
PHYSICAL REVIEW E 105, 014311 (2022)

Spontaneous generation of persistent activity in diffusively coupled cellular assemblies
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The spontaneous generation of electrical activity underpins a number of essential physiological processes,
and is observed even in tissues where specialized pacemaker cells have not been identified. The emergence
of periodic oscillations in diffusively coupled assemblies of excitable and electrically passive cells (which
are individually incapable of sustaining autonomous activity) has been suggested as a possible mechanism
underlying such phenomena. In this paper we investigate the dynamics of such assemblies in more detail by
considering simple motifs of coupled electrically active and passive cells. The resulting behavior encompasses
a wide range of dynamical phenomena, including chaos. However, embedding such assemblies in a lattice
yields spatiotemporal patterns that either correspond to a quiescent state or to partial or globally synchronized
oscillations. The resulting reduction in dynamical complexity suggests an emergent simplicity in the collective
dynamics of such large, spatially extended systems. Furthermore, we show that such patterns can be reproduced
by a reduced model comprising only excitatory and oscillatory elements. Our results suggest a generalization
of the mechanism by which periodic activity can emerge in a heterogeneous system comprising nonoscillatory
elements by coupling them diffusively, provided their steady states in isolation are sufficiently dissimilar.
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I. INTRODUCTION

Spontaneously recurring electrical activity is of crucial sig-
nificance in a number of physiological contexts [1–3]. This
is typically driven by pacemaker cells [4–6], such as the
sinoatrial node in the heart, which comprises specialized cells
that periodically generate signals initiating excitatory activity,
leading to mechanical contraction [7]. However, such cells
have not been observed in other contractile tissue, such as the
myometrium of the gravid uterus [8]. It has been hypothesized
that spontaneous activity in the latter contexts arises through
interactions between electrically active and passive cells, local
assemblies of which are capable of generating periodic waves
of activation in the tissue through diffusive coupling [9,10].
These waves traveling through an organ are capable of sus-
taining spatiotemporally coherent contractions [11]. Indeed
it has been demonstrated that one of the simplest ways to
achieve this is by having an excitable cell coupled by gap
junctions to one (or more) electrically passive cells character-
ized by a resting state membrane potential that is much higher
than that of the excitable cell [12]. The coupling between these
heterogeneous cell types causes the membrane potential of the
excitable cell to be driven beyond its threshold, resulting in the
generation of an action potential. Subsequently, the excitable
cell attempts to return to its resting state, but after a period
of recovery is again driven to exceed its threshold by the
passive cells coupled to it, thereby resulting in a periodically
recurring series of action potentials. Thus, although neither
excitable nor passive cells are individually capable of sponta-
neous sustained activation, an assembly of these two cell types
can generate periodic oscillations [13].

The emergence of periodic activity in a heterogeneous as-
sembly of excitable and passive cells makes such a mechanism
a viable candidate for self-organized system-wide coherent
oscillations in physiological contexts where no pacemakers
have been reported [14,15]. Indeed, it has been demonstrated
that a lattice of excitable cells that are each coupled to a
variable number of passive cells can exhibit a range of spa-
tiotemporal phenomena consistent with those observed in the
uterus during the transition to coherent activity seen prior
to parturition [11,16,17]. However, noting that each local
cellular assembly is either in an excitable or an oscillatory
dynamical regime in isolation raises an important question:
can the observed collective behavior be reproduced in an
even simpler setting, viz., where each lattice site is occupied
by either an oscillatory or an excitable element, a situation
reminiscent of percolation [18]. In this paper, we consider
the dynamics of two classes of systems, each capable of
exhibiting spontaneous collective dynamics, one comprising
electrically active and passive (EP) cells and the other com-
prising oscillatory and excitable (OE) cells . We observe
that simple motifs of cells described using the EP model
are capable of exhibiting a wide range of complex collec-
tive dynamical patterns. However, several of these are no
longer observed when such cells are embedded in a spatially
extended system, suggesting an emergent simplicity of the
collective dynamics. More importantly, we observe that when
cells described by the OE model are placed on a lattice, the re-
sulting dynamics are qualitatively very similar to that obtained
using the EP model. This points towards a more fundamental
mechanism that could explain the emergence of spontaneous
recurrent activity in physiologically relevant contexts.
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FIG. 1. Dependence of the dynamics of a single uncoupled FHN
oscillator on the parameter b. (a) Real part of the eigenvalues (λR),
obtained through a linear stability analysis, for a range of values
of b. We find that λR crosses zero (horizontal broken line) at b =
bc1(� 0.136) and b = bc2(� 0.376). (b) The system exhibits a low
steady state (low SS) for b < bc1 and a high steady state (high SS)
for b > bc2, as can be seen from the fact that the extrema of Ve (red
and blue markers) coincide over these values of b. (c) In the range
bc1 < b < bc2, we observe oscillatory behavior, with the frequency ν

