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Minimal informational requirements for fitness
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The existing concept of the “fitness value of information” provides a theoretical upper bound on the fitness
advantage of using information concerning a fluctuating environment. Using concepts from rate-distortion
theory, we develop a theoretical framework to answer a different pair of questions: What is the minimal amount of
information needed for a population to achieve a certain growth rate? What is the minimal amount of information
gain needed for one subpopulation to achieve a certain average selection coefficient over another? We introduce a
correspondence between fitness and distortion and solve for the rate-distortion functions of several systems using
analytical and numerical methods. Because accurate information processing is energetically costly, our approach
provides a theoretical basis for understanding evolutionary “design principles” underlying information-cost
trade-offs.
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I. INTRODUCTION

The “fitness value of information” [1,2], addresses the
theoretical maximum fitness gain of a population due to in-
formation. More specifically, the fitness value of information
relates the maximal increase in the growth rate of a population
due to information about the environment to information theo-
retic quantities. The key quantity for measuring the population
growth rate, and defining fitness, is the Lyapunov exponent

� ≡ lim
t→∞

1

t
log

Nt

N0
, (1)

where Nt is the population size at time t . This work has applied
the results of Kelly [3], who related the maximal increase
in wealth accumulation rate in gambling on horse races due
to side information with the mutual information between the
side information and the winning horses. Subsequent work has
further developed the Kelly framework as applied to evolution
[4–8].

Work on the fitness value of information has largely fo-
cused on optimal phenotype strategies given fixed models
of environmental cues, which provide information about the
true environmental state, and systems for sensing the state
of environmental cues. However, the systems through which
individuals sense their environment, whether a biochemical
signaling network in a bacterium or the nervous system of
an animal, are heritable and thus subject to evolutionary pro-
cesses. To our knowledge, trade-offs between the reliability of
information provided by a sensory channel and the metabolic
costs of accurate environmental sensing have not been ex-
plored in depth.

In this article, we address two questions distinct from the
questions underlying the fitness value of information frame-
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work. What is the minimal amount of information about
the environment needed for a population to achieve a given
growth rate? What is the minimal amount of information
gain needed for a subpopulation to achieve a gain in average
relative fitness over another subpopulation?

We borrow concepts from rate-distortion theory [9], origi-
nally developed to establish theoretical bounds on lossy data
compression. We establish an equivalence between the fitness
of a population, given by Eq. (1), and distortion, where dis-
tortion in this context corresponds to the mean loss in growth
rate due to noisy environmental sensing. The rate-distortion
function then describes optimal trade-offs between distortion
and information in a growing population. Under reasonable
assumptions about the rate-distortion and cost functions, we
show that an overall growth rate function accounting for
metabolic costs can be defined with a unique optimal dis-
tortion and rate given a defined model of the environment.
Finally, we indicate how a selection coefficient between two
subpopulations can be defined in terms of the rate-distortion
and cost functions. Our use of rate-distortion theory to find
minimal information requirements for fitness in biological
populations adds to the growing number of biological appli-
cations of rate-distortion theory [10–13].

II. RATE-DISTORTION THEORY

We begin by setting up our model of population growth.
We consider two competing “genotypes,” which we label as
A and B, which constitute subpopulations of the total pop-
ulation. This section concerns the behavior of a population
consisting of single genotype, while we will address compe-
tition between genotypes A and B in Sec. IX. The individuals
of any genotype can divide themselves between phenotypes
x̂ ∈ X̂ based on noisy sensing of the environmental state
x ∈ X . This division depends on the strategy π (x̂|y), where
y ∈ Y is the internal representation of the environment within
individuals. The strategy describes the probability that a
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phenotype x̂ will be expressed given that an individual per-
ceives the environment as y. We consider environmental cues
c ∈ C available to all individuals chosen according to the cue
distribution qenv(c|x), and internal representations chosen ac-
cording to the sensing distribution qin(y|c). The environmental
cues represent observable aspects of the environment which
are informative about the environmental state while the in-
ternal representations result from sensory mechanisms within
individual organisms in the population [2]. We restrict the sets
X , C,Y, X̂ to be finite here. The environment (X ), environ-
mental cue (C), internal representation (Y ), and phenotype (X̂ )
thus follow a Markov chain

X → C → Y → X̂ . (2)

The growth rate of individuals depends on the phenotype
expressed as well as the environmental state, and is written
as

w(x, x̂) : X × X̂ → R0+, (3)

where R0+ denotes the non-negative real numbers.
For our model, we can easily write the Lyapunov exponent

for a subpopulation in discrete time as [2]

�[qin, qenv, π ] =
∑
x∈X

∑
c∈C

p(x)qenv(c|x)

× log

( ∑
x̂∈X̂

∑
y∈Y

w(x, x̂)π (x̂|y)qin(y|c)

)

(4)

under the assumption that environmental states are i.i.d. over
time steps and that environmental cues, internal representa-
tions, and phenotypes are i.i.d. over time steps conditional on
environmental states, environmental cues, and internal repre-
sentations, respectively. Additionally, internal representations
and phenotypes are i.i.d. over individual organisms in the pop-
ulation. We write the Lyapunov exponent for a subpopulation
given environmental cue distribution qenv(c|x) and sensing
distribution qin(y|c) and then optimized over strategy π (x̂|y)
as

��[qenv, qin] ≡ max
π

�[qenv, qin, π ]. (5)

This growth rate is maximized when sensing and cues are
noiseless,

��[qenv, qin] � ��[qenv, δy,c] � ��[δc,x, δy,c], (6)

where δy,c and δc,x are Kronecker delta functions indicating
noiseless internal representations and environmental cues, re-
spectively. In order for information about the environment to
be useful for growth, and thus for the inequalities in Eq. (6) to
be strict, there must be trade-offs between phenotypes. That
is, for the cases of interest in this work, there should not be
a single phenotype with fitness greater than or equal to the
fitness of all other phenotypes in all environments.

