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synchronization of random networks
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We discuss here the application of the simultaneous block diagonalization (SBD) of matrices to the study of
the stability of both complete and cluster synchronization in random (generic) networks. For both problems, we
define indices that measure success (or failure) of application of the SBD technique in decoupling the stability
problem into problems of lower dimensionality. We then see that in the case of random networks the extent of
the dimensionality reduction achievable is the same as that produced by application of a trivial transformation.
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I. INTRODUCTION

The mathematics literature has dealt with the fundamental
problem of simultaneous block diagonalization (SBD) of a
set of matrices [1–5]. The first paper where this technique
was applied to network synchronization is Ref. [6], which
focused on complete synchronization of networks with nodes
connected through two or more coupling functions. More
recently this technique has been applied to cluster synchro-
nization of networks [7]. The use of this technique reduces
the stability problem to a number of subproblems of small-
est dimension. The original master stability function (MSF)
derivation of Ref. [8] decouples the stability problem for any
N-dimensional matrix corresponding to an undirected net-
work into N independent blocks, where each block coincides
with one of the matrix eigenvalues. However, it is unclear
what the extent of the dimensionality reduction obtained from
application of the SBD technique can be.

Here we characterize the extent of this dimensionality
reduction when the SBD approach is applied to generic net-
works, where by a generic network we mean a “typical”
network that is produced by a random process such as the
Erdős-Rényi network generation algorithm [9] or the config-
uration model [10]. Random networks are broadly studied
in the literature as fundamental and paradigmatic models
for the structure and dynamics of complex systems [11].
Previous work has investigated random networks in the con-
text of epidemics [12–14], percolation [15,16], resilience to
attacks and failures [17,18], games [19], network synchro-
nization [20], and control [21]. It is therefore important to
characterize both complete and cluster synchronization for
this class of networks. We show that application of the
SBD reduction to these random networks does not lead to
a beneficial reduction of the stability problem, either in the
case of complete synchronization or cluster synchronization.
Nonetheless, we do not mean that the technique is not useful.
However, it points out that its usefulness is limited to the non-
generic case, for which the reduction can sometimes be very
significant [6,7].

Our paper is structured as follows: In Secs. II and III
we provide the mathematical background for the method we
use to compute the SBD. Our main results are presented in
Secs. IV and V, which discuss the cases of complete and clus-
ter synchronization respectively. In those sections, we define
indices to measure the extent of the dimensionality reduction
resulting from the application of the SBD algorithm. In the
case of randomly constructed networks, we see that the index
value often equals zero to demonstrate certain limitations
of the method. In Sec. VI, we present a discussion on the
relevance of our findings in applying the SBD to randomly
constructed networks. Lastly, the conclusions are given in
Sec. VII.

II. SIMULTANEOUS BLOCK DIAGONALIZATION
OF MATRICES

The problem of simultaneous block diagonalization can
be formalized as follows: given a set of N × N matrices
A(1), ..., A(M ) find an N × N orthogonal matrix P such that the
matrices PT A(k)P have a common block-diagonal structure for
k = 1, ..., M. It should be noted that such a block-diagonal
structure is not unique in at least two senses: first, the blocks
may be permuted, resulting in block diagonal decompositions
that are isomorphic; second, the matrices corresponding to
certain blocks may be further refined into smaller blocks,
resulting in a structure that is fundamentally different. A block
diagonal structure with smaller blocks is considered to be finer
and the finest SBD (FSBD) is beneficial in that it provides the
simplest elements in the decoupling of systems as described
above.

There are two different but closely related theoretical
frameworks with which we can address our problem of finding
a block-diagonal decomposition for a finite set of given N × N
real matrices. The first is group representation theory [22,23]
which relies on group symmetries and ensures a degree of
universality in a SBD. The second is matrix ∗-algebras [24]
which are not only necessary to answer the fundamental
theoretical question of the existence of such a finest block-
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diagonal decomposition but also useful in its computation.
Indeed, existence can be justified through the structure the-
orem of ∗-algebras [[25], Theorem 5.4] and this structure has
also been utilized to formulate algorithms for computing the
SBD of A(1), ..., A(M ). In particular, our approach appeals to
this structure, but it should be noted that both frameworks
have been utilized in the literature [26–30].

