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its entrainment ability
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Circadian rhythms of physiological and behavioral activities are regulated by a central clock. This clock is
located in the bilaterally symmetrical suprachiasmatic nucleus (SCN) of mammals. Each nucleus contains a
light-sensitive group of neurons, named the ventrolateral (VL) part, with the rest of the neurons being insensitive
to light, named the dorsomedial (DM) group. While the coupling between the VL and DM subgroups have
been investigated quite well, the communication among the four subgroups across the nuclei did not get a lot of
attention. In this article, we theoretically analyzed seven motiflike connection patterns to investigate the network
of the two nuclei of the SCN as a whole in relation to the function of the SCN. We investigated the entrainment
ability of the SCN and found that the entrainment range is larger in the motifs containing a link between the two
VL parts across the nuclei, but it is smaller in the motifs that contain a link between the two DM parts across
the nuclei. The SCN may strengthen or weaken connections between the left and right nucleus to accomodate
changes in external conditions, such as resynchronization after a jet lag, adjustment to photoperiod or for the
aging SCN.
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I. INTRODUCTION

The environmental light-dark cycle of 24 h has profound
consequences for our daily lives. Our physiology is fully
adapted to this rhythmic environment, as are those of most
organisms on earth [1–3]. Going against these rhythms can
be detrimental for health. In mammals, the suprachiasmatic
nucleus (SCN) [4–8] is a master clock that regulates these
24 h (circadian) rhythms. The SCN is a bilaterally symmetric
structure above the optic chiasm, with a nucleus left and
right of the third ventricle. Each nucleus is composed of
approximately 10 000 neurons that are generally divided into
a light-sensitive subgroup of neurons, often associated with
the ventrolateral (VL) part of the SCN, and a light-insensitive
subgroup of neurons, associated with the dorsomedial (DM)
part of the SCN. These subgroups are interconnected through
different neurotransmitters and form a neuronal network
[9–13].

Interestingly, experimental research showed that the circa-
dian rhythms remain even in the absence of a light-dark cycle.
Since, there has been a lot of research done to understand
how the rhythmic behaviors emerge at different levels. At
the level of single cells, the rhythm originates from the a
genetic negative feedback loop [13–16]. At the level of the
whole SCN network, these robust single cell rhythms must be
synchronized to create a robust circadian output rhythm [15].
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In normal circumstances, the near-24 h endogenous
rhythms are entrained to the external light-dark cycle. How-
ever, disturbances in these external lighting conditions can
disturb these rhythms, for example, intercontinental flights
can cause a jet lag, or artificial light at night may cause
disturbances. The rhythm must be flexible enough to be able
to adjust to this sudden shift in light conditions after intercon-
tinental flight. However, there must be a fine balance between
flexibility of these rhythms and robustness of the rhythm,
because we do not want a jet lag every time we switch on
the light at a wrong time of the night [17]. In mammalian
experimental research it was found that the synchronization
between the VL and the DM plays a key role in the recovery
from jet lag. During the recovery, the VL immediately shifts
to the phase of new environment, but the DM synchronizes
to the new phase only after several days [10,11,18]. When
exposed to constant light conditions, the behavioral activity of
mammals may exhibit two periodic components of 24 h that
are in antiphase, where the phase difference between the two
components is around 12 h. Further experiments revealed that
the two antiphase components are regulated by the two nuclei
of the SCN operating in antiphase [19]. This phenomenon is
known as “splitting.” Another phenomenon named “dissocia-
tion” can be explained by the desynchronization (uncoupling)
between the VL and the DM within each nucleus. In detail,
exposed to an artificial light-dark cycle of 22 h, the behavioral
activity may exhibit two periodic components of which one
has a period of 22 h and the other has a period of 24 h [20,21].
It was found that the 22 h component is controlled by the
light-sensitive part, i.e., the VL, and the 24 h component is
controlled by the light-insensitive part, i.e., the DM.
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To understand the mechanism for the balanced robust and
flexible rhythms of the SCN, it is important to investigate
the synchronization achieved through coupling within and
between (sub)groups of the neurons [22,23]. Current exper-
iments reveal that the cellular coupling is mainly through
neurotransmitters that are different between the VL and the
DM [18,24–26]. The most important neurotransmitter ex-
pressed in the VL is vasoactive intestinal polypeptide (VIP),
while the DM neurons are mainly characterized by argi-
nine vasopressin (AVP) [25,26]. The VL and the DM within
one nucleus of the SCN synchronize their periods through
coupling pathways containing γ -aminobutyric acid (GABA),
which is very abundant and is expressed in most SCN neu-
rons [18,26–28]. However, the precise coupling mechanisms
are unclear between the right and the left nucleus [22],
and further, how the four subgroups are coupled across the
nuclei.

