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Statistical methods for reconstructing networks from repeated measurements typically assume that all mea-
surements are generated from the same underlying network structure. This need not be the case, however.
People’s social networks might be different on weekdays and weekends, for instance. Brain networks may differ
between healthy patients and those with dementia or other conditions. Here we describe a Bayesian analysis
framework for such data that allows for the fact that network measurements may be reflective of multiple possible
structures. We define a finite mixture model of the measurement process and derive a Gibbs sampling procedure
that samples exactly from the full posterior distribution of model parameters. The end result is a clustering of
the measured networks into groups with similar structure. We demonstrate the method on both real and synthetic
network populations.
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I. INTRODUCTION

Many modern network analyses involve large corpora of
networks defined on a constant set of nodes. Examples include
repeated observations of proximity networks [1], longitudinal
studies of social relationships among fixed groups of indi-
viduals [2], and measurements of neural connectivity across
patients [3].

As pointed out in a number of recent studies, repeated
measurements offer a unique opportunity to carry out robust
network analyses [4–13]. With such large, rich data sets it
is possible to extract information not available from a sin-
gle network observation. For example, one can use repeated
observations to infer a latent network structure despite the
presence of measurement error—given multiple noisy real-
izations of the same network it becomes possible to estimate
the network most likely to have generated the measurements.
In the case of repeated observation of social interactions,
for instance, one expects friends to interact more often than
strangers, and repeated observations, properly analyzed, can
thus reveal the network of friendships [6]. In neuroscience
applications, one might focus on the identification of a char-
acteristic brain connectivity pattern for a set of patients with
a common condition, which is uncovered by combining the
measurements made on all patients [3].

Implicit in these methods is the assumption that there is
a single underlying network that determines all the observa-
tions, but this need not be the case. Patients undergoing brain
scans might have different underlying conditions, for instance,
leading to different measured connectivity patterns from one
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patient to another [14]. Likewise, acquaintances might interact
differently based on the time of the day or location, lead-
ing, for example, to different social networks during working
hours and outside of work.

Treating a population of observed networks as realizations
of the same underlying graph might thus adversely affect our
analysis of these systems, just as ignoring the multimodal
nature of a distribution of numbers may lead to mischarac-
terization of a study sample. In some cases we know when
the underlying network changes, such as when measurements
are made on different days of the week, in which case the
data can be divided up and processed separately using stan-
dard techniques. Often, however, the underlying generative
processes are unknown, making it hard to split the sample
manually. For example, if the brain activity of a patient is
measured as they are put under anesthesia, then we know that
the activity will undergo a change from one state to another
but the transition point itself is unknown. It could be that the
activity changes well before a visible loss of consciousness,
or well after, so one cannot rely on direct observations to
determine the change point; one needs to infer the transition
from the networks. In this and other similar cases, one must
simultaneously determine whether the data is best described
by a single underlying network or many, what these networks
are, and which measurements should be attributed to which
underlying network.

In this paper we describe a framework for modeling hetero-
geneous populations of networks. We view each network in a
population as a noisy realization of one underlying network
out of multiple possibilities, which we call modes. We model
the data as being generated from a superposition or finite mix-
ture of graph distributions [15,16], which provides sufficient
flexibility to accommodate highly heterogeneous populations.
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We demonstrate how our methodology allows us to simultane-
ously infer the underlying networks and cluster the observed
networks such that each cluster of observations consists of
noisy realizations of a single underlying network mode. Our
framework also provides a natural means for selecting the
number of modes that describe a given set of networks.

Previous work on statistical modeling of network measure-
ments has mostly focused on the unimodal case, where it is
assumed that a population of networks is best described by
a single underlying network, of which the observations are
noisy realizations [2,4,6,8,17–20]. Some recent approaches
have explicitly incorporated multiple modes using latent space
representations [21–24], exponential random graph models
[25], or parametric network models [26]. Further afield are
studies aiming to cluster the layers of multilayer networks
(where layers can be categorical or temporal), for instance
when trying to detect change points [27,28]—abrupt changes
in sequences of network snapshots—or as a side-effect of
pooling information across network layers when clustering
their nodes [29,30]. Among these works the approach most
closely related to our own is perhaps that of La Rosa et al.
[31], who extend unimodal metric models of network popu-
lations [18,19] to the multimodal case with finite mixtures.
In the unimodal case all possible networks are assigned a
distance to the mode and networks closer to the mode are
assumed more likely. The extension described by La Rosa
et al. employs multiple modes and can thus more faithfully
model diverse populations of networks. While mathemati-
cally elegant, however, this approach has some shortcomings.
For example, the model is not easily estimated when the
distance between networks is difficult to compute [32]. The
approach of La Rosa et al. also does not differentiate between
false-positive and false-negative rates, which may differ sub-
stantially and change the composition of the corresponding
clusters of networks (see Appendix A).

This paper is organized as follows. First, we briefly review
a previously described unimodal model of homogeneous pop-
ulations of networks, then introduce our model for multimodal
heterogeneous populations by building upon the unimodal
case. We then discuss statistical estimation of the model using
a Gibbs sampling procedure and demonstrate using synthetic
data that we can recover model parameters when the level
of noise in the measurements is sufficiently low. We further
demonstrate our methods with an example application to a
real-world network population from a longitudinal social net-
work study.

II. THE MODEL

We consider an experiment or observational study in which
N networks are measured on the same set of n nodes. The net-
works could record, for instance, connectivity patterns in brain
scans of a cohort of N patients, in which a node represents a
region of the brain and edges indicate when two regions are
sufficiently connected in a given patient [33]. Or the popula-
tion of networks could encode a set of relationships among a
group of people such as students in a school with nodes rep-
resenting the students and edges indicating when two students
are within a certain physical distance of one another during a
specified time interval [34]. We record the networks as a set of

N adjacency matrices D = {D(t )}N
t=1 indexed by t = 1, . . . , N ,

where D(t ) is an n × n matrix with element D(t )
i j = 1 if there

is an edge between nodes i and j in network t , and D(t )
i j = 0

otherwise. For simplicity of presentation we will assume the
networks to be undirected so that D(t )

i j = D(t )
ji , but our methods

are easily adapted to directed networks.