In what follows we write

P = SBD(A(1), A(2), ..., A(M ) ) (1)

to indicate that the transformation yields

PT A(k)P = B(k), k = 1, ..., M, (2)

where all the matrices B(k), k = 1, ..., M share the same finest
block diagonal form,

B(k) =
⊕

j

B(k)
j , (3)

with the blocks B(k)
j all having the same sizes for k =

1, ..., M and not being further reducible by a simultaneous
transformation.

III. PROCEDURE TO DETERMINE P

Here we describe the procedure to compute the FSBD for
a set of M symmetric matrices denoted A(k), k = 1, 2, . . . , M,
previously published [5]. First, we find a matrix U that si-
multaneously commutes with each matrix A(k) [5], that is,
[A(k),U ] = A(k)U − UA(k) = On, k = 1, . . . , M, where On is
the n-by-n matrix of all zeros.

Define the vectorizing function V : Rn×m �→ Rnm to take as
input an n-by-m matrix and return a vector by stacking each
of the matrix’s columns on top of each into a vector of length
nm. For two matrices A ∈ Rn×m and B ∈ Rp×�, let A ⊗ B ∈
Rnp×m� denote the Kronecker product. As the commutator
equation is linear in U , it can alternatively be expressed as
a matrix-vector product:

V (A(k)U − UA(k) ) = V (A(k)U ) − V (UA(k) )

= V (On), k = 1, 2, . . . , M. (4)

The vectorizing function applied to a matrix product can be
expressed as a matrix-vector product, where for A ∈ Rn×m

and B ∈ Rm×p, the product V (AB) = (Ip ⊗ A)V (B) = (BT ⊗
In)V (A) (see Proposition 7.1.9 in Ref. [31]). Apply these iden-
tities to Eq. (4), and define P(k)V (U ) = (In ⊗ A(k) − (A(k) )T ⊗
In)V (U ) = 0N2 , where 0N2 is the vector of all zeros of length
N2. To find U , we look for a vector in the intersection of
the nullspaces of P(k) for k = 1, 2, . . . , M, that is, a vec-
tor V (U ) ∈ ⋂M

k=1 N (P(k) ). This can be accomplished in two
steps by first noting that for a matrix A ∈ Rn×m N (A) =
N (AT A) (see Theorem 2.4.3 in Ref. [31]) and second, for a
set of M positive semi-definite matrices B( j), j = 1, 2, . . . , M,
N (

∑M
j=1 B( j) ) = ⋂M

j=1 N (B( j) ) (see Fact 8.7.3 in Ref. [31]).
As the matrix P(k) may not be positive semidefinite, the vec-
torized commutator operation is premultiplied by (P(k) )T , so
that the matrix (P(k) )T P(k) is symmetric and positive semidefi-
nite. Create the matrix S = ∑M

k=1(P(k) )T P(k) so that if a vector
V (U ) is in the nullspace of S, it lies in the intersection of the

nullspaces of P(k), and thus it also commutes with all A(k),
k = 1, . . . , M.

To determine the nullspace of the matrix S ∈ RN2×N2
,

which by construction is positive semidefinite, we find the
eigenvectors of S corresponding to eigenvalues equal to zero.
While S is large and dense, its special structure makes finding
a few extremal eigenvalues and eigenvectors feasible even
when N is large by using the Lanczos method [32] which only
requires a function to compute matrix-vector products. Note
that while a matrix-vector product, Su, requires N4 operations
(remember S ∈ RN2×N2

), it can equivalently be computed us-
ing nested commutation operations requiring 4N3 operations.
To see this reduction, we can break the matrix-vector product
into individual contributions from each P(k):

Su =
M∑

k=1

P(k)T
P(k)u =

M∑
k=1

P(k)T V{[A(k), mat(U )]}

=
M∑

k=1

V ({A(k)T
, [A(k),U ]}). (5)

Evaluating a commutator requires two N-by-N matrix prod-
ucts which each requires 2N3 operations. In total, for M
twice nested commutators, the total work required is 4MN3

operations, which for M � N , is a significant reduction as
compared to constructing S explicitly. This can be demon-
strated with the following steps to compute V (Y ) = SV (U ).