In most of the previous theoretical studies only the cou-
pling in a single nucleus of the SCN was considered (e.g.,
Refs. [29–31]). In this paper, we want to take both nuclei
into consideration, making use of network motifs. Motifs are
frequently occurring subgraphs of networks, typically consist-
ing of three or four nodes [32]. If a subgraph appears much
more frequently than expected in random networks, then it
is considered to be a motif. The network motif patterns have
been described as the basic building blocks of network struc-
ture [32,33]. Previous studies identified motifs to be present
in brain networks [34–36] and play important roles in brain
network dynamics [37,38]. Other studies showed that motifs
can give insight into the function of brain networks [39]. It has
been suggested that statistical information of motifs can help
in understanding the global function of the entire network.
On the mesoscale level of healthy and abnormal brain net-
works, motifs had been considered to be an important feature
[39–41]. Motifs have also been used to classify networks
into superfamilies, with different motif fingerprints shaped by
different functional roles [33]. Moreover, changes in the mo-
tif frequencies of so-called progression networks for patients
suffering from Alzheimer’s disease have been discovered [42],
showing that motif analysis may provide potentially powerful
new biomarkers.

In this paper, we study the motif structures to analyze
the four-component network of the SCN. We use possible
four-node motifs to study the function of the SCN network.
Because the neuronal oscillators in the two subgroups of
the SCN single nucleus are interrelated, and the left and the
right nuclei of the SCN are symmetrical, we propose seven
possible motifs. Although we cannot determine whether
these motifs really constitute the SCN network, we can
determine the motif that establishes the SCN function best.
We will use the range of entrainment of the SCN as a
measure. The entrainment range is an important property
of the SCN which represents the flexibility of the SCN
to adapt to changes in the environment. Mammals can be
entrained to not only the natural 24 h light-dark cycle, but also
light-dark cycles with artificial periods [2,3]. For example,
for Rattus morvegicus, Homo sapiens, and Arivicanthis
niloticus, the entrained artificial periods are from 23.5 (named
lower limit of entrainment) to 28.5 h (named higher limit of
entrainment), from 21.5 to 28.6 h, and from 22.5 to 25.5 h,

respectively [2,20,43]. The range between the lower limit
of entrainment (LLE) and the higher limit of entrainment is
called entrainment range [44,45]. This makes this measure a
good measure to investigate circadian clock function.

In the present work, we propose that there are seven pos-
sible motifs for the connections of the four subgroups and
investigate the effect of the motif structure on one of the
main functions of the SCN, the entrainment range, based on a
Poincaré model [3,46–49]. The rest of this paper is organized
as follows. In Sec. II, each motif structure is briefly described
and the Poincaré model is introduced exposed to the external
cycle. In Sec. III, the numerical results of the entrainment
range are compared between motifs. After that, in Sec. IV,
theoretical analysis is presented to confirm the simulation
results in Sec. III. Finally, the conclusion and discussion are
shown in Sec. V.

II. METHODS

A. Potential motifs

Thus far, it is evident that the VL and the DM are mutually
coupled within each nucleus of the SCN and the two nuclei
are symmetrical, but the details for the connection between
the right nucleus and the left nucleus are unclear. Accordingly,
as we assume that the two nuclei are symmetrical, we propose
that there are seven potential motifs for the four subgroups.
Figure 1 shows the structure of each motif, where one node
represents one subgroup and one link represents the connec-
tion between two subgroups. For simplicity, we assume that
the neurons within each subgroup are all-to-all connected, and
if there is a connection between two subgroups in Fig. 1,
all neurons within one subgroup connect with all neurons
within another subgroup. Note that the direction of the link
is not taken into account in the present study. In the following
sections, VLR and the DMR represent the VL and the DM in
the right nucleus of the SCN, respectively, and the VLL and
the DML represent the VL and the DM in the left nucleus of
the SCN, respectively.