A. Homogeneous populations of networks

A variety of approaches have been proposed for analyz-
ing multiple network observations of this kind when each
observation is believed to be a noisy realization of a sin-
gle underlying “ground truth” network—see, for example,
Refs. [2,6,8,9,18,19]. As a starting point for our discussion
we adopt the approach of Refs. [2,6] in which one defines a
model to describe how the observed networks are related to
the underlying ground truth. The particular model in this case
has two parameters: α ∈ [0, 1] is the a true-positive rate for the
edges and β ∈ [0, 1] is the false-positive rate. In other words,
if there is an edge connecting two nodes in the adjacency
matrix A of the ground truth network, then that edge will be
observed with independent probability α in a noisy realization
D(t ), while an absent edge in A will be mistakenly observed
with probability β. The probability of observing a complete
network D(t ) under this model is then given by

P(D(t )|A, α, β ) =
∏
i< j

[
αD(t )

i j (1 − α)1−D(t )
i j
]Ai j

× [
βD(t )

i j (1 − β )1−D(t )
i j
]1−Ai j

, (1)

where the product is over all (unordered) pairs of nodes. When
the individual observed networks in D are independent of one
another the likelihood of the complete population D is

P(D |A, α, β ) =
N∏

t=1

P(D(t )|A, α, β )

=
N∏

t=1

∏
i< j

[
αD(t )

i j (1 − α)1−D(t )
i j
]Ai j

× [
βD(t )

i j (1 − β )1−D(t )
i j
]1−Ai j

=
∏
i< j

[
αXi j (1 − α)N−Xi j

]Ai j

× [
βXi j(1 − β )N−Xi j

]1−Ai j
, (2)

where Xi j = ∑
t D(t )

i j is the total number of times an edge is
observed between node i and j in the N samples.

With Eq. (2) in hand, one can simulate observed networks
or perform inference about the generative process and, for
instance, estimate A from the data D . Applications of this
kind are studied at length in Refs. [2,6,8,12] among others.
Our goal here is to extend the model to accommodate hetero-
geneous network populations, making it suitable for inference
about a broader range of network data.

B. Heterogeneous populations of networks

Consider again our sample D of N networks sharing the
same set of nodes. We can allow for heterogeneity in these
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samples by letting the individual networks be noisy realiza-
tions of K � N different underlying network modes A =
(A(1), ..., A(K ) ), rather than just a single mode as before. In
the context of network neuroscience, for example, we could
repeatedly measure the brain of a single patient t undergoing
a transition from the conscious to unconscious state, which
would imply that K = 2. Alternatively, we might have a popu-
lation of patients, some of whom have a neurological disorder
such as Alzheimer’s disease and some of whom do not.

Each sample t will be assigned to a network mode u so
that D(t ) is a noisy realization of A(u). We use a variable ztu to
encode this information thus:

ztu =
{

1 if D(t ) is a noisy realization of network A(u),
0 otherwise.

(3)

With this notation we can denote the assignment of samples
to modes as a N × K matrix Z, whose rows correspond to
samples and columns to reference networks. Each sample
corresponds to precisely one reference network, so the rows
of Z satisfy

∑K
u=1 ztu = 1. Further, the column sums Nu =∑N

t=1 ztu correspond to the number of samples in D generated
from mode u.

To model the now heterogeneous population of networks
we use the same generative process as before, Eq. (1), but
with a set A of multiple underlying networks instead of
just one. Since different modes may display different rates
of measurement error, we allow each mode u = 1, . . . , K to
have its own associated true- and false-positive rates αu and
βu. For notational simplicity we henceforth denote the sets
of parameters {αu}K

u=1 and {βu}K
u=1, as well as other model

parameters we will introduce shortly, collectively as θ.
The likelihood of this model is analogous to that of Eq. (2)

and is given by

P(D |Z,A , θ) =
N∏

t=1

K∏
u=1

[∏
i< j

[
α

D(t )
i j

u (1 − αu)1−D(t )
i j
]A(u)

i j

×[
β

D(t )
i j

u (1 − βu)1−D(t )
i j
]1−A(u)

i j

]ztu

. (4)

The main difference is the product over modes u and the
inclusion of the variable ztu to encode the modes. Performing
the product over network samples t = 1, . . . , N , we can also
write this as

P(D |Z,A , θ) =
K∏

u=1

∏
i< j

[
α

X u
i j

u (1 − αu)Nu−X u
i j
]A(u)

i j

× [
β

X u
i j

u (1 − βu)Nu−X u
i j
]1−A(u)

i j , (5)

where X u
i j = ∑N

t=1 D(t )
i j ztu is the number of interactions ob-

served between i and j across all noisy realizations of the
underlying network u.

In most cases, however, the mode assignments Z will be
unknown—if not, then we could just divide up the the net-
works into their groups and model them separately as disjoint
homogeneous populations. We can eliminate Z by marginal-

izing over its possible values in Eq. (4) thus:

P(D |A , θ) =
∑

Z

P(D, Z|A , θ)

=
∑

Z

P(D |Z,A , θ)P(Z|θ), (6)

where the sum is over all possible assignment matrices Z and
P(Z|θ) is a prior probability on the assignments. We choose
the convenient categorical prior

P(Z|θ) =
N∏

t=1

K∏
u=1

π ztu
u ≡

∏
u

πNu
u , (7)

with πu the prior probability that a sample D(t ) is assigned to
mode A(u) (so that

∑K
u=1 πu = 1), and the convention that θ

now additionally includes the parameters {πu}K
u=1. Substitut-

ing Eqs. (4) and (7) into Eq. (6), we then find that

P(D |A , θ) =
N∏

t=1

K∑
u=1

πuα
Y 11

tu
u (1 − αu)Y 01

tu βY 10
tu

u (1 − βu)Y 00
tu ,

(8)
where

Y 00
tu =

∑
i< j

(
1 − D(t )

i j

)(
1 − A(u)

i j

)
, Y 11

tu =
∑
i< j

D(t )
i j A(u)

i j

Y 10
tu =

∑
i< j

D(t )
i j

(
1 − A(u)

i j

)
, Y 01

tu =
∑
i< j

(
1 − D(t )

i j

)
A(u)

i j , (9)

which we can think of as the elements of four matrices
measuring agreement between samples and modes. (Refer to
Table I in the Appendix for a summary of notations used in
this paper.) For example, Y 00

tu counts the number of edges that
are simultaneously absent in sample t and mode u and can
be thought of as an entry of a matrix Y 00 that records such
numbers for all modes and samples.