1. Initialize Y = ON to be the N-by-N matrix of zeros
2. For k = 1, 2, . . . , M

(a) Û = A(k)U − UA(k)

(b) Y ← Y + A(k)T
Û − ÛA(k)T

3. Return V (Y )
The computational complexity can further be reduced if

each of the matrices A(k) is sparse with average density ρ ∈
[0, 1] (defined as the number of nonzero entries divided by
N2) so computing the matrix-matrix products requires in av-
erage only 4ρN3 operations.

The dominant computational complexity of each step of the
Lanczos algorithm is the matrix vector product [32] which we
have shown can be computed in 4ρMN3 operations, far more
cheaply than the N4 operations if S did not have its special
structure. Due to the iterative nature of the Lanczos algorithm,
it is unknown a priori the number of iterations required to
compute the eigenvalue/eigenvector pairs. Nonetheless, un-
less the number of iterations required is on the order of N2

or larger, the Lanczos algorithm is more efficient than con-
structing S explicitly and finding the eigenvalue/eigenvectors
pairs using a standard tridiagonalization approach for dense
symmetric eigenvalue problems.

Let vk ∈ RN2
, k = 1, 2, . . . , nev, be the nev eigenvectors

found corresponding to the eigenvalues equal to zero of
S, each of which lies in the intersection of the nullspaces
of P(k), k = 1, 2, . . . , M. To select a random vector in the
intersection of the nullspaces, create the vector V (U ) =∑nev

k=1 ckvk where we uniformly at random select ck ∈ [−1, 1],
k = 1, 2, . . . , nev, and scale them such that

∑
k c2

k = 1. The
resulting matrix U satisfies all of the commutation relations,
[A(k),U ] = ON , as does U T because each A(k) is symmetric.
With this fact, the symmetric matrix 1

2 (U + U T ) also com-
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mutes, [A(k), 1
2 (U + U T )], k = 1, 2, . . . , M. Finally, to find

the matrix P that simultaneously block diagonalizes each
of the A(k), k = 1, 2, . . . , M, compute the eigenvectors of
1
2 (U + U T ), and store them as the columns of P. The proof
of the correctness is extensive and beyond the scope of this
paper but can be found in Ref. [5].

A related problem [5] is to find a transformation P that
does not exactly simultaneously block diagonalize all of the
matrices A(k), k = 1, 2, . . . , M, but rather results in matrices
with off-diagonal blocks with entries with magnitude of the
order ε > 0. The process is validated by Lemma 4.1 in Ref. [5]
and proceeds exactly as before except now rather than finding
the eigenvectors associated with eigenvalues equal to zero,
instead, the Lanczos method is used to find eigenvalues of S
less than ε along with their eigenvectors. After this, with the
eigenvectors vk , k = 1, 2, . . . , nev, the same steps are taken to
compute U , extract its symmetric part 1

2 (U + U T ), and find
the eigenvectors of the result.

We make available our code to compute the FSBD of a set
of symmetric matrices—see [53].

IV. APPLICATION OF THE SBD TECHNIQUE
TO COMPLETE SYNCHRONIZATION OF NETWORKS

WITH DIFFERENT TYPES OF CONNECTIONS

The time evolution of a network of dynamical systems
coupled through different types of connections is described
by the following set of equations:

ẋi(t ) = F [xi(t )] +
M∑

k=1

N∑
j=1

A(k)
i j {H (k)[x j (t )] − H (k)[xi(t )]}

i = 1, · · · , N, (6)

where xi(t ) and F [xi(t )] represent the m-dimensional state
vector and dynamical function of the system located at node
i, respectively. The network nodes are coupled through dif-
ferent coupling functions H (k), k = 1, · · · M. The network
connectivity associated to each coupling function is described
by the adjacency matrix A(k), where A(k)

i j = A(k)
ji > 0 if there

is a connection between nodes i and j and A(k)
i j = A(k)

ji = 0
otherwise. The above set of equations can be rewritten,

ẋi(t ) = F [xi(t )] +
M∑

k=1

N∑
j=1

L(k)
i j H (k)[x j (t )] i = 1, · · · , N,

(7)
where the Laplacian matrices L(k) have entries L(k)

i j = A(k)
i j >

0 for j 	= i and L(k)
ii = −∑

j 	=i L(k)
i j , k = 1, ..., M. Note that

all of the rows of the Laplacian matrices L(k) sum to zero,
k = 1, ..., M. The synchronization manifold x1 = x2 = · · · =
xN is an invariant subspace for the set of Eq. (7). The dy-
namics on this manifold, which corresponds to complete
synchronization, x1(t ) = x2(t ) = · · · = xN (t ) = xs(t ) obeys
the equation of an uncoupled system,

xs(t ) = F [xs(t )]. (8)