exhibiting a maximum value at the center of this range. For reference,
we display vertical dashed lines at b = bc1 and b = bc2 in each of the
panels.

II. MODEL

To investigate in detail the range of complex behavior that
emerges upon diffusively coupling excitable cells, each of
which are in turn coupled to one or more passive cells, we
consider the simplest possible assemblies of these cells capa-
ble of exhibiting spontaneous oscillatory activity. Following
Ref. [11], we simulate the electrical activity of an excitable
cell using the FitzHugh-Nagumo (FHN) model [19], which
is capable of both excitable and oscillatory dynamics. The
model describes the temporal evolution of an activation vari-
able Ve (the membrane potential), and an inactivation variable
g (an effective transmembrane conductance) as V̇e = F (Ve, g),
ġ = G(Ve, g). Here, F (Ve, g) = AVe (Ve − α)(1 − Ve) − g and
G(Ve, g) = ε(keVe − g − b), where A(= 3) and ke(= 1) gov-
ern the kinetics, α(= 0.2) is the excitation threshold and ε(=
0.08) is the recovery rate, while b provides a measure of the
asymmetry of the limit cycle.

We observe that the real part of the eigenvalues (λR) of a
single FHN unit, obtained from a linear stability analysis, is
negative below a lower critical value bc1 � 0.136 and above
a higher critical value bc2 � 0.376, indicating that the system
does not oscillate for these ranges of b [Fig. 1(a)]. As seen in
Fig. 1(b), the value of Ve in the resting state is close to 0 for
b < bc1 and is relatively large for b > bc2. These regimes are
hence referred to as low and high stable states, respectively.
Furthermore, the system is capable of oscillatory behavior for
bc1 < b < bc2, as λR is positive in this range. The frequency
of oscillations ν exhibits a maximum value at the midpoint
(bc1 + bc2)/2 [Fig. 1(c)].

The temporal evolution of the passive cell is described
in terms of its membrane potential Vp as V̇p = K (V R

p − Vp),
where V R

p (= 1.5) is the resting state and K (= 0.25) is the
relaxation rate [20]. Each excitable cell is electrically coupled
to np (= 0, 1, 2 . . .) passive cells, where the conductance of
the gap junctions between the two cell types is Cr . The set
of equations used to describe the dynamics of an excitable
cell i coupled to ni

p passive cells, as well as to other excitable

cells j, is
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The dynamics of an isolated excitable cell coupled to one
or more passive cells depends on np and Cr . As V R

p is much
higher than the excitation threshold α, for a range of np and
Cr the coupled excitable-passive system can exhibit oscilla-
tions. To demonstrate that such emergent oscillations result
exclusively from the coupling we have chosen b = 0, so that in
isolation the FHN dynamics converges to the low stable state.
It is important to note in the context of the results reported
here that when Cr > 0.5, oscillations are seen only for np = 1
while those excitable cells coupled to np > 1 passive cells
converge to high stable states.