The topology of the SCN network is described by an
adjacency matrix e: if there is a link between two nodes i
and j, ei j = e ji = 1; and if no link exists between i and j,
ei j = e ji = 0, 1 � i, j � N , where N is the total number of
the SCN neurons. For simplicity, we assume that the number
of neurons is equal, i.e., N

4 , for each subgroup without special
statement.

B. Description of Poincaré model

Circadian neuronal oscillators are often described by the
Goodwin model and the Poincaré model, both of which con-
tain phase and amplitude information [50,51]. In the Goodwin
model, a generic feedback loop constitutes an oscillator, and
in the Poincaré model, the oscillator is based on a more gen-
eral description. The Poincaré model is chosen in the present
study, because of its generality and more straightforward way
of performing theoretical analysis.

In this study, we consider the networked Poincaré model
composed of N neuronal oscillators [52–54]. Each neuronal
oscillator has two variables, x and y [3,46,48,55]. The dy-
namics of the ith oscillator is governed by the following set
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FIG. 1. Scheme of the potential motifs for the four subgroups. One circle represents one subgroup, the red line represents the connection
between two subgroups, and the black line represents the light signal. Subscripts “R” and “L” represent the right nucleus of the SCN and the
left nucleus of the SCN, respectively. Note that this figure does not show the details of the connections between neurons within each subgroup.

of differential equations:

ẋi = γ xi(A − ri ) − 2yiπ

τ
+ gFi + LiKf sin �et,

ẏi = γ yi(A − ri ) + 2xiπ

τ
, i = 1, 2, . . . , N,

Fi = 1

pi

N∑
j=1

ei jx j,

pi =
N∑

j=1

ei j, (1)

where i represents the ith neuronal oscillator. The parameter
γ represents the relaxation parameter of a single oscillator,
and the parameters A and τ represent the intrinsic amplitude
and intrinsic period of the individual oscillator, respectively.
The neuronal oscillators are coupled through the local field
term gFi, where g represents the coupling strength between
neurons, and the value of Fi depends on the mean value of the
output variable x from i’s neighbors. pi is the degree of node
i, which is equal to the number of i’s neighbors.

The parameter ri is the amplitude of the ith neuronal oscil-
lator, which reads

ri =
√

x2
i + y2

i , i = 1, 2, . . . , N. (2)

LiKf sin �et represents the term of light, which is deter-
mined by the location of the neurons. The parameters Kf ,
�e, and t represent the light sensitivity, the angular frequency
of the external light-dark cycle, and external time. Under
constant darkness conditions, there is no difference between
the VL and the DM in this model. Exposed to an external
light-dark cycle, the difference between the VL and the DM

is that the VL neuronal oscillators receive the light signal
and relay it to the DM neuronal oscillators. If the neuronal
oscillator i is located in the VL, then the parameter Li = 1;
and if the neuronal oscillator i is located in the DM subgroup,
then the parameter Li = 0.

C. Definition of the LLE

In the following sections, we will investigate the effect
of the motif structure on the entrainment range of the SCN
network. Here, the entrainment range can be represented by
the lower limit of entrainment (LLE) [3]. The LLE is defined
as the shortest T cycle that the SCN can entrain and synchro-
nize to, and the difference from 24 h is a representation for
the entrainment range of the SCN. The smaller the value of
the LLE is, the broader the entrainment range is, and vice
versa. The entrainment of the SCN to the external light-dark
cycle is determined by the difference between the external
periods Te, where Te = 2π

�e
, and the period Ti of each SCN

neuronal oscillator. If this difference is small, meaning that√
1
N

∑N
i=1(Ti − Te)2 < δ, where δ is selected as 0.00001 h,

then the SCN is considered to be synchronized or entrained to
the external cycle [3]. The period of each neuronal oscillator
Ti is calculated based on the evolution of yi.

To avoid the effect of the endogenous period τD of the SCN
on the LLE, we defined the normalized LLE as the reference
[3],

LLEnormalized = LLE

τD
× 24. (3)

For simplicity, the LLE represents LLEnormalized throughout
the article.
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FIG. 2. Temporal evolutions of each subgroup in selected motifs exposed to the external cycles of Te = 22. The gray regions correspond
to darkness and the white regions correspond to light. The light sensitivity is Kf = 0.20, and the number of SCN neuron oscillators is N = 4.