To investigate the stability of the complete synchronous
state, we study the dynamics of a small perturbation from
the synchronous solution [xi(t ) = xs(t ) + δxi(t )]. The syn-

chronous state is stable if the perturbations approach 0 for
large t . The linearized system of equations can be written

δẋi(t ) = DF [xs(t )]δxi(t ) +
M∑

k=1

N∑
j=1

L(k)
i j

× DH (k)[xs(t )]δx j (t ) i = 1, · · · , N. (9)

By stacking together all the perturbations in an mN-
dimensional vector z = [δxT

1 , δxT
2 , · · · , δxT

N ]T , the set of
Eqs. (9) can be rewritten in vectorial form,

ż(t ) =
{

IN ⊗ DF [xs(t )] +
M∑

k=1

L(k) ⊗ DH (k)[xs(t )]

}
z(t ).

(10)
One observation is that by construction the set of Laplacian

matrices L(1), L(2), ..., L(M ) all share one common eigenvector
[1, 1, ..., 1]/

√
N , with associated eigenvalue 0. It follows that

we can define an orthogonal transformation P̃ leading to a
trivial simultaneous block diagonalization (TSBD)

P̃T L(k)P̃ = 0 ⊕ Borth, k = 1, ..., M, (11)

where the block Borth is (N − 1)-dimensional. Hence, there
will be a large block produced by the TSBD with dimension
N − 1. For example, P̃ could be taken as the matrix whose
columns are the eigenvectors of any of the matrices L(1),
L(2), ..., L(M ) [33]. One would hope that calculation of the
FSBD for the set of matrices L(1), L(2), ..., L(M ) leads to a finer
block-diagonalization than the TSBD.

Here, for simplicity and without loss of generality, we
focus on the case of M = 2 different connection types, for
which Eq. (10) becomes

ż(t ) = {IN ⊗ DF [xs(t )] + L(1) ⊗ DH (1)[xs(t )]

+ L(2) ⊗ DH (2)[xs(t )]}z(t ). (12)

We attempt to break the stability of Eq. (12) into a set of inde-
pendent lower-dimensional equations. To this end, we seek for
a transformation that leads to decoupling the set of Eq. (12),
by simultaneously block diagonalizing L(1) and L(2). Special
instances of this problem have been studied in Ref. [33] which
obtained three different conditions under which the problem
with mN-dimension can be broken into a set of (N − 1) prob-
lems of dimension m each. Moreover, Ref. [6] has introduced
the general framework in which the SBD technique is applied
to network synchronization.

We now compute P = SBD(L(1), L(2) ) and rewrite Eq. (12)
as follows:

η̇(t ) = {IN ⊗ DF [xs(t )] + (PT L(1)P) ⊗ DH (1)[xs(t )]

+ (PT L(2)P) ⊗ DH (2)[xs(t )]}η(t ), (13)

where η(t ) = (PT ⊗ Im)z(t ).
As stated before, PT L(i)P = ⊕n

j=1B(i)
j , where all the matri-

ces Bj have the same block-diagonal form. Therefore, Eq. (13)
can be decoupled as follows:

η̇i(t ) = {IDi ⊗ DF [xs(t )] + B(1)
i ⊗ DH (1)[xs(t )]

+ B(2)
i ⊗ DH (2)[xs(t )]}ηi(t ), (14)

where Di is the block-dimension of Bi,
∑

i Di = N .
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FIG. 1. [(a)–(c)] The index Id for two Erdős-Rényi topologies (ER) is plotted vs the connection probabilities p1 and p2 with (a) N = 10
nodes, (b) N = 20 nodes, and (c) N = 50 nodes. (d) The index Id for two scale-free (SF) networks with N = 50 nodes is plotted vs the
power-law distribution exponents γ1 and γ2. (e, f) The index Id for two Watts-Strogatz small-world (SW) topologies is plotted vs the rewiring
probabilities q1 and q2 in networks with N = 20 and N = 50 nodes, respectively. Different values of the index Id are shown as variation in the
color spectrum from dark blue (Id = 0) to dark red (Id = 1).