The mixture model appearing in Eq. (8) is sufficiently
flexible to account for complicated structure in populations
of graphs, analogous to the flexibility seen in mixture mod-
els over distributions of numbers [16]. In Fig. 1 we show
a population of small networks, generated from Eq. (8)
with three modes (K = 3). As a visualization of the work-
ings of the model we embed the networks it generates in a
two-dimensional space (using multidimensional scaling [35]
applied to Hamming distance) and then compute the density of
network samples in that space, which is shown in the contour
plot. From this plot one can see that the networks generated
form clear clusters around the three representative modes,
with the model introducing some noise.

III. ESTIMATION OF THE MODEL USING
GIBBS SAMPLING

In a typical application of the model, we observe a popu-
lation of networks D and we want to determine A , Z, and θ

assuming that D was generated from the model as described
in Sec. II.1 If we can successfully infer the parameters, then

1We may know some of these parameters, in which case the prob-
lem can be solved more easily.
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FIG. 1. Contour map of a population of networks generated
from the heterogeneous model of Eq. 8, as embedded in a two-
dimensional space using multidimensional scaling. Darker colors
indicate a higher density of networks and the three peaks correspond
to the modes used in the model, which are illustrated at the top. For
this simple example, we draw networks from each of the three modes
with identical probability and use the same true- and false-positive
rates for all modes, namely, αu = 0.9 and βu = 0.1 for u = 1, 2, 3.
As illustrated at the bottom of the figure, a network resembling mode
3 sits close to that mode in the low-dimensional space.

we will have not only denoised the network samples D by
finding each network’s mode, but we will have also clustered
the data into homogeneous classes of networks—two tasks of
considerable scientific interest.

Here we adopt a Bayesian approach to the estimation
problem, which allows us to draw directly from standard
model-based clustering techniques [16]. The starting point for
this approach is the posterior distribution for the quantities of
interest:

P(Z,A , θ|D ) = P(D |Z,A , θ)P(Z,A , θ)

P(D )
, (10)

where θ collectively denotes the rate parameters α and β as
well as the mixture weights π , and P(Z,A , θ) is a prior
over all the unknown quantities. Note that the number K of
reference networks does not appear in the equation; here we
use a parametric approach and treat K as a known quantity to
be handled separately. There are a number of more complex
Bayesian nonparametric model alternatives one could con-
sider that would permit Gibbs sampling and allow K to vary,
including Dirichlet process mixture models [36], but we will
not explore these options here. Instead, the procedure used
to infer the posterior distribution in Eq. (10) can be run for
multiple values of K and the optimal value can be chosen by
identifying which value of K produced the samples with the
highest probability. One can add a prior distribution on K to

penalize parametrizations with a greater number of clusters,
thereby preventing uninformative solutions with K � N from
being chosen. However, the prior probability P(Z|θ) in Eq. (7)
already penalizes solutions with K � 1, and this seems suf-
ficient for making reasonable inference in practice—see the
results in Sec. IV.

We have already discussed the likelihood in Eq. (10),
which leaves us with the task of specifying the prior distri-
bution P(Z,A , θ ) to complete the model. We use a prior that
factorizes in the form

P(Z,A , θ) = P(Z|θ)P(A |θ)P(θ). (11)

The first probability on the right-hand side, P(Z|θ), is spec-
ified in Eq. (7). It is the prior over assignments Z given
the vector of group assignment probabilities π , which we
have included in θ. For the other two probabilities we select
the simplest priors possible. For the networks, we set

P(A |θ) =
K∏

u=1

P(A(u) ) =
K∏

u=1

∏
i< j

ρA(u)
i j (1 − ρ)1−A(u)

i j

= ρM∗
(1 − ρ)K(n

2)−M∗
, (12)

where M∗ = ∑
i< j

∑
u A(u)

i j is the total number of edges in all
reference networks and ρ, which we also now include in θ for
notational simplicity, is the prior probability of an edge being
placed between each pair of nodes (i, j). For the parameters
θ—i.e., {αu, βu, πu}K

u=1 and ρ—we use uniform priors so that
their overall contribution to the posterior distribution is a
multiplicative constant. (One can instead opt for conjugate
prior distributions for these quantities, which would be the
beta and Dirichlet distributions in this case, without much
mathematical complication; see Appendix B.)

With these priors in place, estimation of the heterogeneous
network model in Sec. II amounts to either finding point
estimates of the parameters in Eq. (10), or to computing av-
erages over their distribution. Here, we employ a sampling
algorithm that allows us to accomplish either of these tasks.
The algorithm, described below, returns a series of samples
(As, Zs, θs)s=1,...,S , each giving a possible choice of the net-
work modes, assignment matrices, and parameters from which
the networks D could have been generated. These samples can
in turn be used to approximate expectations

E [ f (Z,A , θ)] =
∫ ∑

Z,A

f (Z,A , θ)P(Z,A , θ|D )dθ

� 1

S

S∑
s=1

f (Zs,As, θs),

of arbitrary functions over the joint posterior distribution of
the model, to find estimates of the model parameters, or to as-
sess our uncertainty about the exact values of the parameters.

A. Gibbs sampling

We use a Gibbs sampling method to generate our sam-
ples [37]. The Gibbs sampler operates by cycling through
the parameters (A , Z, θ) of the model and generating values
for each set of parameters in turn, while conditioning on the
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values of the remaining parameters, starting from random
initial values. Specifically, we

(1) Initialize an iteration counter τ ← 0 then draw random
initial values A0, Z0, θ0 of the parameters.

(2) Draw new modes Aτ+1 ∼ P(A |D, Zτ , θτ ).
(3) Draw new assignments Zτ+1 ∼ P(Z|D,Aτ+1, θτ ).
(4) Draw new parameters θτ+1 ∼ P(θ|D,Aτ+1, Zτ+1).
(5) Increment τ and repeat from step 2.
Samples drawn from this random process at sufficiently

large intervals will be distributed according to the joint pos-
terior distribution of Eq. (10) [37].