D. Simulation details

As in Ref. [3], the parameters are set as A = 1, g = 0.1,
and τ = 24. The relaxation rates γ = 0.1, 0.2, 0.5, or 1.0 are
considered, respectively. Because it is unknown if the light
sensitivity is larger than the coupling strength or not, the value
of Kf is selected from 0 to 0.2. In the numerical simulations,
the number of neurons N was set as 200, i.e., each subgroup
contained 50 oscillators. To examine the effect of the number
of neuronal oscillators, we have also selected the number of
neurons N = 4 for numerical simulations, i.e., each subgroup
contained 1 oscillator, and we found that the results of N = 4
were similar to the results of N = 200.

We used the fourth-order Runge-Kutta method for the nu-
merical simulations with time steps of 0.01 h. To avoid the
effect of transients, the initial 1 000 000 time steps (10 000 h)
were neglected. In the model, the initial conditions of the
variables xi and yi are randomly selected from a uniform
distribution in the range from 0 to 1.

III. NUMERICAL RESULTS

Figure 2 illustratively shows the differential influence of
the motif structure on the entrainment of the SCN exposed to
an artificial 22 h light-dark cycle. For Motif II in Fig. 2(a) and
Motif IV in Fig. 2(b), the SCN is entrained to the external
22 h cycle, because the phase difference between (neurons
in) each subgroup and the external cycle is fixed. For Motif
VI in Fig. 2(c), the VL parts in both nuclei are entrained to
the external cycle, but the DM parts are not, since the phase
difference between the (neurons in the) DM parts and the
external cycle is not fixed as they have a longer period than
22 h. Accordingly, the whole SCN network is not entrained
to the external cycle in Fig. 2(c). This shows that the motif
structure affects the entrainment of the SCN.

Next, it is shown how the motif structure affects the re-
lationship between the LLE and the light sensitivity Kf in
Fig. 3 for the four relaxation rates γ = 0.1, 0.2, 0.5, and 1.0 in
Figs. 3(a)–3(d). For all motif connection patterns we observe
a similar positive relationship between the entrainment range
and Kf . In particular, when Kf is 0, which corresponds to
the constant dark condition, the value of LLE is the same
as the endogenous 24 h period of the SCN for each motif. If
the sensitivity to light increases, then the LLE decreases, and
as such the entrainment range increases. At a certain critical

FIG. 3. A comparison in the relationships of the LLE to the
light sensitivity Kf among the seven motif structures. Four relaxation
parameters are considered, γ =0.1, 0.2, 0.5 and 1 in (a–d), respec-
tively. The number of SCN neuronal oscillators is N = 200. Note
that the positive relationship between the entrainment range and the
Kf corresponds to the negative relationship between the LLE and the
Kf .
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value of Kf , the LLE plateaus does not decrease further. This
means that the maximal entrainment range has been reached.
Higher light influence will not lead to an entrained condition
of the SCN outside this range. This plateau is more apparent
for higher relaxation rates.

We now compare the entrainment range (represented by
the LLE) among the seven motifs in Fig. 3. If Kf is a small
value close to 0, smaller than the critical value, then the order
of the motif connection patterns going from the smallest to
the largest LLE (the largest to the smallest entrainment range)
is motifs III, I, VI, IV, II, VII, and V. If the plateau values
corresponding to maximum entrainment ranges, i.e., where
the Kf is a large value close to 0.2, then the order of the
motif connection patterns from smallest to largest LLE is
motifs I, II, III, IV, V, VI, and VII. The seven network motifs
can be roughly divided into three groups, among which the
entrainment ranges of motifs I and II are the largest, followed
by motifs III, IV, and V, and the entrainment ranges of motifs
VI and VII are the smallest. By comparing the seven motifs,
we find that when the two VL subgroups are coupled and
the VL in one nucleus is coupled with the DM in the other
nucleus, the maximum entrainment range can be obtained.
When only the two DM subgroups are coupled, the minimum
entrainment range can be obtained. Comparing motifs II and
III, it can be seen that the coupling of the VL and the DM
across different nuclei leads to a larger entrainment range
than the coupling of the VL subgroups. Comparing motifs
I and IV, it can be seen that the coupling of the two DM
subgroups reduces the entrainment range. This indicates that
the presence of a link between the VLR and the VLL widens
the entrainment range of the SCN, whereas in the presence of
a link between the DMR and the DML, the entrainment range
of the SCN narrows.