We note that for a given value of i (i = 1) we obtain scalar
blocks B(1)

1 = B(2)
1 = 0, which are associated with a pertur-

bation parallel to the synchronization manifold. Therefore, to
analyze the stability of the synchronous solution, we only
need to assess Eq. (14) for the remaining i > 1 transverse
blocks.

A. Performance of the SBD technique applied
to complete synchronization

To examine the extent of the reduction provided by the
SBD method, the following index is introduced:

0 � Id = 1 − Z − 1

N − 2
� 1, (15)

where Z is the maximum block dimension in both PT L1P and
PT L2P. The best possible performance of the SBD is achieved
for Id = 1, corresponding to all the blocks having dimension
Z = 1. On the other hand, if the maximum block dimension
Z = N − 1, the index Id = 0, which corresponds to the same
reduction achievable with the TSBD. We define application of
the SBD technique to be a success (a failure) for large (low)
values of 0 � Id � 1.

We examine the performance of the SBD method in reduc-
ing the dimension of the problem of complete synchronization
for three different network classes: (i) Erdős-Rényi (ER) ran-
dom networks [9] with edge probability p, (ii) Watts-Strogatz
small-world (WS) networks [34] with rewiring probability q,
and (iii) scale-free networks [35] generated by the configura-
tion model [10] with power law exponent γ .

For each network class, we create two random graphs
with the same number of nodes N but with possibly two
different parameters. For each case, let A(1) and A(2) be the
two adjacency matrices and L(1) and L(2) be the two Lapla-
cian matrices. The SBD is found using the method described
above and the performance index Id is computed which is
shown in Fig. 1. For ER networks, Figs. 1(a), 1(b) and 1(c)
show the index Id versus edge probabilities p1 and p2 for
number of nodes N = 10, 20 and 50, respectively. For SW
networks, Figs. 1(e) and 1(f) show the index Id versus the
rewiring probabilities q1 and q2 with N = 20 and N = 50
nodes, respectively. Figure 1(d) shows the index Id versus the
exponents of power-law distribution γ1 and γ2 of scale-free
networks with N = 50 nodes where the minimum degree of
each node is set to k = 3 to have a connected network. The
size of the networks in Fig. 1(a) is N = 10 nodes, in Figs. 1(b)
and 1(e) is N = 20 nodes, and in Figs. 1(c), 1(d) and 1(f)
is N = 50 nodes. Different values of the index Id are shown
as variations in the color spectrum from dark blue (Id = 0)
to dark red (Id = 1). For the ER networks, we see that Id is
nonzero near the perimeter of the parameter space correspond-
ing to graphs with either low edge probability or high edge
probability (very sparse or very dense). In this regime, there
are many isolated nodes (sparse) or cliques (dense) which
behave similarly (the graph complement of a clique is a set
of isolated nodes). These structures typically result in a finer
SBD.

For the SW networks, we see only in the lower left corner
that Id > 0 which represents graphs that are still quite lattice-
like, that is, not many edges from the original lattice have been
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rewired. This means the two graphs may have large parts that
are structurally identical to each other which in turn may yield
more significant dimension reductions. Also, Fig. 1(d) shows
that different values of the exponent of the power-law distribu-
tion γ ∈ [2, 5] for two scale-free networks with N = 50 nodes
results in a large dark blue area. By construction, the scale-free
networks we create cannot have isolated nodes (as we have set
minimum degree k = 3) and do not have any regular structure
due to the configuration model’s random wiring procedure.
Thus, neither of the proposed situations which can lead to the
SBD transformation significantly reducing the dimension of
two random graphs (isolated nodes/cliques or shared struc-
ture) hold and Id = 0 for almost all pairs of parameters γ1 and
γ2.

V. APPLICATION OF THE SBD TECHNIQUE
TO CLUSTER SYNCHRONIZATION

The stability of cluster synchronous solutions in networks
has attracted much attention in the last few years. A general
equation for a network of coupled dynamical systems is the
following:

ẋi(t ) = F [xi(t )] +
N∑

j=1

Ai jH[x j (t )] i = 1, · · · , N, (16)

where the network connectivity is described by the adja-
cency matrix A, where Ai j = Aji > 0 if there is a connection
between nodes i and j and Ai j = Aji = 0 otherwise. The func-
tion H is the node-to-node coupling function.