The conditional probability distributions needed for Gibbs
sampling can be calculated from the model’s likelihood given
in Eqs. (4) and (5) and from the priors of Eqs. (7) and (12).
First, we have the probability of a given set of reference
networks A , conditioned on the data D and the values of Z
and θ:

P(A |D, Z, θ) = P(D |Z,A , θ)P(A |θ)∑
A P(D |Z,A , θ)P(A |θ)

, (13)

which we can transform into an explicit expression by substi-
tuting in the compact likelihood of Eq. (5) and our prior over
A . We find

P(A |D, Z, θ) =
K∏

u=1

∏
i< j

(
Qu

i j

)A(u)
i j

(
1 − Qu

i j

)1−A(u)
i j , (14)

where

Qu
i j =

[
1 + (1 − ρ)

ρ

(
βu

αu

)X u
i j
(

1 − βu

1 − αu

)Nu−X u
i j
]−1

(15)

is the probability that nodes i and j are connected in the uth
reference network, when we know the cluster assignments and
parameter values.

Likewise, the conditional probability of the cluster assign-
ments Z can be calculated as

P(Z|D,A , θ) = P(D |Z,A , θ)P(Z|θ)∑
Z P(D |Z,A , θ)P(Z|θ)

. (16)

We already have an expression for the denominator—it is
the mixture likelihood of Eq. (8)—and the numerator can be
calculated by combining the prior in Eq. (7) with another form
of Eq. (4),

P(D |Z,A , θ)

=
N∏

t=1

K∏
u=1

[
(αu)Y 11

tu (1 − αu)Y 01
tu (βu)Y 10

tu (1 − βu)Y 00
tu

]ztu
, (17)

where the four Y matrices are the ones defined in Eq. (9).
Putting everything together we find that

P(Z|D,A , θ) =
N∏

t=1

K∏
u=1

Rztu
tu , (18)

where

Rtu = πu(αu)Y 11
tu (1 − αu)Y 01

tu (βu)Y 10
tu (1 − βu)Y 00

tu∑
v πv (αv )Y 11

tv (1 − αv )Y 01
tv (βv )Y 10

tv (1 − βv )Y 00
tv

can be interpreted as the probability that sample t is a noisy
version of mode u, conditioned on known values for the modes
and parameters.

The update equation for the remaining parameters is given
by

P(θ|D, Z,A ) = P(D |Z,A , θ)P(Z,A , θ)∫
P(D |Z,A , θ)P(Z,A , θ)dθ

. (19)

The integral appearing in the denominator has a closed-form
solution, but we do not actually need to calculate it since
our goal is to sample from the distribution, so we only need
to know how Eq. (19) depends on θ, and the denominator
is, by definition, not a function of θ. Upon substituting the
likelihood and priors into Eq. (19) we find that the conditional
distribution for θ factorizes as

P(θ|D, Z,A ) ∝ ρM∗
(1 − ρ)K(N

2 )−M∗
K∏

u=1

πNu
u

K∏
u=1

(αu)W 11
u

× (1 − αu)W 01
u (βu)W 10

u (1 − βu)W 00
u , (20)

where the matrices

W pq
u =

N∑
t=1

Y pq
tu ztu (21)

quantify the edge agreement between the mode u and all the
network samples in its corresponding cluster (see Table I for
a summary).

Equations (14), (18), and (20) provide us with all the condi-
tional distributions we need to implement the Gibbs sampler.
As mentioned previously, we cycle through the variables A ,
Z, and θ, generating new samples of each from Eqs. (14), (18),
and (20), respectively, while using the most recent samples of
the other parameters as input.

The conditional distributions all allow for straightforward
sampling. As Eq. (14) and (18) show, the edges of the modes
and the cluster assignments are determined by independent
categorical random variables. Equation (20) further shows that
the parameters θ are independent from one another (when we
condition on Z and A ) and that they are governed by either a
beta distribution (α, β, and ρ) or a Dirichlet distribution (π ).
Hence, generating updated parameters for the Gibbs sampler
is straightforward, since all variables can be simulated with
standard univariate sampling methods available in most sta-
tistical software packages.

B. Implementation

The Gibbs sampling approach allows us to sample from
the full posterior distribution of Eq. (10), which is sufficient
for estimating any expectation value of interest. In its naive
form, however, the Gibbs sampler is quite slow. For example,
generating new modes takes O

(
K

(n
2

))
steps which can be-

come an issue for larger networks. Fortunately there are some
computational tricks we can use to speed up the calculation
substantially.

The first observation we make is that the variables Y are
related, such that they need not be all computed every time
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the modes are updated. Using Eqs. (9) one can show that

Y 10
tu = Mt − Y 11

tu , (22)

Y 01
tu = M∗

u − Y 11
tu , (23)

Y 00
tu =

(
n

2

)
− Y 10

tu − Y 01
tu − Y 11

tu , (24)

where M∗
u is the number of edges in network mode u, and

Mt is the number of edges in the sample t . By pre-computing
Mt from the data D once and using the above relations we can
recover all the matrices Y in terms of the edge agreements Y 11

and the counts M∗
u . Furthermore, these latter quantities can be

computed rapidly by traversing edge lists, which can be done
in order O(n) time for sparse networks with O(n) edges, using,
for example, hash tables to store the lists. Thus, updates of Y
only take linear time.

A second set of observations allows us to accelerate the
calculation by removing redundancies from the processing
of network modes. First, we notice that, conditioned on the
modes, the edges of A are independent identically distributed
Bernoulli variables as shown in Eq. (14). Second, we observe
that the probabilities Qu

i j needed to generate these edges are
identical for all node pairs (i, j) that occur a given number
of times X u

i j in networks belonging to cluster u, as shown
by Eq. (15). Thus, the fundamental quantity needed to track
and update the modes is, in effect, X u

i j rather than the modes
themselves.

To make use of these observations, we denote the set of
edges that occur exactly l times in cluster u as

T u
l ≡ {

(i, j) : X u
i j = l

}
, (25)

and the number of unique values of l observed in cluster u for
the current Gibbs sample as Lu. For each cluster u, we can then
replace the

(n
2

)
Bernoulli trials needed to generate a sample by

a fast two-step process. First, for each of the unique Lu values
of X u

i j , we generate the number Eu
l of edges that will appear in

the mode out of |T u
l | independent trials with a probability of

success of Qu
l corresponding to the value of Qu

i j for the edge
(i, j) ∈ T u

l . Then we choose Eu
l edges uniformly at random

from the set T u
l and add these edges to the mode adjacency

matrix A(u), which we store using an edge list implemented
with a hash table. We repeat this sampling procedure for all
values l ∈ Lu in the current cluster sample and repeat for all
clusters u.