Using Eqs. (5) and (6), we define the non-negative quantity

�[qenv, qin, π ] ≡ ��[qenv, δy,c] − �[qenv, qin, π ] (7)

and its minimized counterpart

��[qenv, qin] ≡ ��[qenv, δy,c] − ��[qenv, qin], (8)

which is a modified version of the fitness cost of imperfect
sensing [2] depending on both the sensing distribution qin(y|c)
and the cue distribution qenv(c|x). In Eq. (8) we compare
optimal Lyapunov exponents of perfect and imperfect sensing
given the same distribution of environmental cues, in contrast
to the fitness cost of imperfect information. The loss in growth
rate due to noisy sensing in Eq. (8) serves as the mean dis-
tortion in our rate-distortion framework, as explained below.
Because of our definition of mean distortion in Eq. (8), we use
“distortion” and “growth rate loss” interchangeably.

The mutual information between environmental states and
internal representations

I (X ;Y ) =
∑
x∈X

∑
y∈Y

p(x)

(∑
c∈C

qin(y|c)qenv(c|x)

)

× log

( ∑
c∈C qin(y|c)qenv(c|x)∑

x∈X p(x)
∑

c∈C qin(y|c)qenv(c|x)

)
(9)

describes how informative sensory mechanisms are about
the environment on average. When qin(y|c) = δy,c, I (X ;Y ) =
I (X ;C) while if additionally qenv(c|x) = δc,x, then I (X ;Y ) =
H (X ).

The fitness cost associated with achieving a certain growth
rate (or equivalently, loss in growth rate as compared with
the maximum possible growth rate), however, depends only
on how reliable the sensory mechanism of an organism is, as
reflected in Eq. (8). This is captured by the mutual information
between environmental cues and internal representations

I (C;Y ) =
∑
x∈X

∑
c∈C

∑
y∈Y

p(x)qenv(c|x)qin(y|c)

× log

(
qin(y|c)∑

x∈X
∑

c∈C p(x)qenv(c|x)qin(y|c)

)
,

(10)

where, from Eq. (2), we have I (C;Y ) � I (X ;Y ) due to the
data-processing inequality.

We can now define the rate-distortion function as

R(D) = min
qin (y|c):��[qenv,qin]�D

I (C;Y ), (11)

which is the minimal amount of mutual information between
the internal representation of the environment and environ-
mental cues necessary needed to achieve a mean distortion of
at most D. The modified fitness cost of imperfect information
��[qenv, qin] [Eq. (8)] functions as the mean distortion, rep-
resenting the mean growth rate lost by noisy sensing of the
environmental cue. Zero distortion is achievable only when
perfect information about environmental cues is available to
a population, so that R(0) = H (C). On the other hand, the
smallest D for which R(D) = 0 is equal to ��[qenv, η] =
I (X ;C).

We emphasize that in contrast to the “fitness value of in-
formation” literature, we are interested in optimization over
the sensing distribution qin(y|c) rather than the phenotype
expression strategy π (x̂|y). In order to define the mean dis-
tortion, Eq. (7) must be minimized over π (x̂|y). This defines
a constraint for optimization over qin(y|c). Because the rate-
distortion function in Eq. (11) describes optimal trade-offs
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between growth rate loss and information, the strategy π (x̂|y)
on the rate-distortion curve is always optimal since otherwise
the growth rate loss (distortion) could be reduced using the
same amount of information, or the information could be
reduced keeping the growth rate loss constant. Overall, this
problem is an example of bilevel optimization (see Sec. IV).

The distortion function corresponding to the mean distor-
tion [Eq. (8)] is

d (x, c; qenv, qin )

= log

(∑
x̂,y

w(x, x̂)π�
qenv,δ

(x̂|y)δy,c

)

− log

(∑
x̂,y

w(x, x̂)π�
qenv,qin

(x̂|y)qin(y|c)

)

= − log

(∑
x̂,y w(x, x̂)π�

qenv,qin
(x̂|y)qin(y|c)∑

x̂,y w(x, x̂)π�
qenv,δ

(x̂|c)

)
, (12)

where π�
qenv,δ

(x̂|y) is the strategy that maximizes
�[qenv, δy,c, π ], when internal sensing is noiseless, and
π�

qenv,qin
(x̂|y) is the strategy that maximizes �[qenv, qin, π ]

when internal sensing is distributed according to qin(y|c).
This is a generalized form of the logarithmic loss function
[14–16]. We can see that ��[qenv, qin] is the mean distortion
using Eqs. (4), (5), (8), and (12):

∑
x,c

p(x, c)d (x, c; qenv, qin ) =
∑
x,c

p(x)qenv(c|x)

[
log

(∑
x̂,y

w(x, x̂)π�
qenv,δ

(x̂|y)δy,c

)
(13)

− log

(∑
x̂,y

w(x, x̂)π�
qenv,qin

(x̂|y)qin(y|c)

)]
(14)

= ��[qenv, δy,c] − ��[qenv, qin] = ��[qenv, qin]. (15)

The “test channel” consists purely of qin(y|c), representing the
ability of organisms to evolve their sensory capabilities, while
we assume that the reliability of the external environmental
cue cannot be influenced by evolutionary processes. An equiv-
alent rate-growth function can be defined,

R(W ) = min
qin (y|c):��[qenv,qin]�W

I (C;Y ), (16)

which is the minimal amount of mutual information needed
between the environmental cue and internal representation
needed to achieve an average growth rate of at least W .

The mean distortion is bounded by the generalized entropy
defined by Rivoire and Leibler [2] minus the entropy of the
environmental state given the environmental cue

��[qenv, qin]

� H (qenv,qin )
p − H (X |C)

= −
∑
x,c

p(x)qenv(c|x) log

(
p(c)

∑
y π�

qenv,qin
(x|y)qin(y|c)

qenv(c|x)p(x)

)

= DKL

(
qenv(c|x)p(x)

∣∣∣∣∣
∣∣∣∣∣

∑
y

π�
qenv,qin

(x|y)qin(y|c)p(c)

)

(17)

with equality when w(x, x̂) > 0 only when x = x̂, the
marginal probability of environmental cue c is p(c) =∑

x qenv(c|x)p(x), and DKL(· || ·) is the Kullback-Leibler di-
vergence. For most cases, it is difficult to obtain R(D)
explicitly, although we will find an exact formula for R(D)
in several simple cases.