Analyzing similar motif connection patterns more closely,
we find that the appearance of connections between both the
VLR and the VLL and between the DMR and the DML lead
to entrainment ranges that are between both extremes. For ex-
ample, motifs III, VI and VII are similar connection patterns,
where motif III has the highest entrainment range and motif
VII has the lowest entrainment range, while motif VI is in
between. Also, motifs I, IV, and V show the same result.

We further investigated whether the effect of the different
motif connection patterns is affected by the number of the
SCN neuronal oscillators N . When the number is N = 4, each
neuronal oscillator now represents one subgroup. The results
are shown in Fig. 4 and these are consistent with the shown in
Fig. 3. Therefore, the number of oscillators does not influence
the effect of the motif connection patterns.

Experimental results show that the intrinsic neuronal pe-
riods differ between the VL and the DM, i.e., the DM runs
faster than the VL [56]. To examine whether the differences
in the intrinsic periods affect the results, the intrinsic periods
of neuronal oscillators in the VL and the DM regions is set as
τ = 24.5 h and τ = 23.5 h, respectively. The results shown in
Fig. 5 are consistent with Fig. 3.

Experimental evidence shows that the number of neurons
in each subgroup of the SCN was unequal, in which the VL
is composed of about 25% SCN neurons and the DM is com-
posed of about 75% SCN neurons [12]. To examine whether
the proportion of the VL and the DM neurons in the SCN has

FIG. 4. A comparison in the relationship between the LLE and
the light sensitivity Kf among the seven motif structures when the
number of SCN neuron oscillators is N = 4. The values of other
parameters are the same as Fig. 3.

an impact on the results, when the number of oscillators is
selected as N = 200, where the number of the VL neurons
in each nuclei are 25 and the number of the DM neurons in
each nuclei are 75. The numerical simulation results show
that when the light sensitivity is relatively large, Figs. 6 and 3
are qualitatively consistent, and the symmetry breaking of the
numbers does not affect the results obtained.

IV. ANALYTICAL RESULTS

For simplicity, we consider the case of N = 4. Since the
VL (or the DM) of the left nucleus and the VL (or the DM)
of the right nucleus are symmetric in each motif, these two
VL parts can be represented by one oscillator a, and these two

FIG. 5. A comparison in the relationship between the LLE and
the light sensitivity Kf among the seven motif structures when the
intrinsic periods are 24.5 h for the VL neurons and 23.5 h for the
DM neurons. The number of SCN neuronal oscillators is N = 4. The
values of other parameters are the same as Fig. 3.
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FIG. 6. A comparison in the relationship of the LLE to the light
sensitivity Kf among the seven motif structures. The number of SCN
neuron oscillators is N = 200, where neuron number of the VL in
each nuclei is 25 and the neuron number of the DM in each nuclei is
75. The values of other parameters are the same as Fig. 3.

DM parts can be represented by one oscillator b. Therefore,
the motif composed of four nodes can be described by the
Poincaré model as follows:

ẋa = γ xa(A − ra) − ωya + gFVL + Kf sin �et,

ẏa = γ ya(A − ra) + ωxa,

ẋb = γ xb(A − rb) − ωyb + gFDM,

ẏb = γ yb(A − rb) + ωxb, (4)

where ω = 2π
τ

and �e = 2π
Te

. FVL = (m1+1)xa+nxb

m1+1+n and FDM =
nxa+(m2+1)xb

n+m2+1 represent the mean-field F of the VL subgroup
and the DM subgroup, respectively, where “1” represents the
self link of the neuron. m1 represents the number of links
between the two VL parts across nuclei; m2 represents the
number of links between the two DM parts across nuclei; n
represents the number of links between the VL and the DM
across nuclei or within the same nucleus. The values of m1,
m2, and n are shown in Table I for Figs. 1(a)–1(g).

For convenience, we transform Eq. (4) from Cartesian
coordinates to polar coordinates. Let xa = ra cos θa, ya =
ra sin θa, xb = rb cos θb, yb = rb sin θb, φa = θa − �t , and
φb = θb − �t . After substitute them into Eq. (4), we obtain

ṙa = γ ra(A − ra) + (m1 + 1)gra

m1 + 1 + n
cos2(φa + �t )

+ ngrb

m1 + 1 + n
cos(φb + �t ) cos(φa + �t )

+ Kf sin �t cos(φa + �t ),

TABLE I. The values of m1, m2, and n for Figs. 1(a)–1(g).

