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Social interactions may affect the update of individuals’ opinions. The existing models such as the majority-
vote (MV) model have been extensively studied in different static networks. However, in reality, social networks
change over time and individuals interact dynamically. In this work, we study the behavior of the MV model
on temporal networks to analyze the effects of temporality on opinion dynamics. In social networks, people are
able to both actively send connections and passively receive connections, which leads to different effects on
individuals’ opinions. In order to compare the impact of different patterns of interactions on opinion dynamics,
we simplify them into two processes, that is, the single directed (SD) process and the undirected (UD) process.
The former only allows each individual to adopt an opinion by following the majority of actively interactive
neighbors, while the latter allows each individual to flip opinion by following the majority of both actively
interactive and passively interactive neighbors. By borrowing the activity-driven time-varying network with
attractiveness (ADA model), the two opinion update processes, i.e., the SD and the UD processes, are related
with the network evolution. With the mean-field approach, we derive the critical noise threshold for each process,
which is also verified by numerical simulations. Compared with the SD process, the UD process reaches a larger
consensus level below the same critical noise. Finally, we also verify the main results in real networks.
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I. INTRODUCTION

In social networks, different types of interactions may
have distinct and significant influence on opinion dynamics
and decision-making [1], such as political affiliation [2,3]
and rumor fermentation [4]. Commonly, people express and
update their opinions through communication and discussion
together. In opinion dynamics, a group of interacting indi-
viduals constantly update their opinions on the same issue
based on various models to reach a consensus, polarization,
or fragmentation in the final stage.

Many models have been proposed to study opinion dy-
namics, among which the majority vote (MV) model [5] is
a famous nonequilibrium model, which has attracted much
attention recently. It is a simple two-state stochastic model
and displays a continuous order-disorder phase transition near
the critical noise. In the MV model, the probability of the
opinion flip that is controlled by the level of internal noise
only depends on the sign of the sum of neighbors’ opinions
rather than on its exact value. In Ref. [5], the MV model with
noise was first proposed on the square lattice, which belongs
to the same universality class as the equilibrium Ising model
[6]. By taking individuals’ attributes into account, the MV
model has been widely studied, such as visibility of the choice
of neighbors’ opinions [7], heterogeneous interactions of in-
dividuals [8], individuals with aging effects [9], individuals
with more than two opinions [10,11], and the effect of inertia,
which leads to the occurrence of a discontinuous transition
[12,13].
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The MV model on static network topologies has been
explored, and the continuous order-disorder phase transition
is observed in different network structures but with different
critical noises [14]. The MV model was first proposed in
square lattices [5]. Oliveira found that the critical exponents
are the same as those of the Ising model on two-dimensional
square lattices and the two models belong to the same univer-
sal class. Considering the randomness of the network, Pereira
et al. [15] studied the MV model on ER networks and found
that the increase of average connectivity improves the order
of the system. After that, in Refs. [16,17], the “small-world”
phenomenon is further studied on social networks. The critical
transitions are dependent on the number of long-range interac-
tions. Furthermore, due to the heterogeneity of real networks,
critical noises on distinct network structures are determined
by heterogeneous mean field [14,18] and quenched mean-field
theory [19], respectively. From the above analysis, we see that
network structure can definitely affect the opinion dynamics.
However, most of previous work focused on static networks,
ignoring the dynamic interactions between individuals, lead-
ing to the incomplete research of the opinion dynamics.