III. RESULTS

We first consider the simplest nontrivial assembly of dis-
similar excitable-passive units, viz., a pair of excitable cells
diffusively coupled with strength D, each interacting with a
different number np of passive cells with strength Cr . The
heterogeneity in np implies that the intrinsic behavior of the
two units are dissimilar, and this can lead to a range of dis-
tinct collective dynamical patterns. The dynamical regimes
obtained can be classified on the basis of the Ve time series
of the excitable cells, using a set of order parameters with
specified threshold values, as detailed in Fig. 2 and Ref. [21]:
(i) oscillation death (OD), where both cells are in the same
temporally invariant nonzero steady state; (ii) inhomogeneous
steady state (ISS), where both cells are in different tempo-
rally invariant steady states; (iii) chimera (Ch), where only
one of the two cells oscillate; (iv) inhomogeneous in-phase
synchronization (IIS), where both cells oscillate in phase; (v)
inhomogeneous out-of-phase synchronization (IOS), where
both cells have the same frequency but are out of phase with
each other, and, (vi) cluster synchronization (CS), where the
two cells have different oscillation frequencies. The dynam-
ical patterns obtained upon varying D and Cr are shown in
Figs. 3(a)–3(d) for four distinct connection topologies of the
assemblies (illustrated in the top right corners of the cor-
responding panels). The regions are identified according to
the collective dynamics observed for the majority (>50%)
of initial conditions. At low values of D, the two units can
behave very differently, and we observe collective states such
as Ch or CS. As D increases, the cells either become frequency
locked or cease oscillating altogether. Note that the intrinsic
heterogeneity of the two units prevents exact synchronization
between them even for large D. For a given value of D,
as Cr is decreased, eventually the cells stop oscillating (in
isolation, neither an excitable nor a passive cell is capable of
spontaneous activity). The qualitative nature of the collective
dynamical patterns, in terms of (Ve, g) phase plane trajectories
and individual time series, is displayed in Fig. 3(e).
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FIG. 2. Decision tree for identifying the dynamical state of a sys-
tem of coupled excitable cells, each of which are connected to a vari-
able number of passive cells (EP model). The order parameters used
for determining the nature of the spatiotemporal pattern observed
include the dispersions calculated across space [σ 2

i ( )], or across time
[σ 2

t ( )], for the state variables Yi (i = 1, . . . , N) or the oscillation fre-
quencies ν. Averages calculated over space and over time are denoted
by 〈 〉i and 〈 〉t respectively, while the deviation of the lowest value of
the state variable for any node from its maximum calculated across
space is denoted by Y max min

i = maxi[mint (Yi )] − mint (Yi ) [21]. The
threshold values used to distinguish between the different states,
viz., oscillation death (OD), inhomogeneous steady state (ISS),
chimera (Ch), cluster synchronization (CS), exact synchronization
(ES), homogeneous out-of-phase synchronization (HOS), inhomo-
geneous in-phase synchronization (IIS), and inhomogeneous out-
of-phase synchronization (IOS), are: δ1 = 10−3, δ2 = 10−5, δ3 =
10−3, δ4 = 10−7, δ5 = 10−5, δ6 = 10−7, and δ7 = 10−4.

In Figs. 3(f)–3(i), we display the variation of the frequency
ν of the periodic activity exhibited by the excitable cells in
the low D regime in each of the different assemblies (Cr is
fixed at 0.25 in each case). We observe that an increase in
D either gives rise to the cessation of oscillations [Fig. 3(f)]
or a synchronized state in which the two units oscillate at
a common frequency that is either lower [Fig. 3(g)], higher
[Fig. 3(h)], or equal to [Fig. 3(i)] the higher of the pair of in-
trinsic frequencies (i.e., the frequencies of each unit at D = 0).
We note that these results are qualitatively robust with respect
to changes in V R

p [21].
Just as coupling an excitable cell to one or more passive

cells can, under appropriate conditions, give rise to oscillatory
dynamics, we observe that spontaneous activity can arise upon
coupling a pair of dissimilar units that do not oscillate in
isolation. Figure 4(a) shows a pair of excitable cells, having
np = 0 and np = 2, respectively, such that neither can inde-
pendently oscillate for Cr = 0.6. However, upon increasing
D sufficiently, we eventually observe a transition to a fre-
quency synchronized state of the two units. We characterize
this transition in terms of the eigenvalues obtained from a
linear stability analysis. As seen in Fig. 4(b), we find that the
real part of the eigenvalues λR are negative for small values of
D, and that two of them change sign at D � 0.072 [see inset