For a given cluster u, this two-step process can be car-
ried out in

∑
l∈Lu

(1 + |T u
l |Qu

l ) operations on average, which
equals K

(n
2

)
only in the worst case when every edge occurs

a different number of times l in every cluster. For a more
typical population of N � 1 sparse networks with O(n) edges,
most pairs of nodes i, j will never be connected in any of
the samples, and thus the sets T u

0 are typically much larger
than the sets T u

l for l � 1, which will have about n edges.
As a result our alternative sampling scheme offers a drastic
improvement in computational complexity, since we do not
need to sample all O(n2) potential edge pairs in T u

0 and the
low value of Qu

0 ensures that we will rarely sample many edges
from this set.

With these implementation tricks, we are able to generate
complete samples relatively quickly. For example, for the

collection of 418 networks on 96 nodes analyzed in Sec. IV B
below, our implementation (which is written in Python) takes
83 milliseconds on average to generate a sample on a single
2.0 GHz processor, and a thousand samples usually suffice for
computing accurate estimates.

IV. RESULTS

In this section we demonstrate the performance of our
method using both synthetic (computer-generated) and real-
world data sets.

A. Synthetic data

As a first demonstration of our approach and the proposed
model, we test its ability to infer the parameters of a popu-
lation of networks generated using the model itself. We use
a two-mode configuration with the modes 1 and 3 shown in
Fig. 1 as the ground-truth, and a symmetric population of net-
works with π1 = π2 = 1

2 , such that about half of the networks
in the sample are noisy samples of mode 1 and the other half
are samples of mode 3. We control the difficulty of the task by
varying the true-positive rate αu and the false-positive rate βu,
with

βu = 1 − αu = p � 0.5 (26)

identical for all clusters u. The parameter p is the probability
that D(t )

i j is a false positive or a false negative—in other words,

the probability of flipping an edge/nonedge in A(u). For each
experiment we generate a population of N = 20, 50, 100, or
200 networks, which we feed into our algorithm as input D .

For every synthetic data set D we generate S = 5 000
samples using the Gibbs sampling algorithm and from these
samples compute point-estimates {Ẑ, ˆA , θ̂}. For the modes
Â = (Â

(1)
, . . . Â

(K )
) we compute the posterior probability that

they exist,

Â
(u)
i j = 1

S

S∑
s=1

[
A(u)

i j

]
s, (27)

where [A(u)
i j ]s is one sample of edge (i, j) of mode u, while for

the parameters we use the posterior means directly,

θ̂ = 1

S

S∑
s=1

θ(s). (28)

We summarize the cluster labels Ẑ as a cluster assignment ĝ =
{gt }, such that

ĝt = argmaxu

{ S∑
s=1

Z(s)
tu : u ∈ [K]

}
, (29)

where ĝt is the cluster label of network t that appears most
frequently in the posterior marginal distribution.

Once we have these point estimates we quantify
the quality of the reconstruction by comparing them
against {Ztrue,Atrue, θtrue}, the parameters used to gener-
ate the synthetic networks in the first place. For the
cluster labels g we compute the variation of information [38]
between the estimates and the true values. For the parameters
we compute the �1 distance between the parameter vectors θ

and θtrue. And for the modes A we compute the total number
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of missing and spurious edges across all modes (in other
words the sum of the Hamming or �1 distances between the
graphs in ˆA and Atrue).

We vary the sizes of our synthetic populations over N =
20, 50, 100, 200 to test how population size affects our re-
construction performance. For each size we generate 100
realizations of the N networks and take the average recon-
struction quality over these synthetic populations (except for
N = 20 where we use 500 realizations to smooth out inherent
variations). The standard errors associated with the average
reconstruction performances are shown as error bars in the
plots. We also use a beta prior for the density ρ with a∗ = 1,
b∗ = 20 (see Appendix B for details), which allows for more
consistent estimates of the mode edge densities in the high
noise region where p � 0.5.

The results of these experiments are shown in Fig. 2. In
Fig. 2(a) we show the reconstruction performance for the
cluster assignments Z, which degrades gradually as we in-
crease the flip probability p and does not depend strongly on
the number of networks N in the population. In Fig. 2(b) we
show the analogous curves for the parameters θ, which also
become gradually more difficult to recover as we increase the
noise level, up to a certain point, but then become easier to
recover. The reason for this is that in the completely noisy
limit (p = 0.5), all the information about the mode networks
and clusters is destroyed, and so we end up with completely
randomized clusters and modes. But this means we are likely
to end up with values of αu and βu near the correct value of
0.5, since this is the value for clusters with no structure. We
are also likely to infer values of the πu close to the correct
value of 0.5, as this is the most likely size distribution of
the clusters if they are chosen completely at random. As we
approach this regime, therefore, we begin to see improvement
in the performance for θ due to these effects.

Of all the model variables, the modes A are the easiest to
recover for low levels of noise, as demonstrated by the rela-
tively long flat portions of the curves in Fig. 2(c). In this case,
the modes are recovered near-perfectly for flip probabilities
less than some transitional value which depends on N . Beyond
this point the noise introduced into the model through the
flip probability p begins to blur the clusters of networks and
introduces errors in their recovery. As demonstrated by the
ordering of the curves in all panels, the reconstruction gener-
ally becomes easier as we increase N , which is expected since
each new network sample gives us more data about the latent
structure. Reconstructing the partition becomes slightly more
difficult for larger N since this gives us more opportunities for
making errors. This effect is reflected in the small increase in
partition distance in the regime near p = 0.5.