Temporal network is a natural framework for describ-
ing time-varying interactions [20,21], such as contact orders
[22], burstiness [23], and lifetimes [24,25], which lead to
completely different results from static networks. Therefore
time-varying network structures have a significant impact on
dynamics. However, little attention has been paid on opinion
dynamics. Due to the complexity of the dynamic interactions
between individuals, only the voter model (with binary opin-
ions) [26] and the deffaunt model (with continuous opinions)
[27] on temporal networks have been studied in depth. Hence,
it is necessary to study the MV model on temporal networks.
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In social networks, various social interactions have differ-
ent effects on opinion dynamics. People who are online may
actively obtain information and passively receive information
simultaneously. According to the information source, people
generally have different attitudes on it. For example, while
users of Facebook take the information they actively obtain
and passively receive into consideration, those of the Internet
Movie Database care more about the information they actively
obtain and ignore passively received information, especially
advertisements. Thus, individuals show diverse behavior in
updating their opinions by considering different kinds of in-
formation. In Refs. [28–33], the impact of interaction types
on the U.S. presidential campaign is deeply analyzed. It is
found that some people only select traditional media con-
tent actively without considering the news from others, while
others, especially the young, accept dissimilar perspectives
passively. Their opinions are affected by actively interacted
and passively interacted neighbors.

To characterize the features of the above mentioned inter-
actions, we suppose that the update of an individual’s opinion
depends on his or her interaction patterns, which can be sim-
plified into two processes, that is, the single directed (SD)
process and the undirected (UD) process. In the SD process,
individuals only care about their actively connected interac-
tions, while in the UD process, individuals takes all kinds of
interactions into consideration simultaneously.

With these ideas in mind, here we analyze the MV model
with the SD and the UD process on activity-driven networks
with attractiveness (ADA models) [34,35], where the interac-
tions and the update of opinions are caused by the activity and
attractiveness of individuals. With the heterogeneous mean-
field theory, we derive the rate equation which rules the
dynamics of the MV model on the ADA models. We calculate
the critical points of noise f sd

c and f ud
c for the MV model with

the SD process and the UD process, respectively. The analyti-
cal results show that in the MV model with the SD process, f sd

c
only depends on the number of actively interactive individuals
at each time, while with the UD process, f ud

c is related to the
joint distribution of activity and attractiveness. The average
activity and the attractiveness distribution have great influence
on f ud

c . Finally, we conduct simulations on real networks to
confirm the influence of activity and attractiveness on opinion
dynamics.

This paper is organized as follows. In Sec. II, we introduce
the evolution process of time-varying networks by the ADA
models and the process of the MV model. In Sec. III, we
provide a full description of the dynamics in the SD process
and the UD process and exhibit the analytical results for the
critical noise for each process. In Sec. IV, we present the
numerical simulations, which show the consistency between
the theoretical analysis and the simulation results. Then we
apply the two processes on real network data to further verify
our results. Finally, we summarize all the results and explore
new perspectives in Sec. V.

II. THE MV MODEL ON TEMPORAL NETWORKS

In this section, we present the evolutionary process of the
ADA model and the MV model with the SD process and the
UD process.

A. ADA model

In the ADA models, we consider a fixed population of
N individuals. Each individual is assigned with activity a,
representing the probability of activating and interacting with
others in each instantaneous network. In the original activity-
driven network (AD model) [34], the activated individuals
uniformly and randomly select other individuals for inter-
action. In order to make the network more consistent with
real social networks, in Ref. [35], the authors proposed a
time-varying network model by considering each individual’s
attractiveness following a given distribution. Hence, for in-
dividuals, the probability of being selected by other active
individuals is positively correlated with attractiveness b. The
activity a and attractiveness b are randomly assigned by the
joint distribution F (a, b). With these settings, the generation
process of the time-varying network is demonstrated as fol-
lows [35]:

(i) At each time step t , start from a network Gt with N
disconnected individuals;

(ii) With probability ai�t , each individual becomes active
and selects m individuals to establish connections. Each indi-
vidual is chosen according to his or her attractiveness, that is,
the probability of individual j receiving connection is b j∑

l bl
;

(iii) At the next time step t + �t , delete all edges in the
network Gt and restart the generation of a new instantaneous
network Gt+�t .

In the above model, only one edge is allowed between two
individuals and self-loops are forbidden in each time step t .
The duration of all interactions between individuals is �t .
Without loss generality, in the following, we set �t = 1.