III. INTERPRETATION OF THE
RATE-DISTORTION FUNCTION

Each pair of ��[qenv, qin] and I (C;Y ), which we will
call (�, I ) pairs, represents the loss in growth rate of the
population due to noisy sensing and the mutual informa-
tion between environmental cues and the internal cues of
a population. The rate-distortion function R(D) represents
the minimum mutual information necessary to achieve dis-
tortion of at most D. Alternatively, the inverse function
D(R) represents the minimum distortion achievable with
mutual information R. Then (�, I ) pairs lying above the
rate-distortion curve are suboptimal, in that the metabolic
costs paid to achieve R could be used to achieve a lower
distortion, D(R), while the distortion D could be achieved
with less information, R(D). On the other hand, (�, I )
pairs lying below the rate-distortion curve are unachievable.
The rate-distortion function thus represents optimal trade-
offs between growth rate loss and information processing
ability, and can be viewed as a Pareto front [17] between
the two.

Nonoptimal (�, I ) pairs can occur in several ways. Con-
sider a distortion rate pair (�a, Ia) with Ia > R(�a) [Fig. 1(a)].
For a fixed qin(y|c), if a suboptimal strategy πqenv,qin (x̂|y) is
used, then the distortion �a will be larger than D(Ia), where
Ia is determined by p(x), qenv(c|x) and qin(y|c). On the other
hand, depending on the probability distributions p(x) and
qenv(c|x), there can exist more than one distribution qin(y|c)
that yield the same distortion �a but multiple values of
I (C;Y ), with some greater than R(�a), including Ia. The rate
R(�a) could be achieved through an optimal choice of both
sensing distribution qin(y|c) and strategy π (x̂|y). Thus, opti-
mal (�, I ) pairs are possible only with both optimal strategies
and with the choice of qin(y|c) that satisfies Eq. (11). We can
consider the equivalent framework of the rate-growth function
[Fig. 1(b)] analogously.
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FIG. 1. (a) The rate-distortion function, R(D) describes optimal
sensory systems and strategies. The point (�a, Ia) is not optimal, as it
lies above R(D). The organisms of this genotype could change their
strategies, given an Ia-achieving sensory system, to reach a distortion
of D(Ia), where D(R) is the inverse the rate-distortion function.
Although Ia remains constant, the sensory system itself can change
to achieve the optimal qin(y|c) such that I (C;Y ) = Ia. The population
could also evolve a sensory system that achieves R(�a), adopting the
corresponding optimal strategy. Of course, arbitrary (�b, Ib) could
be achieved, provided that Ib � R(�b). (b) The rate-growth function,
which can be described similarly to the rate-distortion function ex-
cept that instead of mean distortion �, we are concerned with the
long-term growth rate �.

Because qin(y|c) reflects the information processing abil-
ities of an organism, which is subject to evolution, the
rate-distortion function represents an optimal “design prin-
ciple” for sensory systems. We emphasize that evolutionary
processes will not necessarily drive sensory systems towards
the rate-distortion function. Because accurate sensing of envi-
ronmental conditions is metabolically costly down to the level
of biochemical signaling [18–21], there should be metabolic
costs associated with I (C;Y ) which will decrease the re-
sources available for growth.

IV. THE RATE-DISTORTION FUNCTION
AND BILEVEL OPTIMIZATION

In contrast to more conventional rate-distortion problems,
the distribution over which we optimize actually changes the
distortion function itself [Eq. (12)], rather than the distribution
of x and c. The optimization problem defined in Eq. (11) is an
example of bilevel optimization [22], and can be reformulated
as such:

min
qin

I (C;Y ) (18)

subject to:

�[qenv, qin, π ] � D, (19)

π ∈ arg min
π

�[qenv, qin, π ], (20)

qin(y|c), π (x̂|y) � 0 ∀c ∈ C,∀y ∈ Y,∀x̂ ∈ X̂ , (21)∑
y∈Y

qin(y|c) = 1 ∀c ∈ C, (22)

∑
x∈X̂

π (x̂|y) = 1 ∀y ∈ Y . (23)

In general, these problems are difficult to solve. However,
there are a number of methods that have found previous
success [22], including evolutionary optimization algorithms.
While we do not explore these solution methods in this work,
these approaches could be useful for solving more compli-
cated cases than we consider here.

V. EXPLICIT COSTS OF SENSING

Up to this point we have not explicitly dealt with metabolic
costs to sensing. Here we assume that the cost of sensing
� : R0+ → R0+ is a monotonically increasing function of the
sensing mutual information. We write the cost as �[I (C;Y )]
or as a composition � ◦ R(D) when optimal (�, I ) pairs on
the rate-distortion function are achieved. We also assume
that �[0] = 0, that is, the metabolic cost of informationless
sensory mechanisms is zero. The overall growth rate when
considering costs is then

G[qenv, qin, π ] = ��[qenv, δy,c] − �[qenv, qin, π ]

− �[I (C;Y )]. (24)

When the rate-distortion function is achieved, the overall op-
timal growth rate as a function of D is

G�(D) = ��[qenv, δy,c] − D − � ◦ R(D) (25)

so that G[qenv, qin, π ] � G�(�[qenv, qin, π ]). To find the opti-
mal distortion D̂ when the rate-distortion function is achieved,
where G�(D) < G�(D̂) for all D �= D̂, we take the derivative
of G�(D) with respect to D and set it equal to zero to yield

d

dD
� ◦ R(D)|D=D̂ = −1. (26)

If R(D) is continuous, strictly convex, twice continuously
differentiable, and monotonically decreasing in D over
[0,��[qenv, η]] and �[I (C;Y )] is continuous, convex, twice
continuously differentiable, and monotonically decreasing
in I (C;Y ) for I (C;Y ) � 0, then G�(D) is concave in D ∈
[0,��[qenv, η]]. Then there is either a unique critical point D̂
on [0,��[qenv, η]] that maximizes G�(D̂) over D � 0 or there
is no such critical point and either D̂ = 0 or D̂ = ��[qenv, η]
maximizes G�(D) over D � 0 (see Appendix B for proof).