When there is little evidence for any specific modes in the
data the posterior distribution over modes will be similar to
the prior distribution. Hence, we can quantify the algorithm’s
certainty about the results using the Kullback-Leibler (KL)
divergence between the prior and posterior distributions,

D =
K∑

u=1

∑
i< j

[
Qu

i j log
Qu

i j

ρ
+ (

1 − Qu
i j

)
log

(
1 − Qu

i j

)
(1 − ρ)

]
,

(30)

FIG. 2. Recovery performance for (a) the partitions Z, (b) the
model parameters θ, and (c) the modes A , for a bimodal popula-
tion of networks drawn from the modes 1 and 3 shown in Fig. 1
with π1 = π2 = 1

2 , across a range of flip probabilities (Eq. 26) and
population sizes N . Panel (d) shows how much the model updates its
certainty about the modes A using the data.

where Qu
i j and ρ can be evaluated by averaging the poste-

rior samples. This divergence is smallest when the posterior
and prior distributions are most similar. As can be seen in
Fig. 2(d), the KL divergence diminishes rapidly as we increase
the flip probability and reaches zero at values of p that closely
align with the loss of signal seen in Fig. 2(c). Thus, the method
is able not only to recover modes in the low-flip-probability
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FIG. 3. Results for the reality mining proximity networks described in the text, in which proximity measurements were binned in day-long
intervals. (a) Modal networks ˆA with edge widths proportional to the estimates Â(u)

i j . (b) The fraction of networks in each cluster that were
sampled on a particular day of the week (left) and during a particular month (right). (c) Average posterior log-probability [Eq. (10)] across
Gibbs samples as a function of the number of clusters K .

regime, but is also able to tell us that there is no signal when
p is large. Note that the true values of the parameters are not
needed for computing the KL divergence, so this approach
is applicable in experimental settings where the modes are
unknown.

Taken together, the results of Fig. 2 tell us that our Gibbs
sampler is capable of correctly inferring all of the model
parameters so long as there is well-defined cluster structure
in the data (something we can determine empirically with the
KL divergence), and that inference becomes more reliable as
the size of the network population grows. In the following
section we demonstrate that our estimation procedure can also
successfully cluster populations of real networks and identify
multiple distinct modes under real-world conditions.

B. Social network

As our second example we study a network of physical
proximity measurements among a group of college students
and faculty in the “reality mining” study of Eagle and
Pentland [39]. Over a nine-month period, study participants
carried mobile phones equipped with special software that
recorded when they were in close proximity with one another
using Bluetooth radio technology. From these data we con-
struct networks in which an edge between two participants

indicates that they were observed in proximity at least once
on a given day. The result is one network for each of the 232
days of the study where at least one interaction happened, all
with n = 96 nodes, and between 1 and 418 edges.

The results of applying our Gibbs sampling algorithm with
S = 1000 samples to this population of networks are shown
in Fig. 3. To select the number of clusters K , we run the
algorithm at multiple values of K , identifying the value for
which the average posterior probability is maximized as the
optimal K . In Fig. 3(a) of the figure we display the three
very distinct modes ˆA found for this population, with the
edge widths proportional to the inferred values of Â(u)

i j . In
Fig. 3(b) we show histograms of the fractions of networks
in each cluster that were sampled on a given day of the
week (left) and during a given month (right). We can see
clear separation in these histograms, indicating that the modes
correspond roughly to weekends (yellow), weekdays during
the fall semester (orange), and weekdays during the spring
semester (blue). We see a clearly distinct structure in the
networks during semester weekdays versus weekends, with a
denser network observed in the first semester than the second.
However, the weekend network mode contains a wider variety
of edges with nonnegligible weight. These observations are
consistent with a typical university course schedule in which
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students associate primarily with classmates during classes
but with a wider selection of acquaintances outside of work.
In Fig. 3(c), we show the mean log-probability of the Gibbs
samples as a function of the number of modes K , which can
we see has a peak at K = 3 (the value chosen for our posterior
estimates).

We note that the modes have significantly higher density
than the individual observed networks with their correspond-
ing clusters, as demonstrated by the high false negative rates
1 − αu and low false-positive rates βu. This indicates that
the set of likely edges in each mode is much larger than the
number of interactions observed in any single time window.
This is not surprising—most people do not see all of their ac-
quaintances every day. Nonetheless, it emphasizes the ability
of our method to infer a plausible set of “true” connections
from very noisy individual network measurements, a task that
would not be easy to do by clustering networks in a naive way.

V. CONCLUSIONS

In this paper we have described a method for statistical
analysis of heterogeneous network populations, as seen in
applications involving repeated or longitudinal measurements
of a single network, or observation of a fixed set of nodes
across multiple study subjects. We have proposed a generative
model for heterogeneous networks in which networks divide
into a number of clusters or modes and derived an exact
Gibbs sampling procedure for sampling the resulting posterior
distributions. We have demonstrated our model and estimation
methods first on synthetic network data, finding that param-
eter recovery with the Gibbs sampler is possible as long as
variability within the clusters of networks is not too high. We
then analyze a real-world network population from a longi-
tudinal proximity network study and find that this population
is best described by three underlying mode networks rather
than a single ground-truth network as is assumed in most
network reconstruction approaches. Our model is capable of
encompassing a greater variety of network data than such
unimodal approaches and provides a natural framework for
simultaneously clustering and denoising a set of networks.

The framework we describe could be extended in a number
of ways. For the sake of simplicity we have here assumed
that our networks are undirected, unweighted, and that that
all edges in a given mode have identical error rates. There are
other possibilities, however, including adaptations for directed
or weighted edges, more complex noise models such as ones
with individual error rates for each node or edge, or the use
of a parametric model for the mode networks to allow for
simultaneous inference of large-scale structure such as com-
munities. Additionally, one could employ fast algorithms to
fit the model without any sampling whatsoever, by inferring
point estimates using methods such as k-means clustering
after removing the dependence on θ through profiling or
marginalization. We leave exploration of these avenues for
future work.

Note added. After this work was completed we learned of
recent related work by Mantziou et al. A preprint can be found
at Ref. [40].
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APPENDIX A: METRIC INFERENCE

One approach to the problem of network clustering and
denoising is to employ methods of metric inference [18], in
which network samples live in a metric space and are clustered
based on their distance in that space. It turns out that the
simplest metric model of graphs, as used in Refs. [18,19,31],
corresponds to a special case of the model analyzed in the
present work. Here we demonstrate this correspondence.