B. Majority-vote model

We study the opinion dynamics for the MV model by
integrating the ADA models. For an active individual i, whose
opinion is σi, we first determine the majority opinion of i’s
neighborhood. With probability 1 − f , the selected individual
i adopts the majority opinion of his or her neighbors, and with
probability f , i adopts the opposite opinion of the majority
opinion. The probability f is called the noise parameter. The
probability for σi flipping can be written as

ω(σi ) = 1
2 [1 − (1 − 2 f )σiS(Θi )], (1)

where Θi = ∑
j∈�(i) σ j represents the sum of i’s neighbors’

opinions. �(i) is the set of i’s neighbors with whom i interacts.
S(x) = sgn(x) if x �= 0, and S(0) = 0. In the latter case, the
probability of the opinion σi flipping to ±1 is 1/2. Then we
consider two different opinion update processes based on the
selection of interactive targets, as shown in Fig. 1: (i) SD
process: At time t , individual i updates his or her opinion
σi by computing the dominant opinion of the neighbors with
whom he or she actively interacts. So |�i(t )| = m. (ii) UD
process: At time t , individual i updates his or her opinion σi

by computing the dominant opinion of both actively interacted
and passively interacted neighbors. So |�i(t )| = ki(t ), ki(t ) is
the instantaneous degree of i at time t . Compared with the
SD process, in the UD process, the number of neighbors in
�i(t ) is affected by the number of both actively connected
and passively connected links, where the actively connected
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FIG. 1. The opinion dynamics of the MV model with the SD
process and the UD process. Red and blue nodes represent active
and inactive individuals, respectively. The red edges are generated by
active individual i and the blue edges are generated by other active
individuals. The individuals within the dashed circle are individual
i’s interactive neighbors. (a) The opinion flips in the MV model with
the SD process. (b) The opinion flips in the MV model with the UD
process.

links is fixed m and the passively received links are determined
by attractiveness bi. The increase of passively received links
leads to heterogeneity of the number of neighbors.

III. THEORETICAL ANALYSIS

To proceed a mean-field treatment, by assuming that in-
dividuals with the same activity a and attractiveness b are
statistically equivalent, we define q±

a,b(t ) as the probability that
an individual with activity a and attractiveness b is in state ±1
at time t . The probability that an individual with activity a
and attractiveness b is chosen to be connected is proportional
to his or her attractiveness, i.e., bF (a, b)/〈b〉, where 〈b〉 is the
average attractiveness. We denote θ±(t ) as the probability of
randomly choosing an individual in state ±1 at time t . The
probabilities q±

a,b(t ) and θ±(t ) satisfy the relation

θ±(t ) =
∑
a,b

b

〈b〉F (a, b)q±
a,b(t ). (2)

Then, for an individual with activity a and attractiveness b, the
probability that the dominant opinion of his or her neighbors
is ±1 is defined as ϕ±

a,b(t ), which is given by the cumulative
binomial distribution

ϕ±
a,b(t ) =

|�a,b(t )|∑
n=�|�a,b(t )|/2�

(
1 − 1

2
δn,|�a,b(t )|

)
Cn

|�a,b(t )|

[θ±(t )]n[1 − θ∓(t )]|�a,b(t )|−n,

(3)

where �a,b(t ) denotes the set of neighbors at time t , � · �
is the ceiling function, and δi, j is the Kronecker symbol. If
i = j, δi, j = 1; otherwise, δi, j = 0. Cn

k = k!
n!(k−n)! is a binomial

coefficient. Here each term Cn
|�a,b(t )| in Eq. (3) calculates the

probability of n neighbors in state +1(−1) and |�a,b(t )| −
n neighbors in state −1(+1) with associated probabilities