This means that under reasonable assumptions for the rate-
distortion function in many cases and for the cost function,
there will be a single optimal distortion D̂. A genotype that
achieves a distortion-rate pair equal to (D̂, R(D̂)) will have a
growth rate G�(D̂) greater than or equal to the growth rate of
any other possible genotype. This also means that R(D̂) is the
amount of information needed about the environment so that
no other genotype can achieve a larger overall growth rate. If
the optimal strategies and sensory systems are achievable, any
sensory system with I (C;Y ) > R(D̂) is suboptimal, incurring
larger costs than the benefit of the information.

A simple class of cost functions that we will explore in later
sections is

�[I (C;Y )] = αI (C;Y )n, (27)

where n is either 1 or a positive, even integer and α > 0.
All cost functions in this class are convex and monotonically
increasing for 0 � I (C;Y ) � H (C). Monotonically increas-
ing, strictly convex cost functions correspond to diminishing
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returns, meaning that at higher mutual information values a
given increase in information will be more costly. That is,
these conditions mean that for mutual information values IA

and IB and an increase in mutual information 
I

IA < IB ⇒ �[IA + 
I] − �[IA] < �[IB + 
I] − �[IB]. (28)

VI. EXAMPLE: BINARY ENVIRONMENT WITH SENSING
THROUGH A SYMMETRIC CHANNEL

In the first set of examples we consider, we assume that
sensing occurs through a binary symmetric channel with er-
ror probability ε (Fig. 2). We start with the extremes cases
of informationless and noiseless environmental cues. While
the case of informationless cues is trivial, these two simple
systems are analytically tractable and provide theoretical, if
not biological, insight. The section concludes with the more
general case of intermediate environmental cue reliability.

A. Informationless environmental cues

We now examine how the rate-distortion function and
growth rate behave for a simple model of growth. We explore
the case where two environmental states, external cues, inter-
nal representations, and two phenotypes are possible (|X | =
|C| = |Y| = |X̂ | = 2). We assume that the external cues and
internal representations behave as binary symmetric channels
(BSCs), so that

qenv(1|0) = qenv(0|1) = γ , (29)

qin(1|0) = qin(0|1) = ε, (30)

where 0 � γ , ε � 1/2. Additionally, we initially assume that
w(x, x̂) = 0 for x �= x̂ and w(x, x̂) > 0 for x = x̂. Now, con-
sider the case where γ = 1/2, meaning that the environmental
cue carries no information about the actual state of the en-
vironment. The optimal strategy for this case is proportional
betting [1,23], so that

π (0|0) = π (0|1) = p(0) = p, (31)

π (1|0) = π (1|1) = p(1) = 1 − p. (32)

FIG. 2. Diagram of a general binary system with environmental
cue error probabilities γ0 and γ1 and sensing error probabilities ε0 and
ε1. Environment x = 0 occurs with probability p and environment
x = 1 occurs with probability 1 − p. In Sec. VI ε0 = ε1 = ε, while
in Sec. VII ε0 and ε1 can differ.

As the environmental cue is entirely uninformative about the
environment, ignoring the state of sensory mechanisms is
optimal. Proportional betting leads to a mean distortion of

��[η, qin] = 0, (33)

where η indicates that the environmental cue is infor-
mationless, which indicates that the mean distortion is
unrelated to environmental sensing. Then the rate-distortion
function is

R(D) = 0, D ∈ [0,∞), (34)

which indicates that no information is needed to achieve any
distortion. Because the only achievable distortion is 0, it is
clear that D̂ = 0 and the maximal overall growth rate is

G�(D̂) = ��[η, δy,c]. (35)

B. Noiseless environmental cues

If instead we assume that environmental cues are com-
pletely reliable (γ = 0), the optimal strategy depends on ε

in the following manner [2]. If ε = 1/2, there is as much
available information about the environment as when γ = 1/2
and the optimal strategy is again

π (0|0) = π (0|1) = p, (36)

π (1|0) = π (1|1) = 1 − p. (37)

If ε = 0, there is no noise in either the environmental cues or
the sensing mechanism, reflected by the optimality of “all in”
strategies

π (0|0) = π (1|1) = 1, (38)

π (1|0) = π (0|1) = 0. (39)

If instead 0 < ε < 1/2, at least one of π (0|0) and π (1|1) will
be equal to one in the optimal strategy. Under the assumptions
for this model, this leads to a mean distortion of [2]

��[δc,x, qin] =
{− log(1 − ε) for ε � εc(p),

Hb(p) − εc(p) log
(

1−ε
ε

)
for ε > εc(p),

(40)
where εc(p) = min(p, 1 − p). Because the mean distortion is
a monotonically increasing function of ε, in the special case
where p = 1/2, we can write ε in terms of D according to

ε = 1 − 2−D, (41)

while I (C;Y ) is a monotonically decreasing function of ε.
This means that we can substitute Eq. (41) into Eq. (10) to
find the rate-distortion function. Defining the function

φ(D) = (1 − D)2−D + (1 − 2−D)[1 + log(1 − 2−D)], (42)

we can then write the rate-distortion function explicitly as

R(D) =
{
φ(D) for 0 � D � 1
0 for D > 1.

(43)

The bound on the information needed to achieve a certain
mean distortion established by Eq. (43) is demonstrated in
Fig. 3(a). However, the fact that the individual sensory channel
is a BSC means that there is a one-to-one relationship between
distortion and rate, so that for all ε the bound R(D) is met.
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FIG. 3. (a) The rate-distortion function (red line) for a binary system with p = 1/2, noiseless environmental cues, and a sensing distribution
described by a BSC. The gray dots represent randomly sampled rate-distortion pairs. Note that because of the one-to-one relationship between
ε and D in this system, all rate-distortion pairs fall on R(D). (b) Rate-distortion functions for the same system with varying values of p. As the
p deviates from 1/2, less information is required to achieve a given distortion. (c) Rate-distortion functions with all parameters fixed except
for the environmental cue error probabilities γ0 and γ1.