The nodes of the network can be partitioned into a set of
C equitable clusters or balanced colors C1, C2, ..., CC , where
Ni is the number of nodes in cluster Ci and

∑C
i=1 Ni = N

[36,37]. All the nodes in the same equitable cluster receive
the same number of connections from each one of the clus-
ters [38]. Among several possible equitable partitions of the
network, there is one corresponding to the minimum number
of clusters, which we will refer to as the minimum balanced
coloring. For any adjacency matrix A, the algorithm described
by Belykh and Hasler [39] outputs the minimum balanced
coloring very efficiently. Information about the minimum bal-
anced coloring is contained in the N × C indicator matrix
O = {Oi j} where Oi j is equal to 1 if node i is in cluster Cj

and is 0 otherwise.
Similar to the case of complete synchronization described

previously, given an equitable partition of the network nodes,
we can define an invariant subspace for the set of Eq. (16),
which we call the cluster synchronization manifold. The
dynamics on this manifold is the flow-invariant cluster syn-
chronous time evolution [40] {xs

1(t ), xs
2(t ), · · · , xs

C (t )}, where
xs

1(t ) is the synchronous solution for nodes in cluster C1, xs
2(t )

is the synchronous solution for nodes in cluster C2, and so on.
We can then define the C × C quotient matrix Q such that

for each pair of clusters Cu and Cv ,

Quv =
∑
j∈Cv

Ai j i ∈ Cu u, v = 1, 2, · · · ,C. (17)

All of the nodes belonging to the same cluster can synchronize
on the quotient network time evolution [xs

u(t )],

ẋs
u(t ) = F

[
xs

u(t )
] +

C∑
v=1

QuvH
[
xs
v (t )

]
, u = 1, ...,C. (18)

The question we are interested in is whether the cluster syn-
chronous solution corresponding to the minimum balanced
coloring is stable or unstable.

Stability of the cluster synchronous solution depends on
the mN-dimensional equation,

ż(t ) =
{

C∑
c=1

Ec ⊗ DF
[
xs

c(t )
] + A

C∑
c=1

Ec ⊗ DH
[
xs

c(t )
]}

z(t ),

(19)
where the cluster indicator matrix Ec is a diagonal matrix such
that (Ec)ii = 1 if node i belongs to cluster c and (Ec)ii = 0
otherwise.

We note that by left-multiplying Eq. (19) by the ma-
trix Õ ⊗ Im where Õ = (OT O)−1OT we obtain the dynamics
of the perturbation parallel to the synchronization manifold
[37,41,42].

Similar to Sec. IV, we would like to reduce the stability
problem to a set of independent lower-dimensional equa-
tions instead of dealing with the high-dimensional problem,
Eq. (19). Ref. [43] has proposed a dimensionality reduction
approach based on group theory for the case of orbital clusters
and shown that the irreducible representation (IRR) of the
symmetry group can be used to block-diagonalize the set of
Eq. (19). Ref. [7] has applied the SBD method to characterize
stability of any cluster synchronization pattern. An important
question is whether the symmetry-independent approach of
[7] may lead to a dimensionality reduction of the stability
analysis in the broader class of networks [44] that have eq-
uitable clusters that are not merely the result of symmetries
[41]. Next we show that this is not the case.

Following Ref. [7] we compute P =
SBD(A, E1, E2, ..., EC ). By applying P to Eq. (19), we
obtain

η̇(t ) =
{(

PT
C∑

c=1

EcP

)
⊗ DF

[
xs

c(t )
]

+
(

PT
C∑

c=1

AEcP

)
⊗ DH

[
xs

c(t )
]}

η(t ), (20)

where η(t ) = PT ⊗ Imz(t ). Note that because both matrices
PT AP and PT EcP have the same block diagonal structure,
so does PT AEcP, which becomes apparent by rewriting
PT AEcP = (PT AP)(PT EcP). Therefore, Eq. (20) can be de-
composed into lower dimensional equations,

η̇i(t ) =
{

C∑
c=1

(Ji )c ⊗ DF
[
xs

c(t )
]

+
C∑

c=1

(Bi)c ⊗ DH
[
xs

c(t )
]}

ηi(t ), (21)
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where (Ji )c and (Bi )c are blocks of the same dimensions
derived from the transformations PT EcP = ⊕n

j=1(Jj )c and
PT AEcP = ⊕n

j=1(Bj )c, respectively.