θ+(θ−) and θ−(θ+), respectively. Thus, for an active individ-
ual with activity a and attractiveness b, the probability that
his or her opinion takes value ±1 can be expressed as ψ±

a,b(t ),
which is given by

ψ±
a,b(t ) = (1 − f )ϕ±

a,b(t ) + f [1 − ϕ∓
a,b(t )], (4)

where the first term on the right denotes the probability that
an active individual follows the majority rule with probability
1 − f and the second one accounts for the probability that
the active individual follows the minority rule at time t . The
dynamical equations that determine the time evolution of the
probability q±

a,b(t ) are a function of the switching probability
ψ±

a,b(t ). These equations can be deduced by observing one of
the following events occurs at each time step. (i) An individual
with activity a and attractiveness b in state +1 is active. If he
or she flips his or her opinion, then the rate at which q+

a,b(t )
decreases and q−

a,b(t ) increases will be determined with the
probability aq+

a,b(t )[1 − ψ+
a,b(t )]. If his or her opinion is not

changed, then the rate of q±
a,b(t ) does not change with the

probability aq+
a,b(t )ψ+

a,b(t ). (ii) An individual with activity a
and attractiveness b in state −1 is active. If he or she flips
his or her opinion, then the rate at which q−

a,b(t ) decreases
and q+

a,b(t ) increases will be determined with the probability
aq−

a,b(t )[1 − ψ−
a,b(t )]. If his or her opinion is not changed,

then the rate of q±
a,b(t ) does not change with the probability

aq−
a,b(t )ψ−

a,b(t ).
Therefore, the rate equations for q±

a,b(t ) can be written as

dq+
a,b(t )

dt
= −aq+

a,b(t )[1 − ψ+
a,b(t )] + aq−

a,b(t )[1 − ψ−
a,b(t )],

(5)

dq−
a,b(t )

dt
= −aq−

a,b(t )[1 − ψ−
a,b(t )] + aq+

a,b(t )[1 − ψ+
a,b(t )].

(6)

In stationarity, by setting the change rate of q±
a,b(t ) to zero, we

obtain the following relationship:

q+
a,b(1 − ψ+

a,b) = q−
a,b(1 − ψ−

a,b). (7)

Combining Eq. (7) with the conditions q+
a,b + q−

a,b = 1 and
ψ+

a,b + ψ−
a,b = 1, we get

q+
a,b = ψ+

a,b. (8)

This condition is necessary for stationarity. In fact, in station-
arity, the probability of an individual in a given state does not
change with time. The expected proportion of individuals in
state +1(−1) is equivalent to the probability that individuals
change their state to +1(−1).

A. The MV model with the SD process

In the MV model with the SD process, only neighbors that
the individual actively interacts with are possible to alter his or
her opinion. Since an active individual only actively interacts
with m neighbors, we have |�sd

a,b(t )| = m. Observing Eq. (3),
we find that the expression of ψ+

a,b(t ) only depends on the
number of actively connected links m, while the joint distri-
bution of activity and attractiveness has no effect on it. Thus,
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FIG. 2. The steady solutions of θ+ = ψ+. When f < fc, θ+ =
ψ+ has three solutions. One fixed solution is θ+ = 1

2 corresponding
to completely disordered state, and the other two represent symmet-
ric ordered state solutions. When f > fc, there is only one solution
at θ+ = 1

2 .

for ∀a, b �= 0, we set ϕ±
a,b(t ) = ϕ±(t ) and ψ±

a,b(t ) = ψ±(t ).
By inserting Eq. (8) into Eq. (2), we get

θ+(t ) =
∑
a,b

b

〈b〉F (a, b)ψ+(t ) = ψ+(t ). (9)

In stationary state, when t → ∞, dθ+
dt = 0 and we set θ+(t ) =

θ+
s . Since θ+

s is a stable point, we have θ+
s = ψ+(θs). Let us

analyze the relationship between θ+ and ψ+. According to
Eq. (4), ψ+(t ) is also a function of f . When f is less than
the critical value fc, Eq. (9) has three solutions, as shown in
Fig. 2. One is θ+ = 1

2 corresponding to a disorder phase, and
the other two correspond to the symmetric ordered phases. If
f > fc, then there is only one solution at θ+ = 1