If instead 0 < p < 1/2, we can define R(D) parametrically
through ε according to Eqs. (10) and (40) as a function of
ε. Varying p while keeping all other parameters the same as
Fig. 3(a), we can see in Fig. 3(b) the effects of altering the
probability of each environment. As |p − 1/2| increases the
entropy of the environment decreases. Figure 3(b) shows how
more certain environments in this situation require less infor-
mation to achieve a given distortion. The effects of different
cost functions on the overall growth rate for the rate-distortion
function in Eq. (43) are shown in Fig. 4.

C. Noisy environmental cues

In between the cases of informationless and noiseless en-
vironmental cues is the more interesting case of noisy (but
not informationless) environmental cues. In this subsection

FIG. 4. The optimized overall growth function with a BSC sens-
ing channel as a function of distortion for several convex cost
functions. The dashed vertical lines indicate the optimal distortion,
D̂, for each case. Because this is a binary system, R(D) � H (X ) � 1.
As a result, the cost function � ◦ R(D) = R(D)4 induces a smaller
optimal distortion than � ◦ R(D) = R(D)2, which in turn induces a
smaller optimal distortion than � ◦ R(D) = R(D). Because R(D) is
monotonically decreasing for D ∈ [0, ��[qenv, η]], this means that
as cost functions grow faster in R(D) it is optimal to have more
informative sensory systems. One would usually expect the opposite,
that costlier sensing would drive the optimal system towards less
accurate sensing. This can indeed be the case when R(D) > 1 for
some values of D.

we allow for nonsymmetric environmental cue distributions,
so that

qenv(1|0) = γ0, (44)

qenv(0|1) = γ1, (45)

qin(1|0) = qin(0|1) = ε. (46)

Fixing p = 0.3, Fig. 3(c) shows how varying the reliability
of the environmental cue alters the rate-distortion function.
As c becomes less reliable (as γ0 and γ1 increase) the rate-
distortion function reaches the D-axis more rapidly with D. To
achieve the same distortion, less information is required when
the environmental cue is less reliable. We can make sense
of this seemingly counterintuitive result by recalling that the
term ��[qenv, δy,c] will change with qenv. As the environmental
cue becomes more reliable, ��[qenv, δy,c] will increase. As a
result, a given distortion corresponds to different growth rates
if we compare the three cases shown in Fig. 3(c).

VII. EXAMPLE: BINARY ENVIRONMENT WITH SENSING
THROUGH A GENERAL CHANNEL

We now examine the case where sensing of a binary en-
vironment occurs through an unconstrained, general binary
channel. This model system is of greater relevance to actual
biological systems, and we adapt it in Sec. VIII to a model of
inducible antibiotic resistance in bacteria.

The error probability in environment x = 0 (x = 1) is
ε0 (ε1), and it is possible to find pairs (ε0, ε1) ∈ [0, 1/2] ×
[0, 1/2] which do not meet the bound set by R(D). In other
words, because qin(y|c) is no longer constrained to be sym-
metric, it is possible to achieve a fixed distortion D with
multiple different sensing distributions (Fig. 6 below). We also
relax the assumption of a diagonal growth matrix (meaning
that in this section x �= x̂ does not imply that w(x, x̂) = 0) and
the symmetry restriction on the environmental cue channel.
All together, the environmental cue and sensory distributions
can be written as

qenv(1|0) = γ0, (47)

qenv(0|1) = γ1, (48)
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FIG. 5. Contour lines of I (C;Y ) (shown in red) and �̃�[qenv, qin]
(shown in black) over the two error probabilities for sensing
through a general binary channel. A constraint of the distortion
�̃�[qenv, qin] � D corresponds to the region below, and including, the
�̃�[qenv, qin] = D contour line. Any value of I (C;Y ) in this region is
then achievable under the constraint. The value of R(D) for some
distortion D corresponds to the I (C;Y ) contour line that is tangent
to the �̃�[qenv, qin] = D contour line. The parameters are p = 0.3,
γ0 = 0.05, and γ1 = 0.1.

qin(1|0) = ε0, (49)

qin(0|1) = ε1. (50)

Even in this simple case, it is difficult to explicitly write
��[qenv, qin] in terms of p, γ0, γ1, ε0, ε1, and w(x, x̂). In-
stead, given p, γ0, γ1, and w(x, x̂), we first numerically find
��[qenv, qin] for a finite number of (ε0, ε1) pairs and use linear
interpolation to find ��[qenv, qin] for arbitrary (ε0, ε1) pairs in
[0, 1/2] × [0, 1/2]. We refer to this approximate function as
�̃�[qenv, qin]. Next, we numerically minimize I (C;Y ) over ε0

and ε1 using �̃�[qenv, qin] in the constraint definitions. This
approximation method is used for all results in this section.

FIG. 6. (a) The rate-distortion function (red line) for a binary
system with noiseless environmental cues and with a sensing distri-
bution described by a general binary channel. The gray dots represent
randomly sampled rate-distortion pairs, which are bounded from
below by R(D). (b) Rate-distortion functions with all parameters
fixed except for the environmental cue error probabilities γ0 and γ1.
The dashed lines indicate the corresponding rate-distortion functions
from Fig. 3(c) where the binary sensory channel was constrained to
be symmetric.

FIG. 7. Overall growth rate for the general binary channel with
varying environmental cue reliability. As the environmental cue
becomes more reliable, both the optimal distortion D̂ and the
maximal overall growth rate G�(D̂) increase. For the blue growth
curve (γ0 = 0.1, γ1 = 0.2) R(D̂) ≈ 0.193, for the orange growth
curve (γ0 = 0.05, γ1 = 0.1) R(D̂) ≈ 0.259, and for the green growth
curve (γ0 = 0.025, γ1 = 0.05) R(D̂) ≈ 0.299. The cost function for
this example is �[I (C;Y )] = I (C;Y )2.