A. Generating networks with assigned equitable partition

To study the performance of the SBD reduction in the case
of cluster synchronization, we need a method to generate a
random symmetric network with an assigned equitable parti-
tion. This can be done by using the algorithm described below.

First, assign the number of nodes in each of the C clusters,
N1, N2, ..., NC , where to enforce a trivial pattern of connec-
tivity we pick N1, N2, ..., NC , so that no two such numbers
are coprime, i.e., gcd(Ni, Nj ) > 1, i = 1, ...,C, j 	= i. Second,
we need to determine the relative indegree di j of nodes in
cluster i from nodes in cluster j. Due to the assumption that
the network is symmetric, the following condition needs to be
satisfied:

Nidi j = Njd ji. (22)

One solution is di j = Nj and d ji = Ni, which corresponds
to complete connectivity in which each node in cluster i is
coupled to all the nodes in cluster j and vice versa. By the
assumption that Ni and Nj are not coprimes, it follows that we
can always choose other values of di j and d ji, namely,

di j = Nj

α
d ji = Ni

α
, (23)

where α = gcd(Ni, Nj ) > 1. Then, for each pair of clusters,
we can randomly connect the nodes in cluster i and cluster
j with NiNj

α
bidirectional links. The intraconnectivity of each

cluster is determined by first assigning the intradegree Di of all
nodes in cluster i for i = 1, 2, ..., NC . This should be chosen
such that NiDi is an even number and Di < Ni.

The algorithm provided here generates a network with an
assigned equitable partition as opposed to the algorithms to
generate networks with assigned orbital partition presented in
Refs. [44,45].

B. Performance of the SBD technique applied
to cluster synchronization

For the case of cluster synchronization, we can also
define a transformation corresponding to the trivial simul-
taneous block diagonalization (TSBD.) This corresponds to
the transformation that separates the perturbation parallel to
the synchronization manifold from the perturbation transverse
to the synchronization manifold. By choosing P̃ = ⊕C

i=1Gi

where Gi is an orthogonal matrix of dimension Ni with one
of its columns having entries that are all the same and equal to
1/

√
Ni we obtain the trivial simultaneous block diagonaliza-

tion

PT AP = Bpar ⊕ Borth, (24)

where the block Bpar is C-dimensional and the block Borth is
(N − C)-dimensional. Hence, the largest block produced by
the TSBD will have dimension L = max (C, N − C). Thus,
for the case of cluster synchronization, we define the perfor-

mance index,

Ics = L − Z

L
, (25)

where Z is the largest block dimension resulting from calcu-
lation of the FSBD for the set of matrices {A, E1, E2, ..., EC}
and where A is the adjacency matrix and E1, E2, ..., EC are
the previously defined cluster indicator matrices. Again the
index compares the performance of the FSBD with that of the
TSBD. An index Ics = 0 indicates that the reduction achieved
by the FSBD is the same as that of the TSBD. As before for
the index Id , we define application of the SBD technique to be
a success (a failure) for large (low) values of 0 � Ics � 1.

Next, we consider a numerical example for a random
symmetric network with C = 4 clusters generated using the
algorithm described above. Figure 2(a) shows the network
that is to be examined to measure the performance index for
the SBD algorithm, with nodes color coded according to the
equitable cluster to which they belong. Figure 2(b) shows
the adjacency and cluster indicator matrices for the network
shown in Fig. 2(a) where each black dot represents a nonzero
entry in these matrices. The block-diagonalized matrices ob-
tained by application of the FSBD transformation are shown
in Fig. 2(c).

To better visualize the block decomposition, we construct
the matrix 	 as the sum of absolute values of the matrices
{PT AP, PT E1P, PT E2P, PT E3P, PT E4P}
	 = |PT AP| + |PT E1P| + |PT E2P| + |PT E3P| + |PT E4P|,

(26)

where the symbol | · | here indicates the entrywise absolute
value of a matrix. A representation of the matrix 	 is shown
in Fig. 3, which evidences two blocks: one 4-dimensional
block and one 30-dimensional block. For this example, the
calculated performance index is 0 with L = 30 and Z = 30.
We have obtained similar results for all the other instances we
have tested of random graphs with assigned equitable partition
(algorithm of Sec. V A).