2 . Therefore,
for the MV model with the SD process, the critical noise, de-
fined as f sd

c , is determined by the condition that the derivation
of ψ+ with θ+ equals to one at f = f sd

c , i.e.,

dψ+

dθ+

∣∣∣∣
θ+= 1

2

= 1. (10)

According to Eq. (3) and Eq. (4), after some simple algebra,
the expression of critical noise f sd

c reads as

f sd
c = 1

2
− 1

22−mmC
� m−1

2 �
m−1

. (11)

Using Stirling’s approximation for m → ∞, C
� m−1

2 �
m−1 →

2m−1/
√

mπ/2, Eq. (11) can be simplified as

f sd
c ≈ 1

2
− 1

2

√
π

2

1√
m

. (12)

From Eq. (12), we see that f sd
c only depends on the number

of actively connected links m and increases with it. If m =
N − 1 → ∞, then we have f sd

c = 1
2 . By observing Eq. (12),

we find that the expression of f sd
c is similar to that on the

random regular (RR) networks [15], where all individuals
have the same degree k and the critical noise only depends
on it.

B. The MV model with the UD process

In the MV model with the UD process, active individuals
interact with both actively interacted and passively inter-
acted neighbors simultaneously, and we have |�ud

a,b(t )| ≈ ka,b,
where ka,b is the instantaneous degree [36], read as

ka,b = m + N〈a〉mb

N〈b〉
= m + m〈a〉b

〈b〉 ,

(13)

which is independent of time and consists of two parts, i.e., the
number of actively connected links m and the number of pas-
sively connected links m〈a〉b

〈b〉 [36]. Since ka,b does not depend
on a, we simplify the expression ka,b as k·,b. Observing Eq. (3)
and Eq. (4) that the variable |�ud

a,b(t )| ≈ k·,b only depends on
attractiveness b and the number of actively connected links m,
we set ϕ±

a,b(t ) = ϕ±
·,b(t ) and ψ±

a,b(t ) = ψ±
·,b(t ).

By inserting Eq. (8) into Eq. (2), we get

θ+(t ) =
∑
a,b

b

〈b〉F (a, b)ψ+
·,b(t ). (14)

Like the MV model with the SD process, when the system
reaches stationarity, the critical noise f ud

c can be solved by
setting dθ+

dt = 0 at θ+ = 1
2 , that is,

∑
a,b

b

〈b〉F (a, b)
(
1 − 2 f ud

c

)
21−2k·,bk·,bC

�k·,b/2�
k·,b−1 = 1. (15)

After some simple algebra, we can express the critical noise
f ud
c as

f ud
c = 1

2
− 1

2

1∑
a,b

b
〈b〉F (a, b)21−k·,bk·,bC

�(k·,b−1)/2�
k·,b−1

. (16)

Due to the fact that k·,b ≈ m + m〈a〉b
〈b〉 and if k → ∞, C

� k−1
2 �

k−1 →
2k−1/

√
kπ/2, we can obtain the approximate expression of

f ud
c ,

f ud
c ≈ 1

2
− 1

2

√
π

2

(〈b〉)3/2

√
m

∑
a,b bF (a, b)

√〈b〉 + 〈a〉b, (17)

from which we see that the critical noise f ud
c is related to the

number of actively connected links m, the average activity
〈a〉, and the attractiveness distribution. When we take the
attractiveness of individuals in the original AD models as a
constant value, i.e., F (b) = b0, the instantaneous degree be-
comes ka,b = m + m〈a〉 and the critical noise can be expressed
as

f ud
c ≈ 1

2
− 1

2

√
π

2

1√
m + m〈a〉 , (18)

from which we find that the critical noise is dependent on
ka,b = m + m〈a〉, where m is the number of actively connected
links and m〈a〉 is the expectation of the number of passively
received links. Like the MV model with the SD process, the
effect of instantaneous degree ka,b on the AD model is similar
to that of connectivity degree in RR networks [15], which
represents the number of neighbors interacting with an active
individual. Hence, the complicated expression of the critical
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noise is due to the heterogeneity of attractiveness on temporal
networks.