Starting with the unimodal case, the likelihood of a single
network sample under a generic metric model is given by [18]

P(D(t )|A, σ ) ∝ fσ [d (D(t ), A)], (A1)

where σ is a parameter that controls an analog of the variance,
fσ (·) is a nonincreasing function, and d (·, ·) is a distance met-
ric on the space of all labeled graphs on n nodes. This model
is very flexible in principle but less so in practice, because
computational issues place constraints on the possible choices
of metric and the function fσ . Most authors use an exponential
function fσ (x) = e−x/σ and the Hamming distance [18,19]

dH (D(t ), A) =
∑
i< j

[(
1 − D(t )

i j

)
Ai j + D(t )

i j (1 − Ai j )
]
.

One can then use the properties of the exponential to derive
the simple data likelihood

P(D |A, σ ) =
N∏

t=1

∏
i< j

[
e− 1

σ
Dt

i j

1 + e− 1
σ

](1−Ai j )[
e− 1

σ
(1−Dt

i j )

1 + e− 1
σ

]Ai j

=
∏
i< j

[
e− 1

σ
Xi j

(1 + e− 1
σ )N

](1−Ai j )[
e− 1

σ
(N−Xi j )

(1 + e− 1
σ )N

]Ai j

,

(A2)

which is straightforward to evaluate and simulate numerically.
Comparing with Eq. (2) of the main text, we see that this

model is equivalent to our model with true- and false-positive
rates if

e− 1
σ

(N−Xi j )

(1 + e− 1
σ )N

= αXi j (1 − α)N−Xi j ,

e− 1
σ

Xi j

(1 + e− 1
σ )N

= βXi j (1 − β )N−Xi j . (A3)

In particular, if we set α = 1 − β, then we can map the two
models directly, with

σ =
[

log
1 − β

β

]−1

, (A4)

so long as β < 1/2. In other words, the metric distance ap-
proach using the exponential function and Hamming distance
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TABLE I. Variables used in the analysis and algorithm, as defined in terms of the basic quantities Z, D, and A .

Quantity Definition Expression

N Number of network samples N = ∑
tu ztu

Nu Number of network samples in cluster for mode u Nu = ∑
t ztu

Mt Edges in network sample t Mt = ∑
i j D(t )

i j

M∗
u Edges in mode u M∗

u = ∑
i j A(u)

i j

M∗ Edges in all modes M∗ = ∑
i ju A(u)

i j

X u
i j Number of times i, j are connected in network samples from mode u X u

i j = ∑
t D(t )

i j ztu

Y 00
tu Edges absent in sample t and absent in mode u (“true negatives”) Y 00

tu = ∑
i j

(
1 − D(t )

i j

)(
1 − A(u)

i j

)
Y 10

tu Edges present in sample t and absent in mode u (“false positives”) Y 10
tu = ∑

i j D(t )
i j

(
1 − A(u)

i j

)
Y 01

tu Edges absent in sample t and present in mode u (“false negatives”) Y 01
tu = ∑

i j

(
1 − D(t )

i j

)
A(u)

i j

Y 11
tu Edges present in sample t and present in mode u (“true positives”) Y 11

tu = ∑
i j D(t )

i j A(u)
i j

W 00
u Total true negatives for all samples in cluster for mode u W 00

u = ∑
i jt

(
1 − D(t )

i j

)(
1 − A(u)

i j

)
ztu

W 10
u Total false positives for all samples in cluster for mode u W 10

u = ∑
i jt D(t )

i j

(
1 − A(u)

i j

)
ztu

W 01
u Total false negatives for all samples in cluster for mode u W 01

u = ∑
i jt

(
1 − D(t )

i j

)
A(u)

i j ztu

W 11
u Total true positives for all samples in cluster for mode u W 11

u = ∑
i jt D(t )

i j A(u)
i j ztu

[18,19] is equivalent to assuming a binomial model for edge
measurements, but with a particular relationship between
false-positive and true-positive rates, α = 1 − β, which is
generally unrealistic [7,12].

It is straightforward to verify that analogous results hold
in the multimodal case. One finds that when αu = 1 − βu,
one can define σu analogously to Eq. (A4) to obtain a single
parameter controlling the probability that existing edges from
mode u are missed in the samples and that nonexistent edges
are added. Thus, we conclude that metric models built with
the exponential function and Hamming distance are less ex-
pressive than the generative process of network measurements
considered here, and we recommend using the latter. If one
does wish to use a metric model, then the algorithms presented
in the main text can be used to fit it by setting αu = 1 − βu for
all classes u.

APPENDIX B: CONJUGATE PRIORS

For ease of presentation, we have used flat priors for the
parameters θ in the main text, but one can easily replace them
with more flexible priors thus:

P
(
αu|H11

u , H01
u

) = α
H11

u −1
u (1 − αu)H01

u −1

B
(
H11

u , H01
u

) , (B1)

P
(
βu|H00

u , H10
u

) = β
H01

u −1
u (1 − βu)H00

u −1

B
(
H01

u , H00
u

) , (B2)

P(ρ|a∗, b∗) = ρa∗−1(1 − ρ)b∗−1

B(a∗, b∗)
, (B3)

P(π |γ ) =
∏K

u=1 π
γk−1
u

B(γ )
, (B4)

where B(x, y) is the Euler beta function B(x, y) =
�(x)�(y)/�(x + y) and B(γ ) is its generalization
B(γ ) = ∏K

u=1 �(γu)/�(
∑

u γu), and where the parameters
of these distributions (such as H11

u and H01
u ) are new

hyperparameters of the model.
Since the priors above are conjugate [41], our Gibbs sam-

pling algorithm carries over with little modification. The only
change needed is to the sampling distribution for the parame-
ters:

P(θ|D, Z,A ) ∝ ρM∗+a∗
(1 − ρ)K(N

2 )−M∗+b∗

×
K∏

u=1

πNu+γu
u

×
K∏

u=1

(αu)W 11
u +H11

u (1 − αu)W 01
u +H01

u

×
K∏

u=1

(βu)W 10
u +H10

u (1 − βu)W 00
u +H00

u . (B5)

The parameters of the conjugate priors are analogous to the
combinatorial quantities of Table I, and they thus act as pseu-
docounts of edges, missing edges, and so on.

[1] N. Eagle, A. S. Pentland, and D. Lazer, Inferring friendship
network structure by using mobile phone data, Proc. Natl. Acad.
Sci. USA 106, 15274 (2009).