VI. DISCUSSION

Random “unstructured” networks have been the subject of
extensive investigation in the literature, with applications to
epidemic dynamics [12–14], percolation [15,16], resilience to
attacks and failures [17,18], games [19], network synchro-
nization [20], and control [21]. Several analytical results have
been derived by using the assumption that the network topol-
ogy is random and uncorrelated [20,46–49]. Complete and
cluster synchronization of random networks is undoubtedly
a topic of interest in the Physics and Nonlinear Dynamics
literature. In this paper we take the approach of the natural
scientist and focus on whether or not a mathematical tool (the
SBD decomposition) is effective in dealing with the synchro-
nization of random networks. Reference [50] takes a different
perspective and claims that random networks are not a good
testbed for application of the SBD technique. Here we are
interested in assessing whether problems of practical interest
can be successfully addressed by the SBD tool, rather than
looking for problems to which the tool can be successfully,
or rather conveniently, applied. Previous work in this area has
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FIG. 2. (a) A randomly constructed symmetric network with C = 4 equitable clusters and N = 34 nodes. The clusters are identified as
follows: C1 (green nodes) with N1 = 4, C2 (red nodes) with N2 = 8, C3 (yellow nodes) with N3 = 12, and C4 (blue nodes) with N4 = 10. The
arbitrarily chosen intradegrees for this network are d1 = 2, d2 = 3, d3 = 4, and d4 = 6. (b) From left to right: the adjacency and cluster indicator
matrices {A, E1, E2, E3, E4}. Each nonzero entries of these matrix is indicated with a black dot. (c) From left to right: the block-diagonalized
matrices {PT AP, PT E1P, PT E2P, PT E3P, PT E4P} after application of the FSBD transformation.

often only emphasized the strengths and not the limitations of
the technique, which is partially corrected in this paper. The
fact that the technique mostly fails when applied to random
networks points out the importance of developing alternative
tools and/or new techniques to deal with the important class
of random networks. A relevant related question is whether
the SBD technique can be successfully applied to the analysis
of real network topologies. This question has been recently
considered in Ref. [51], which has shown a moderate success
of the SBD technique in this case.

VII. CONCLUSIONS

The techniques for simultaneous block diagonalization of
matrices have been developed by Maehara, Murota et al. in
a number of seminal papers [2–5]. These techniques were
originally applied to problems in the areas of semidefinite
programming and signal processing (independent component

FIG. 3. Representation of the matrix 	 for the network shown
in Fig. 2. The dots represent nonzero entries. Using Eq. (25), the
calculated performance index is Ics = 0 with L = 30 and Z = 30.

analysis); see, e.g., Ref. [2]. The first application of these
techniques to network synchronization was presented in a
2012 paper [6]. Only recently they have been applied to the
problem of cluster synchronization of networks [7,51,52].

We are highly indebted to the mathematicians who have
developed the algebraic theory of simultaneous block diago-
nalization of matrices. This can be applied to many problems
in the applied sciences where one is looking for modal de-
compositions but such decompositions may not be obvious.
The application of these techniques to the problem of network
synchronization is important as it allows to define the extent to
which the synchronization stability problem can be reduced in
realistic situations that deviate from the original assumptions
of nodes all of the same type and connections all of the same
type [8]. We have seen here that unfortunately in generic situa-
tions (random networks) the obtained reduction is modest and
comparable to that achievable with a trivial transformation.
Even though that is the case, it is important to know the extent
of the attainable reduction and that no further decomposition
of the problem is possible. With this paper we believe we
have set the expectations straight about the reduction that is
realistically achievable from application of SBD to the study
of complete and cluster synchronization of generic (random)
graphs. Overall, this does not diminish our enthusiasm for
these techniques, which can provide exceptional insight into
many problems of interest in physics and engineering, in-
cluding network synchronization. Besides, Refs. [6,7] have
shown that the reduction produced by the SBD technique can
be substantial for specific network realizations, which can be
useful when one has the ability to appropriately select the
network connectivity.

Code to compute the simultaneous block diagonalizations
for the examples shown in this paper can be accessed at the
Github repository [53].
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