FIG. 3. Emergent dynamics obtained with different motifs of
diffusively coupled excitable and passive cells. (a)–(d) Collective
dynamical patterns observed over a range of values of coupling
strengths D and Cr , obtained using different motifs (shown as insets
in the corresponding panels, where the larger and smaller circles
represent excitable and passive cells, respectively). The regimes are
classified according to the dominant attractor obtained for the given
parameter set [see Fig. 2]. (e) Qualitative nature of the patterns in
(a)–(d), in terms of the phase plane trajectories and time series of
the excitable cells [21]. The black dots represent the instantaneous
position of the two cells on the corresponding limit cycle. (f)–(i)
Variation of the frequency ν of the excitable cells on the left (green)
and right (maroon) in each of the four motifs in (a)–(d) for Cr = 0.25,
over the range of D indicated by horizontal cyan bars in (a)–(d). As D
increases, the frequencies of the two cells merge, and for sufficiently
strong coupling the system can either stop oscillating (f), or display
a frequency that is between (g), greater than (h) or equal to (i) the
maximum of the intrinsic frequencies.

of Fig. 4(b)]. This corresponds to the onset of oscillations, as
can be seen in Fig. 4(c).

Upon increasing the number of units in an assembly, we
observe that the system becomes capable of exhibiting more
complex collective behavior including chaotic activity. How-
ever, a particularly intriguing collective state of coexisting
chaotic and nonchaotic activity is observed in an assembly
of three excitable cells, having np = 1, 2, 3, respectively, that
are coupled in a chain [see top right corner of Fig. 5(a)].
For a large range of values of Cr and D, the system exhibits
IOS [Fig. 5(a)]. However, in the CS regime, we observe a
collective dynamical state that is characterized by chaotic
behavior in the excitable cell with np = 1 with nonchaotic, pe-
riodic oscillations in the other two cells [Figs. 5(b)–5(d)] The
qualitative difference in the dynamics of the three excitable
cells is evident upon comparing their time series [Fig. 5(b)],
phase plane portraits [Fig. 5(c)], and power spectral densi-
ties [Fig. 5(d)]. A more rigorous comparison, considering
the response of each cell to small perturbations, shows rapid
divergence of the resulting trajectory from the unperturbed
one for the chaotic unit, with no such deviation observed
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FIG. 4. Spontaneous emergence of oscillatory activity upon cou-
pling a pair of quiescent units. (a) Variation of ν with D for Cr = 0.6,
obtained using the motif shown as an inset, i.e., a pair of coupled
excitable cells that are attached to zero and two passive cells, re-
spectively. Although both cells are quiescent for low D, they exhibit
oscillations for sufficiently large D. (b) Dependence of λR, corre-
sponding to the real parts of the five eigenvalues of the system,
on D. We note that two pairs of eigenvalues (EV) are complex
conjugates and hence their real parts overlap, as indicated above the
corresponding branches. The inset displays a zoomed-in segment of
the panel, indicating the value of D at which two of the eigenvalues
changes sign. (c) Bifurcation diagram of the extrema values of Ve

for this system, showing the transition from a stable steady state
to oscillations, where the maximum and minimum values for each
of the two excitable cells are indicated by red and blue markers,
respectively.

FIG. 5. Coexistence of chaotic and nonchaotic dynamical ac-
tivity in a system comprising three diffusively coupled excitable
cells, each connected to a different number (np) of passive cells.
(a) Collective dynamical patterns observed over a range of values
of diffusive coupling strengths D between excitable cells and the
coupling Cr between excitable and passive cells for the system shown
as an inset. The dynamical regimes are classified according to the
dominant attractor obtained for the given parameter set, and are
the same as those detailed in Figs. 3(a)–3(d). (b) Time series of
membrane potential Ve of the excitable cells coupled to (top) np = 1,
(middle) np = 2 and (bottom) np = 3 passive cells, for D = 0.02
and Cr = 0.19. (c)–(d) Phase plane trajectories and power spectral
densities of the three excitable cells, colored as in the corresponding
panels of (b).

for the other two units [21]. We note that permutations of
the connection topology of this assembly, i.e., changing the
order in which the cells with different values of np are placed
in the chain, yields similar qualitative behavior, with chaotic
dynamics consistently observed in the unit with the lowest np.