To see why it is possible to achieve rate-distortion pairs
that do not lie on R(D) when sensing is through a general
binary channel, we can overlay the contours of I (C;Y ) with
those of �̃�[qenv, qin], as shown for an example in Fig. 5 with
I (C;Y ) contours shown in red and �̃�[qenv, qin] in black. With
the two independent error probabilities of the general binary
channel, we can see that there are many distinct sensing dis-
tributions leading to each value of I (C;Y ) and �̃�[qenv, qin].
For example, if we fix D at 0.20, it is clear that there are
(ε0, ε1) pairs that satisfy �̃�[qenv, qin] � D = 0.20 and that
can achieve some point on each of the displayed I (C;Y )
contours. The smallest I (C;Y ) achievable with the constraint
�̃�[qenv, qin] � D = 0.20 corresponds to the I (C;Y ) contour
that is tangent to the �̃�[qenv, qin] = 0.2 contour, which should
be close to I (C;Y ) = 0.12.

We numerically determined the rate-distortion function
with parameters p = 0.3, γ0 = 0.05, and γ1 = 0.1, shown in
Fig. 6(a). The estimate of R(0.20) ≈ 0.12 from Fig. 5 (with
the same parameters as in Fig. 5) matches with the calculation
of R(0.20) shown in Fig. 6(a). As noted previously, randomly
sampled sensory channels for a general binary channel can
achieve rate-distortion pairs above the rate-distortion function.
These rate-distortion pairs represent organisms that are not
fully exploiting the information they are gathering.

As with the BSC, as the environmental cue becomes less
reliable less information is needed to achieve the same distor-
tion [Fig. 6(b)]. Relaxing the constraint of channel symmetry
allows for less required information at each distortion be-
tween zero and I (X ;C) as compared with the BSC. We can
examine how this variation in environmental cue accuracy
effects the overall growth rate as a function of D. Choosing
the cost function �[I (C;Y )] = I (C;Y )2 and setting p = 0.3,
we can see that there is an optimal distortion D̂ for each
choice of environmental cue distribution (Fig. 7). This opti-
mal distortion increases as environmental cues become more
reliable, requiring more reliable sensory mechanisms to
achieve G�(D̂) as the rate-distortion functions at D̂ are R(D̂) ≈
0.193 (γ0 =0.1, γ1 =0.2), R(D̂)≈0.259 (γ0 =0.05, γ1 =0.1),
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and R(D̂) ≈ 0.299 (γ0 = 0.025, γ1 = 0.05). We note that
while more accurate sensory mechanisms are necessary to
achieve G�(D̂) for less noisy environmental cues, a geno-
type A in the presence of a more reliable environmental cue
than is available to genotype B can achieve the growth rate
G�

B(D̂B) at some distortion DA > D̂B. In the example shown in
Fig. 7, comparing the orange (γ0 = 0.05, γ1 = 0.1) and green
(γ0 = 0.025, γ1 = 0.05) curves we find that G�

green(0.229) >

G�
orange(D̂orange) while Rgreen(0.229) < Rorange(D̂orange), where

D̂orange ≈ 0.090.

VIII. EXAMPLE: INDUCIBLE ANTIBIOTIC
RESISTANCE IN BACTERIA

Some bacteria have evolved the ability to express genes
conferring antibiotic resistance (ABR) only in the presence
of a particular antibiotic, reducing fitness costs associated
with expression of the ABR genes in the absence of antibi-
otics [24]. For example, in Enterococci the presence of the
antibiotic vancomycin is detected through a two-component
signaling system consisting of an integral membrane histidine
kinase receptor and a cytoplasmic response regulator protein.
Genes conferring ABR are then expressed when the two-
component signaling system is activated by antibiotics. If we
assume that ABR gene expression is binary (that is, not graded
but either off or maximally on), we can adapt the results
of Sec. VII to this specific biological example. We consider
the environmental state x = 0 (x = 1) to be the case where
antibiotic concentration is below (above) the threshold con-
centration. The phenotypic state x̂ = 0 (x̂ = 1) corresponds to
when antibiotic resistance genes are not (are) expressed. The
fitness function is then

w(x = 0, x̂ = 0) = a, (51)

w(x = 0, x̂ = 1) = a − c, (52)

w(x = 1, x̂ = 0) = a − d, (53)

w(x = 1, x̂ = 1) = a − c − d + b. (54)

The parameter a is a base growth rate when antibiotic concen-
tration is low and resistance genes are not expressed, c is the
cost of gene expression, d accounts for the reduction in fitness
due to antibiotics, and b is the fitness benefit of expressed
antibiotic resistance genes. The parameters defining the fitness
function should be ordered according to

0 < c < b < d < a, (55)

meaning that antibiotics cannot reduce the growth rate to
zero and that the benefits of ABR gene expression outweigh
the costs but do not entirely counteract the fitness effects of
antibiotics. The environmental cue distribution in this case
corresponds to a Z-channel,

qenv(0|0) = 1, (56)

qenv(1|0) = 0, (57)

qenv(0|1) = γ , (58)

qenv(1|1) = 1 − γ , (59)

considering that the accuracy of concentration sensing is lim-
ited due to the stochastic nature of ligand diffusion, binding,

FIG. 8. Rate-distortion and rate-growth functions for the in-
ducible ABR model with varied environmental cue reliability and
probability of antibiotic absence. Keeping p constant while varying
γ , the (a) rate-distortion functions and (b) growth-rate functions
show how more reliable environmental cues allows for noisier sen-
sors with a constant distortion, or equivalently growth rate. When
the probability of antibiotic absence is varied with a constant envi-
ronmental cue reliability, the (c) rate-distortion and (d) rate-growth
functions can clearly become nonconvex. Increasing p shifts the
rate-growth function to larger growth rates. Shared parameters for
all subplots are a = 2, b = 0.5, c = 0.25, and d = 1.25.

and unbinding while no such fundamental difficulty exists
for detecting the absence of a ligand. Thus, γ represents
fundamental limits to concentration sensing (relating to the
Berg-Purcell limit [25,26]) which could change depending
on factors such as the size of bacterial cells or the antibiotic
concentration associated with environmental state x = 1.