I II III IV V VI VII

m1 1 0 1 1 0 1 0
m2 0 0 0 1 1 1 1
n 2 2 1 2 2 1 1

φ̇a = ω − (m1 + 1)g

m1 + 1 + n
cos(φa + �t ) sin(φa + �t )

− ngrb

(m1 + 1 + n)ra
cos(φb + �t ) sin(φa + �t )

− Kf

ra
sin �t sin(φa + �t ),

ṙb = γ rb(A − rb) + ngra cos(φa + �t ) cos(φb + �t )

n + m2 + 1

+ (m2 + 1)grb

n + m2 + 1
cos2(φb + �t ),

φ̇b = ω − ngra

(n + m2 + 1)rb
cos(φa + �t ) sin(φb + �t )

− (m2 + 1)g

n + m2 + 1
cos(φb + �t ) sin(φb + �t ). (5)

Considering the averaging method developed by Krylov
and Bogoliubov as used in Refs. [3,46,48,57,58], φ has a
lower timescale than �t . Letting α = 〈φa〉 − 〈φb〉, we get

〈cos2(φa + �t )〉 = 1

2
,

〈cos(φb + �t ) cos(φa + �t )〉 = cos α

2
,

〈cos(φa + �t ) sin(φa + �t )〉 = 0,

〈cos(φb + �t ) sin(φa + �t )〉 = sin α

2
,

〈sin(�t ) cos(φa + �t )〉 = −〈sin φa〉
2

,

〈sin(�t ) sin(φb + �t )〉 = 〈cos φb〉
2

, (6)

where 〈·〉 denotes the average in one light-dark cycle. For sim-
plicity, we keep the nonaveraged notation ra, rb, φa, and φb in
the following. When the SCN neuronal oscillator is entrained
to the light-dark cycle, ṙa = 0, ṙb = 0, θ̇a = 0, and θ̇b = 0 are
obtained. Substituting Eq. (6) into Eq. (5), we obtain Eq. (7):

0 = γ ra(A − ra) + g[(m1 + 1)ra + nrb cos α]

2(m1 + 1 + n)

− Kf

2
sin φa,

� = ω − nrb

2(m1 + 1 + n)ra
g sin α − Kf

2ra
cos φa,

0 = γ rb(A − rb) + g[nra cos α + (m2 + 1)rb]

2(n + m2 + 1)
,

� = ω + nra

2(n + m2 + 1)rb
g sin α. (7)

Intuitively, when � achieves the maximal value, i.e.,
LLE = 2π

�max
. In the following, we will show the effect of the

motif structure on �max under two extreme conditions, i.e., Kf

is close to 0 and Kf is close to 0.2, respectively.
When Kf is close to 0, we simulate the phase information

versus time for each motif, as shown in Fig. 7. It can be
seen that sin α ≈ α and cos θa ≈ −1, so we obtain cos α ≈ 1.
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FIG. 7. Under the LLE, the phase information for N = 4 neu-
ronal oscillators. (a) The phase difference between the VL and the
DM in the sine form for each motif, (b) the phase difference between
the VL and the light-dark cycle in the cosine form for each motif. The
coupling strength is g = 0.1, and the light sensitivity is Kf = 0.01.
This figure shows numerical simulations based on Eq. (1).

Therefore, Eq. (7) can be simplified as

0 = γ ra(A − ra) + g[(m1 + 1)ra + nrb]

2(m1 + 1 + n)

− Kf

2
sin φa,

� = ω − nrb

2(m1 + 1 + n)ra
gα + Kf

2ra
,

0 = γ rb(A − rb) + g[nra + (m2 + 1)rb]

2(n + m2 + 1)
,

� = ω + nra

2(n + m2 + 1)rb
gα. (8)

When Kf → 0, the effect of the light sensitivity is very
small, thus, ra ≈ rb. Due to sin φa ≈ 0, we obtain

ra ≈ A + g

2γ
. (9)

From the second equation and the last equation of Eq. (8),
we obtain

� = ω − nrb

4(m1 + 1 + n)ra
gα

+ nra

4(n + m2 + 1)rb
gα + Kf

4ra

= ω +
(

n

n + m2 + 1
− n

m1 + 1 + n

)
gα

4

+ Kf

4(A + g
2γ

)
. (10)