It may appear that increasing the size of the assemblies
further, by adding more coupled excitable-passive units, can
only lead to a further increase in the complexity of the
collective dynamics. However, surprisingly, we observe an
emergent simplicity in the behavior of large lattices of such
units, with neighboring elements coupled diffusively to each
other. Indeed, such an example is provided by a spatially
extended model of uterine tissue, which is heterogeneous by
nature, comprising electrically active myocytes that are ex-
citable (thereby facilitating muscle contractions), as well as
electrically passive cells such as interstitial Cajal-like cells
(ICLC) [22] and fibroblasts [see top panel of Fig. 6(a)]. The
system exhibits spontaneous oscillations for a range of val-
ues of Cr even though, in isolation, none of the individual
cells are capable of autonomous periodic activity, as has been
experimentally observed in uterine tissue [14,15]. More im-
portant from the perspective of the dynamical transition to
periodic coordinated contraction of the myometrium, it is
seen that increasing D results in the self-organized emergence
of global synchronization, and eventually coherence [11,17].
It is striking that such coordination is achieved exclusively
through local interactions between cells and does not require
a centralized pacemaker such as that present in the heart (viz.,
the sinoatrial node).

The relative simplicity of the collective behavior of such
a lattice of heterogeneous coupled cells can be shown by
demonstrating that it can be captured by a reduced description
of the system in terms of interacting dynamical elements,
each of which are either in an oscillating or a steady state.
In particular, we can replace excitable-passive cell assemblies
that are capable of spontaneous periodic activation by a single
FHN unit with bc1 < b < bc2 (for concreteness, we choose
bosc = 0.192 for the simulations whose results are shown
here), and FHN units with b < bc1 (> bc2) for cell assemblies
exhibiting a low (high) stable state (we choose blow

exc = 0 and
bhigh

exc = 0.394 for the simulations shown here). The resulting
equivalent lattice now comprises only FHN units, a fraction
f of which are in an oscillatory regime with the remaining
being excitable by virtue of having different values of b [see
Fig. 6(a), bottom panel]. Nevertheless, the system exhibits
qualitatively identical behavior to that seen in models of uter-
ine tissue simulated by coupling assemblies of excitable and
passive elements, e.g., the occurrence of cluster synchroniza-
tion at relatively low intercellular coupling that gives way to
global synchronization of periodic activity (coordinated by
propagating waves of excitation that traverse the lattice) for
stronger coupling [Fig. 6(b)].

The similarity of the emergent properties of the simpler
model can be established further by comparing the different
dynamical regimes of the f − D parameter space with that
observed in the uterine model having heterogeneous cell types
[11]. Indeed all the qualitatively distinct types of behavior
reported in the latter can be seen in Fig. 6(c), including
no oscillation (NO), with all cells in steady states; cluster
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FIG. 6. Collective dynamics of a lattice of diffusively coupled
elements that can be either excitable or oscillatory. (a) Schematic
diagram of uterine tissue, modeled as a two-dimensional lattice
where each site comprises an excitable cell coupled to np passive
cells (top, the EP model), where the value of np at each site is
drawn from a Poisson distribution. The dynamics at each site can
equivalently be described through cells that are either oscillatory or
excitable (bottom, the OE model). The latter cell type could be in
one of two possible steady states (SS), characterized by low and
high values of the state variable V . Note that the state of a cell in
the bottom panel (high SS, low SS, or oscillatory) is chosen such
that the uncoupled dynamics at that site is qualitatively the same
as that of the corresponding site in the top panel. (b) Snapshots of
the activity V in a planar simulation domain comprising an equal
mixture of excitable and oscillatory elements ( f = 0.5) diffusively
coupled with strength D to nearest neighbors, showing (top row,
D = 0.1) cluster synchronization (CS) and (bottom row, D = 0.3)
global synchronization (GS). (c) Varying the diffusion coefficient D
and the fraction of oscillatory cells f in the lattice for the case of
the OE model, several distinct dynamical regimes are observed [see
Fig. 7 for details]. (d)–(e) Variation of the mean oscillatory frequency
〈ν〉 with D. Each curve is obtained by starting from different random
initial states at low D and then gradually increasing D over time. In
(d), the cell at each site can be either oscillatory (with probability
f = 0.7) or excitable (with probability 1 − f ). In (e), we associate
each lattice site with either an excitable or an oscillatory cell, fol-
lowing the procedure outlined in the main text. All simulations are
performed on square lattices comprising 64 × 64 cells, with periodic
boundary conditions.