Numerically solving for the rate-distortion function as
in Sec. VII, we find as before that increasing the reliabil-
ity of environmental cues lowers the rate-distortion curve
[Fig. 8(a)]. This corresponds to lower informational require-
ments for achieving a given growth rate with more reliable
environmental cues [Fig. 8(b)]. We also varied the proba-
bility of antibiotics being absent with fixed environmental
cue accuracy, which yielded nonconvex rate-distortion func-
tions [Fig. 8(c)]. Viewed instead as rate-growth functions, as
it becomes more likely that antibiotics are not present, the
rate-growth curve shifts to larger values of W [Fig. 8(d)].
In order to examine the origins of the nonconvexity of the
rate-distortion functions in Fig. 8(c), we can examine the cal-
culated optimal sensing distributions as D increases (Fig. 9).
For the apparently convex rate-distortion function with p =
0.7, we can see that starting from the origin of Fig. 9(a)
and ending at ε0 = ε1 = 0.5, there is a gradual trajectory of
sensing distributions with increasing distortion. However, for
p = 0.8 [Fig. 9(b)] and p = 0.9 [Fig. 9(c)] there are plateaus
in the mean distortion as a function of ε0 and ε1 where mean
distortion is constant. Thus, once this plateau is reached in the
trajectory of optimal sensing distributions, any change in the
sensing distribution towards the informationless distribution
characterized by ε0 = ε1 = 0.5 does not change the distortion
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FIG. 9. The estimated mean distortion �̃�[qenv, qin] as a function of sensing error probabilities ε0 and ε1 shown with probability of no
antibiotic (a) p = 0.7, (b) p = 0.8, and (c) p = 0.9 for the inducible ABR model. The blue filled circle at the origin of each subplot corresponds
to the optimal sensing distribution when D = 0, and the red filled circle corresponds to the sensing distribution where I (C;Y ) = 0. Between
the black filled circles indicates the estimated optimal error probabilities with varied distortion constraints. Shared parameters for all subplots
are:a = 2, b = 0.5, c = 0.25, d = 1.25, and γ = 0.1.

but reduces the mutual information, I (C;Y ). This explains the
sudden jumps in the corresponding rate-distortion functions,
resulting in their nonconvexity.

IX. COMPARATIVE ADVANTAGES BETWEEN
TWO GENOTYPES

We now consider the growth of subpopulations cor-
responding to two genotypes. We assume that the two
subpopulations grow independently from one another condi-
tional on the environment and environmental cue. Thus, in our
model genotypes do not compete for resources, but achieve
different growth rates through sensing the environment. We
can write the relative growth rate between A and B as

G[qenv, qin,A, πA]

G[qenv, qin,B, πB]

= G[qenv, qin,B, πB]+G[qenv, qin,A, πA]−G[qenv, qin,B, πB]

G[qenv, qin,B, πB]

= 1 + s, (60)

s ≡ G[qenv, qin,A, πA] − G[qenv, qin,B, πB]

G[qenv, qin,B, πB]
, (61)

where s is an average selection coefficient. All selection co-
efficients in this section result from the averaging done to
define the long-term growth rate in Eq. (4), and we empha-
size that these quantities cannot be used interchangeably with
selection coefficients defined in a single environment [27]. In
our model, the individual growth rate function w(x, x̂) is the
same for both genotypes (though this assumption could be
relaxed), while changes to the sensor distribution and strategy
realized through evolutionary processes differentiate the two
genotypes. Using Eq. (25) we can write the selection coeffi-
cient as

s = sc + sa, (62)

sc = �[IB(C;Y )] − �[IA(C;Y )]

G[qenv, qin,B, πB]
, (63)

sa = �[qenv, qin,B, πB] − �[qenv, qin,A, πA]

G[qenv, qin,B, πB]
, (64)

where s is decomposed into the contributions from metabolic
costs (sc) and adaptive benefits (sa) [28]. In a competitive
setting between genotypes A and B, it is clear from Eqs. (62)–

(64) that in order for A to have a larger growth rate than B
(s > 0), the condition

�[IA(C;Y )] − �[IB(C;Y )] < �[qenv, qin,B, πB]

−�[qenv, qin,A, πA] (65)

must be met.
Consider a genotype B, with distortion-rate pair (�B, IB).

What is the smallest gain in information that another geno-
type A will need to achieve a selection coefficient of s over
genotype B? The maximum selection coefficient possible over
genotype B is

smax = G�(D̂) − G[qenv, qin,B, πB]

G[qenv, qin,B, πB]
, (66)

so that if s > smax then s is not achievable. We then consider
the case where 0 < s < smax. If IB > R(�B), then genotype
B is suboptimal. In this case, genotype A could adopt a sen-
sory system and strategy that achieves R(�B) (down-pointing
arrow in Fig. 1), requiring less information about the environ-
ment than genotype B but achieving

s1 = �[IB] − � ◦ R(�B)

��[qenv, δy,c] − �B − �[IB]
> 0. (67)

If s < s1, then genotype A can achieve s with strictly less
information than genotype B. If instead s > s1, it may still
be possible for genotype A to achieve s with less information
than B, depending on the specific rate-distortion function and
cost function. An iso-informational change is also possible
(left-pointing arrow in Fig. 1), yielding a selection coefficient

s2 = �B − D(IB)

��[qenv, δy,c] − �B − �[IB]
> 0. (68)

This could be achieved by choosing the optimal sensing dis-
tribution qin(y|c) that yields IB and the corresponding optimal
strategy. Of course, any distortion-rate pair above the rate-
distortion curve is achievable, and the specific rate-distortion
function and cost function are needed to fully answer the
question at hand.