[2] C. T. Butts, Network inference, error, and informant
(in)accuracy: A Bayesian approach, Soc. Netw. 25, 103
(2003).

014312-10

https://doi.org/10.1073/pnas.0900282106
https://doi.org/10.1016/S0378-8733(02)00038-2


CLUSTERING OF HETEROGENEOUS POPULATIONS OF … PHYSICAL REVIEW E 105, 014312 (2022)

[3] O. Sporns, Networks of the Brain (MIT Press, Cambridge, MA,
2010).

[4] S. E. Fienberg, M. M. Meyer, and S. S. Wasserman, Statistical
analysis of multiple sociometric relations, J. Am. Stat. Assoc.
80, 51 (1985).

[5] C. E. Priebe, D. L. Sussman, M. Tang, and J. T. Vogelstein,
Statistical inference on errorfully observed graphs, J. Comput.
Graph. Stat. 24, 930 (2015).

[6] M. E. J. Newman, Network structure from rich but noisy data,
Nat. Phys. 14, 542 (2018).

[7] M. E. J. Newman, Estimating network structure from unreliable
measurements, Phys. Rev. E 98, 062321 (2018).

[8] T. P. Peixoto, Reconstructing Networks with Unknown and
Heterogeneous Errors, Phys. Rev. X 8, 041011 (2018).

[9] C. M. Le, K. Levin, and E. Levina, Estimating a network from
multiple noisy realizations, Electron. J. Stat. 12, 4697 (2018).

[10] R. Tang et al., Connectome smoothing via low-rank approxima-
tions, IEEE Trans. Med. Imaging. 38, 1446 (2018).

[11] L. Wang, Z. Zhang, and D. Dunson, Common and individual
structure of brain networks, Ann. Appl. Stat. 13, 85 (2019).

[12] J.-G. Young, G. T. Cantwell, and M. E. J. Newman, Bayesian
inference of network structure from unreliable data, J. Complex
Netw. 8, CNAA046 (2020).

[13] J.-G. Young, F. S. Valdovinos, and M. E. J. Newman, Recon-
struction of plant–pollinator networks from observational data,
Nat. Commun. 12, 3911 (2021).

[14] D. S. Bassett, C. H. Xia, and T. D. Satterthwaite, Understand-
ing the emergence of neuropsychiatric disorders with network
neuroscience, Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
3, 742 (2018).

[15] D. M. Titterington, A. Smith, and U. E. Makov, Statistical
Analysis of Finite Mixture Distributions, (Wiley, New York, NY,
1985).

[16] G. J. McLachlan and D. Peel, Finite Mixture Models (Wiley,
New York, NY, 2004).

[17] D. A. Kenny and L. La Voie, The social relations model, Adv.
Exp. Soc. Psychol. 18, 141 (1984).

[18] D. Banks and K. Carley, Metric inference for social networks,
J. Classif. 11, 121 (1994).

[19] S. Lunagómez, S. C. Olhede, and P. J. Wolfe, Modeling network
populations via graph distances, J. Am. Stat. Assoc. 116, 2023
(2020).

[20] N. Josephs, W. Li, and E. D. Kolaczyk, Network recovery from
unlabeled noisy samples, arXiv:2104.14952 (2021).

[21] D. Durante, D. B. Dunson, and J. T. Vogelstein, Nonparametric
Bayes modeling of populations of networks, J. Am. Stat. Assoc.
112, 1516 (2017).

[22] A. M. Nielsen and D. Witten, The multiple random dot product
graph model, arXiv:1811.12172 (2018).

[23] S. Wang, J. Arroyo, J. T. Vogelstein, and C. E. Priebe, Joint
embedding of graphs, IEEE Trans. Pattern Anal. Mach. Intell.
43, 1324 (2019).

[24] J. Arroyo, A. Athreya, J. Cape, G. Chen, C. E. Priebe, and
J. T. Vogelstein, Inference for multiple heterogeneous networks
with a common invariant subspace, J. Mach. Learn. Res. 22, 1
(2021).

[25] F. Yin, W. Shen, and C. T. Butts, Finite mixtures of ERGMs for
ensembles of networks, Bayesian Anal., 1 (2022).

[26] M. Signorelli and E. C. Wit, Model-based clustering for popu-
lations of networks, Stat. Model. 20, 9 (2020).

[27] L. Peel and A. Clauset, Detecting change points in the large-
scale structure of evolving networks, in Proceedings of the
29th International Conference on Artificial Intelligence (AAAI)
(ACM, New York, NY, 2015), p. 2914.

[28] T. P. Peixoto and L. Gauvin, Change points, memory and
epidemic spreading in temporal networks, Sci. Rep. 8, 15511
(2018).

[29] T. P. Peixoto, Inferring the mesoscale structure of layered, edge-
valued, and time-varying networks, Phys. Rev. E 92, 042807
(2015).

[30] N. Stanley, S. Shai, D. Taylor, and P. J. Mucha, Clustering net-
work layers with the strata multilayer stochastic block model,
IEEE Trans. Netw. Sci. Eng. 3, 95 (2016).

[31] P. S. La Rosa, T. L. Brooks, E. Deych, B. Shands, F. Prior,
L. J. Larson-Prior, and W. D. Shannon, Gibbs distribution for
statistical analysis of graphical data with a sample application
to fcMRI brain images, Stat. Med. 35, 566 (2016).

[32] J. Bento and S. Ioannidis, A family of tractable graph metrics,
Appl. Netw. Sci. 4, 107 (2019).

[33] D. S. Bassett and O. Sporns, Network neuroscience, Nat.
Neurosci. 20, 353 (2017).

[34] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton,
M. Quaggiotto, W. Van den Broeck, C. Régis, B. Lina et al.,
High-resolution measurements of face-to-face contact patterns
in a primary school, PLoS One 6, e23176 (2011).

[35] J. B. Kruskal and M. Wish, Multidimensional scaling, in Sage
University Paper series on Quantitative Applications in Social
Sciences, 07-011 (Sage Publications, Beverly Hills, CA, 1978).

[36] R. M. Neal, Markov chain sampling methods for Dirich-
let process mixture models, J. Comput. Graph. Stat. 9, 249
(2000).

[37] S. Geman and D. Geman, Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images, IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-6, 721 (1984).
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