synchronization (CS), marked by coexistence of multiple
groups of cells, each characterized by a different frequency;
local synchronization (LS), coexistence of quiescent cells
with cells oscillating at a common frequency; global synchro-
nization (GS), all cells have the same oscillation frequency;
and coherence (COH), all cells exhibit phase synchrony. The
decision tree used to classify these dynamical patterns is de-
tailed in Fig. 7 and Ref. [21]. As in the EP model, the regions
are identified according to the collective dynamics observed
for the majority (>50%) of initial conditions.

In the limit of large D, the lattice dynamics can be further
simplified and an implicit analytical equation can be obtained
for fc, the fraction of FHN units that should be oscillatory
for the system to exhibit persistent periodic excitations. It
marks the boundary between the NO and COH regimes and is

FIG. 7. Decision tree for identifying the dynamical state of a
heterogeneous system of coupled cells, each of which can either be
in the oscillatory or the excitable regime (OE model). The order
parameters used for determining the nature of the spatiotemporal
pattern observed include (i) fosc: the number of oscillating nodes
in the lattice, (ii) maxt [ fact (t )]: the maximum number of nodes that
were active (i.e., above the excitation threshold α) together over
the period of observation, and (iii) σ 2

i (ν ) is the dispersion of fre-
quencies of all oscillating nodes calculated across space [21]. The
threshold values used to distinguish between the states, viz., no
oscillations (NO), cluster synchronization (CS), local synchroniza-
tion (LS), global synchronization (GS), and coherence (COH), are
ε1 = 10−3, ε2 = 0.999, ε3 = 0.995, and ε4 = 10−10.

given as bc1 = (1 − fc) bexc + fc bosc. For the situation shown
in Fig. 6(c), bexc = blow

exc , which yields fc ∼ 0.7 upon inserting
the corresponding numerical values.

We can investigate the collective dynamics around this
asymptotic boundary between persistent oscillatory activity
and a quiescent steady state by considering the case f = 0.7.
In particular, we focus on the variation of the overall activation
rate, measured by the mean frequency of periodic activation
〈ν〉 (averaged over all oscillating elements in the lattice), as D
is increased. In order to be consistent with the physiological
setting, where the coupling between cells increases over the
gestation period (as a result of hormone-induced increased
expression of gap junctions that electrically couple the cells
[23]), D is increased adiabatically over the course of a single
realization, from a random initial condition at a low value of
D. For the situation when bexc = blow

exc , shown in Fig. 6(d), 〈ν〉
increases with D until it reaches a maximum value related to
the reciprocal of the refractory period (set by the parameters of
the FHN model). Increasing D further results in an abrupt drop
in 〈ν〉 as the number of propagating wavefronts in the system
changes. A subsequent increase in D results in an increase
in 〈ν〉 generated by the new spatiotemporal pattern. This is
qualitatively the same as the phenomenon observed for the
model of uterine tissue involving assemblies of excitable and
passive cells.

An even closer match between the two classes of models
can be obtained if we replace each of the excitable elements
with FHN elements having either bexc = blow

exc or = bhigh
exc ac-

cording to the following procedure: first, each lattice site is
assigned a value n chosen from a Poisson distribution with
mean λ = f . Note that this is identical to the process by
which the number of passive cells (given by n) coupled to
an excitable cell are determined in modeling uterine tissue
with excitable-passive cell assemblies [11]. Next, FHN units
in the oscillatory regime (b = bosc) are placed at sites having
n = 1, while FHN units with b = blow

exc (i.e., excitable element
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FIG. 8. Comparison of the spatiotemporal activity in two-
dimensional lattices of cells described by the EP and OE models. We
find that similar behavior can be seen for systems characterized by a
large number of coupled units arranged in two-dimensional lattices,
where each cell is described by the EP model (top row) or the OE
model (bottom row). The two models can yield (a), (b) cluster syn-
chronization, as evident from the spatial distribution of frequencies
ν. In addition, both systems exhibit (c), (d) traveling wavefronts, and
(e), (f) spiral waves, as can be seen from the instantaneous spatial
distribution of Ve (top row) and V (bottom row), respectively.