If instead genotype B achieves a distortion-rate pair that
falls on the rate-distortion curve (IB = R(�B)), then genotype
A can achieve a selection coefficient over genotype B,

s3 = � ◦ R(�B) − � ◦ R(�A) + �B − �A

��[qenv, δy,c] − �B − � ◦ R(�B)
, (69)
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with distortion-rate pair (�A, R(�A)). In order to achieve
0 < s < smax, genotype A can choose �A such that s = s3.
The minimal amount of information gain for A to achieve
s over B is R(�A) − R(�B). If �B > D̂, a rate-distortion
achieving genotype A must achieve a smaller distortion than
B (�A < �B). Then R(�A) − R(�B) is positive and cost of
the gain in information for A over B is offset by the decrease
in distortion. If instead �B < D̂, a rate-distortion achieving
genotype A must achieve a larger distortion than B (�A >

�B). In this case, the sensory system of B is too expensive
and A can achieve a greater overall growth rate by reducing its
sensory abilities, so that R(�A) − R(�B) is negative. Finally,
if �B = D̂, the maximum selection coefficient achievable by
A is s = 0.

X. CONCLUSION

This work introduces a formal analogy between fitness
resulting from information and distortion. The rate-distortion
function we have defined determines optimal trade-offs be-
tween growth and information. In the terminology of Shoval
et al. [17], the rate-distortion function is a Pareto front in
the tasks of maximally exploiting information about the en-
vironment and minimizing the metabolic costs of information
processing. The rate-distortion framework captures the fact
that sensory mechanisms are subject to evolutionary processes
where previous work considered the accuracy of sensing as a
given quantity. Given models of environmental sensing and
population growth, one can calculate rate-distortion functions
for real populations and examine whether the existing phe-
notypes fall near the rate-distortion curve or not. This type
of analysis for a large number of populations would provide
crucial empirical insight into the nature of information-cost
trade-offs in evolution, and how these trade-offs differ across
taxa and ecological contexts.

In general, it is difficult to find the explicit form of rate-
distortion functions. For our modified function in Eq. (11),
the task of numerically minimizing I (C;Y ) is further compli-
cated by the additional optimization step required to calculate
the mean distortion ��[qenv, qin] [Eq. (8)]. Our method of
approximating the mean distortion as a function of the dis-
tribution qin for use in constrained optimization of I (C;Y )
greatly simplifies the task of calculating the rate-distortion
function. However, as the model of environmental sensing
becomes more complicated this approach must be amended.
For example, as the number of environmental states increases
we must calculate a larger number of mean distortions in order
for an approximation to be sufficiently accurate. In this case
it may be useful to use methods such as Gaussian process
regression, which has found success in a number of biolog-
ical applications including estimating the fitness landscape
of proteins [29]. As discussed in Sec. IV, approaches from
bilevel optimization could also be of use in calculating the
rate-distortion function.

The Kelly [3] framework we have used in this article is
a convenient setting for theoretical analysis of information
in evolution. However, its assumptions are overly restric-
tive, namely that growth is unlimited, that all variables are
independent of their previous values, and that growth rates
are frequency-independent. Fortunately, our formulation of

the rate-distortion function is not dependent of the particular
model of population growth, although there may not be a clear
definition of the distortion function [Eq. (12)] in other models.
The rate-distortion function in Eq. (11) can be adapted to the
particular model of growth or environmental sensing in use
so that a more appropriate definition of mean distortion or of
the accuracy of sensing may be substituted for ��[qenv, qin] or
I (C;Y ).
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APPENDIX A: GENERAL METHODS

We produced all figures using Matplotlib 3.1.1 [30] in a
Python 3.7 Jupyter Notebook [31]. We performed calculations
using SciPy [32] (especially optimization) and NumPy [33].

APPENDIX B: PROOF OF EXISTENCE AND UNIQUENESS
OF A DISTORTION D̂ MAXIMIZING G�(D)

Theorem 1. Define D as the interval [0,��[qenv, η]] ⊂ R.
Suppose that the rate-distortion function R(D) is strictly con-
vex and monotonically decreasing for D ∈ D and that the cost
function �[I] is (not necessarily strictly) convex and mono-
tonically increasing for I ∈ R0+. Suppose that R(D) and �[I]
are also both twice continuously differentiable on D and the
image of D under R, respectively. Then there exists a unique
D̂ that maximizes G�(D) in D.

Proof. Recall the definition of the overall growth rate

G�(D) = ��[qenv, δy,c] − D − � ◦ R(D). (B1)

Because �[I] and R(D) are both twice differentiable, the over-
all growth function G�(D) is twice differentiable and therefore
continuous in D. The set D is a closed, bounded subset
of the real numbers, which is therefore compact. Using the
Weierstrass theorem (see [34], Theorem 3.1), we can see that
G�(D) obtains a maximum D̂ in D, which is not necessarily
unique.

To show that D̂ is unique, we first prove that G�(D) is
strictly concave. Because both �[I] and R(D) are twice dif-
ferentiable, we have

d2

dD2
� ◦ R(D) =

(
d2

dR2
� ◦ R(D)

)(
d

dD
R(D)

)2

+
(

d

dR
� ◦ R(D)

)(
d2

dD2
R(D)

)
(B2)

> 0 (B3)

for all D ∈ D. The first term is greater than or equal to zero
due to the convexity of �[I] while the second term is strictly
greater than zero in D as �[I] is monotonically increasing and
R(D) is strictly convex. Because d2

dD2 � ◦ R(D) > 0, it is clear
that � ◦ R(D) is strictly convex in the interior of D (see [34],
Theorem 7.10). It is straightforward to show that � ◦ R(D) is
strictly convex on all of D using the continuity of � ◦ R(D).
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Then, we can easily show that G�(D) is strictly concave for
D ∈ D from

d2

dD2
G�(D) = − d2

dD2
� ◦ R(D) < 0. (B4)

The set D is convex and we have shown that G�(D) is strictly
concave on D. As a consequence of these two facts, the

optimal distortion D̂ is unique (see [34], Theorem 7.14). The
optimal distortion is defined as D̂ satisfying

d

dD
G�(D)|D=D̂ = 0 (B5)

if such a distortion exists within D, or at one of the boundaries
of D, D̂ = 0 or D̂ = ��[qenv, η] otherwise. �
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