For structures I and III,

n

n + m2 + 1
− n

m1 + 1 + n
= 1

6
. (11)

For structures II, IV, and VI,
n

n + m2 + 1
− n

m1 + 1 + n
= 0. (12)

For structures V and VII,

n

n + m2 + 1
− n

m1 + 1 + n
= −1

6
. (13)

We obtain �max of structures II, IV, and VI, which is
smaller than structures I and III and larger than structures V

FIG. 8. Under the LLE, the phase information for N = 4 neu-
ronal oscillators. (a) The phase difference between the VL and the
DM in the sine form for each motif, (b) the product of the phase dif-
ference in the sine form between the VL and the light-dark cycle for
each motif. The coupling strength is g = 0.1, and the light sensitivity
is Kf = 0.20.

and VII. Therefore, we confirm the numerical finding for the
left side of Fig. 3.

Moreover, we examine the case of Kf close to 0.2. The
phase information versus time for each motif, as shown in
Fig. 8, and it can be seen that sin α ≈ 1. Thus, Eq. (7) can
be simplified as

0 = γ ra(A − ra) + g[(m1 + 1)ra + nrb cos α]

2(m1 + 1 + n)

− Kf

2
sin φa,

� = ω − nrb

2(m1 + 1 + n)ra
g − Kf

2ra
cos φa,

0 = γ rb(A − rb) + g[nra cos α + (m2 + 1)rb]

2(n + m2 + 1)
,

� = ω + nra

2(n + m2 + 1)rb
g. (14)

Because cos φa is close to −1, and the change of the second
equation of Eq. (14) is much larger than the fourth equation,
the LLE is determined by the fourth equation. Thus, we obtain

� = ω + nra

2(n + m2 + 1)rb
g. (15)

Because the influence of ra
rb

g is very small, Eq. (15) can be
approximated by

� = ω + n

2(n + m2 + 1)
g. (16)

For structures I and II,

�max(I ) > �max(II ) ≈ ω + n

2(n + m2 + 1)

= ω + 1

3
. (17)

For structures III, IV, and V,

�max(III ) > �max(IV ) > �max(V )

≈ ω + n

2(n + m2 + 1)

= ω + 1

4
. (18)
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For structures VI and VII,

�max(V I ) > �max(V II ) ≈ ω + n

2(n + m2 + 1)

= ω + 1

6
. (19)

Because LLE = 2π
�max

, a smaller LLE corresponds to a
larger �max, that is, a larger entrainment range. From the
above analysis, we can get that structures I and II show strong
entrainment, structures III, IV, and V show medium entrain-
ment, and structures VI and VII show weak entrainment. This
analytical result is qualitatively consistent with the numerical
simulation results in Fig. 3.

V. CONCLUSION AND DISCUSSION

Thus far, the communications between the VL and the DM
have only been inspected within one nucleus and the cross-
communication between the left and the right nucleus was
not taken into account. Previous research has shown that there
is communication present between these two nuclei, although
its precise mechanism has not been precisely known yet [22].
Enhancing knowledge about how connection patterns between
the VL and the DM of both the left and the right nucleus
influence the synchronization and entrainment ability of the
SCN as a whole helps to understand how the interplay be-
tween the left and the right nucleus can be utilized by the SCN
network to create stable and robust rhythms in ever-changing
environmental conditions.

In this article, we theoretically analyzed seven motiflike
connection patterns to investigate the network of the two

nuclei of the SCN as a whole, with each nucleus containing
two subgroups of neurons, one that is sensitive to light (the
VL subgroup) and one that is insensitive to light (the DM
subgroup). Using the motif structures as a basis provided us
with information on the topology of the network of the two
nuclei of the SCN, and we connected this to the entrainment
property of the SCN.

The main finding was that the coupling between the VL
subgroups, the cross coupling between the VL subgroup and
the DM subgroup are more conducive to the increase of the
entrainment range, and the latter has more influence than
the former, while the coupling between the DM subgroups
decreases the entrainment range and has the greatest influence
on the entrainment range.

Changing the strengths of the connections between the
different regions (VL and DM) of the two SCN nuclei may be
utilized by the SCN to accomodate changes in external con-
ditions, such as resynchronization after a jet lag, adjustment
to photoperiod or for the aging SCN. This mechanism may be
used in future treatments that improve health and well-being
of the elderly.
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