be repeated, resulting in intermittent trapping.
The phase diagram also showed that intermittent trapping re-
quires a minimal strength of the heterogeneity, parameterized
here by the deviation of the excitability parameter τd from
its baseline value, �τd . This can be intuitively understood
by realizing that for very small values of �τd the change in
excitability will have a minimal effect on the propagation of
the spiral wave.

The intermittent trapping observed in the full model can
be recapitulated in a simple model in which the reaction-
diffusion system is replaced by a set of equations that describe
the x and y coordinates of a particle moving in a potential well
and subject to two forces. We have shown that, for certain
parameter values of the potential, the particle can also be
intermittently trapped, consistent with the full model. Thus,
the particle model can accurately describe the qualitative dy-
namics of the full model, with the depth of the potential well
parametrizing the strength of the heterogeneity and its spatial
extent playing the role of the heterogeneity size. This suggests
that the trapping in the full model is due to the presence of an
effective potential well at the location of the heterogeneity.

For the particle model, we also obtained a phase diagram,
which quantifies for which parameter values the spiral wave
can be intermittently trapped. As for the full model, the phase
diagram showed that intermittent trapping only occurs for
intermediate sizes of the potential well. This can be seen by
considering a fixed strength of the heterogeneity, in this case
the depth of the potential well, and varying the size of the
potential well. As expected, for small sizes, the spiral wave
was not affected by the presence of the potential well. Fur-
thermore, and consistent with the full model, for large sizes
the particle was permanently trapped.

A similar argument can be made when considering a fixed
value of the potential well size and varying the strength of the
heterogeneity. Again, as expected, for weak heterogeneities
the spiral wave tip was not trapped. Above a certain critical
value of the heterogeneity strength, however, the spiral wave

tip was intermittently trapped. In the particle model, however,
further increasing the depth of the potential well eventually
resulted in permanent trapping. This is in contrast to the full
model where further increasing the parameter that determines
the excitability did not always result in permanent trapping.
This can be explained by realizing that the effect of increasing
the parameter τd has an upper bound, after which further in-
creases do not affect the behavior. In the particle model, how-
ever, one can increase the potential well depth indefinitely,
which will always result in eventual permanent trapping.

The intermittent trapping was achieved using a circular
heterogeneity. In future work, it would be interesting to inves-
tigate the effect of the shape of the heterogeneity. In particular,
it would be insightful to examine how the curvature of the de-
fect affects the trapping of the spiral wave. Additional future
work can address how electric fields used, for example, in low-
energy defibrillation methods [38,39], affect the intermittency
of the spiral waves. Previous studies have shown that these
fields can generate zones of depolarization and hyperpolariza-
tion close to the heterogeneity, which can unpin an anchored
rotating wave [40,41]. It would be interesting to see how these
fields will alter the intermittency found in the current paper.

Clinically, AF is a disease that affects mainly older patients
and is a progressive disease, with episodes that increase in
duration as patients age. In some AF patients, it appears to
display intermittent reentry events, as evidenced in mapping
studies [29,30]. Aside from trapping to heterogeneities, other
mechanisms may be responsible for this intermittency, in-
cluding abnormal automaticity or triggered activities that can
lead to intermittent reentry. Nevertheless, it is tempting to hy-
pothesize that as patients age, heterogeneities become larger
and/or more pronounced, possibly resulting in intermittent
trapping of spiral waves. Patients with more progressed AF
could then have even larger or more severe heterogeneities,
resulting in permanent trapping and persistent AF. This could
also explain why targeting the location of the reentry events
through ablation (i.e., the destruction of tissue) can result in
termination of AF or a marked reduction in AF occurrence
[42]. These ablations would remove heterogeneities, which in
turn can result in elimination of reentry events [43]. Testing
this scenario would require high-resolution mapping studies,
coupled with techniques that identify tissue heterogeneities.
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