with a low stable state) are placed at sites with n = 0. At
sites having n > 1, corresponding to excitable-passive cell
assemblies whose activity is arrested at a high stable state,
FHN units with b = bhigh

exc are placed. Figure 6(e) shows the
evolution of the mean frequency with D for f = 0.7 when
the cellular coupling is increased adiabatically starting from
a random initial condition over the course of a single real-
ization. The resulting oscillatory-excitable (OE) model can
accurately reproduce dynamical behaviors reported for the
model comprising excitable-passive (EP) cell assemblies [11].
These include the emergence of clusters characterized by a
common oscillation frequency [Figs. 8(a), 8(b)], propagating
wavefronts [Figs. 8(c), 8(d)], as well as self-sustained spiral
waves in the GS regime [Figs. 8(e), 8(f)]. In addition, we ob-
serve that persistent periodic activity can arise upon coupling
two FHN units that cannot independently oscillate, provided
one of them is in the low and the other in the high stable state,
a phenomenon analogous to the appearance of oscillations
in assemblies of excitable and passive cells, which cannot
sustain autonomous activity [21].

The qualitative equivalence of the collective behavior in
large lattices for the two classes of models is all the more
surprising as the dynamics of network motifs comprising
excitable-passive cell assemblies (as seen in Figs. 3 and 5)
is much more complex than that observed upon replacing
each assembly by a FHN unit in the oscillatory or excitable
regime. For instance, coupling a pair of EP cell assemblies,
each of which oscillate at different frequencies, cannot give
rise to exact synchronization even at large D. However, two
FHN oscillators characterized by distinct b values (and hence,
frequencies) can exhibit exact synchronization when coupled
with sufficient strength. Furthermore, while we have reported
motifs of connected EP cell assemblies that exhibit chimera

(Ch) regimes over a range of coupling strengths, such be-
havior cannot be seen in two coupled FHN oscillators with
distinct intrinsic frequencies. We would also like to point out
that nothing equivalent to the chaotic behavior observed in
a motif comprising coupled EP cell assemblies (see Fig. 5)
is seen in systems of coupled FHN oscillators arranged in a
similar topology (viz., a chain comprising two oscillators hav-
ing different intrinsic frequencies and an excitable element).
Thus, even though the OE model reproduces the collective
behavior of a large system of coupled EP cell assemblies,
the dynamics at the microscopic level (i.e., motifs comprising
only a few elements) can be extremely different for the two
classes of models [21].

IV. CONCLUSION

To conclude, in this paper we have shown that while
coupled excitable-passive cell assemblies are capable of ex-
hibiting a wide range of dynamical behaviors including chaos,
a macroscopic system comprising a large number of such
elements diffusively coupled to their nearest neighbors on a
lattice shows relatively simpler spatiotemporal phenomena.
In particular, this resulting collective dynamics can be repro-
duced by a model comprising many elements, each described
by a generic model for an excitable cell that is either in a
steady state or in an oscillatory regime. Indeed, it suggests that
the behavior associated with physiologically detailed models
of uterine tissue activity [16,17,24] can be understood in terms
of a reduced model involving a heterogeneous assembly of
coupled oscillatory and excitable elements. More importantly,
our results point towards a generalization of the mechanism
proposed in Ref. [12] for the emergence of periodic activity
in systems where none of the individual elements are in-
trinsically capable of oscillating. While it was shown there
that persistent oscillations arise upon coupling excitable and
electrically passive cells under certain circumstances, here we
have shown that an oscillating system may emerge upon cou-
pling elements, each of which are in isolation at time-invariant
steady states, provided these states are dissimilar (i.e., the state
variables associated with them have sufficiently distinct nu-
merical values, corresponding to low and high). Furthermore,
our demonstration of a large variety of dynamical attractors
in small assemblies of excitable and passive elements can
provide an understanding of the complex dynamics seen in
electrically coupled heterogeneous subcellular compartments
in neurons [25,26] and small networks of neurons interacting
via gap junctions [27].
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