IV. SIMULATION RESULTS

In this section, we present the exact solutions of critical
noise in the MV model with the SD and the UD process,
respectively. We perform Monte Carlo (MC) simulations as
well as the equation iterations to verify the correctness of the
theoretical analysis. To do so, we generate temporal networks
with the ADA models, where activity and attractiveness are
independent, i.e., F (a, b) = F (a)F (b) and they both follow
the pow-law distribution F (a) ∼ a−γa , F (b) ∼ b−γb as empir-
ically observed in Refs. [16,35]. Each simulation starts with a
completely ordered state, that is, for ∀i ∈ N , σi(t = 0) = +1.
At each MC step, first, each active node is randomly chosen
once and then flips opinion with the probability according to
the process described in Eq. (1).

Our main observation measurement is the “magnetization”
M, which represents the consensus level of the system. First,
the instantaneous magnetization Mt at time t is calculated as

Mt =
∣∣∣∣∣

1

N

N∑
i=1

σi(t )

∣∣∣∣∣, (19)

where N is the network size and σi = ±1. Then M can be
expressed as the temporal average of Mt ,

M = [Mt ], t ∈ (tfinal/2, tfinal ), (20)

where · · · represents the temporal average value calculated for
the interval (tfinal/2, tfinal ) in stationarity. tfinal is the end time of
the simulation, and [· · · ] is the aggregate average of different
simulation results and network structures. If all individuals
are in the same opinion state, then we have M = 1. If the
individuals are divided into two opposite populations of equal
size, where the majority opinion does not exist, then we have
M = 0. Hence M can be regarded as the consensus level of
the system. To obtain the critical noise fc for the numerical
exact solution, we need to calculate the Binders fourth-order
cumulant U [16,37], which is defined as

U = 1 − [Mt
4]

3[Mt
2]

2 . (21)

The critical noise fc is calculated by detecting the criti-
cal point f = fc, where the curves U = U ( f ) obtained for
distinct networks sizes N intercept each other. In the sim-
ulations, fc is obtained by three distinct network sizes with
N = 1000, 5000, 10 000. For example, as shown in Fig. 3, in
the SD process, the curves intercept each other at critical noise
f sd
c = 0.167 for m = 3.

A. The MV model with the SD process

First, we explore the influence of the SD process on the
MV model on the ADA models. Since the activity and at-
tractiveness joint distribution does not affect the consensus
level at stationarity, we use a normalized activity and attrac-
tiveness distribution with a power-law form, F (a) ∼ a−2.1 and
F (b) ∼ b−2.1 with 〈a〉 = 〈b〉 = 0.2. Without specification, the
network size is set as N = 104.

FIG. 3. In the SD process, Binder’s fourth-order cumulant U on
the ADA models with m = 3. The network sizes are 1000, 5000, and
10 000, and the results are averaged over 20 network configurations.
The critical point is estimated as f sd

c =0.167.

Figure 4 shows the relationship between magnetization M
and noise parameter f in stationarity for different m. The dots
denote the MC simulation results, and the solid curves are
the solutions by iterating equations Eqs. (5) and (6). Triangle
symbols represent the critical noise obtained by Eq. (12). The
high consistency between simulation results and the iterative
results shows the correctness of the theoretical analysis. Fur-
thermore, when the value of noise parameter f is relatively
small, the system is in an ordered state, where M tends to 1.
With the increase of noise parameter f , the magnetization M
will continuously decrease to zero near the critical value f sd

c .
Then, in the region of f > f sd

c , there is no dominant opinion
in the system. State ±1 can be obtained with equal probability
0.5.

In the inset of Fig. 4, we show the errors between the MC
simulation results and the theoretical analysis from Eq. (12).

FIG. 4. The magnetization M of the MV model with the SD
process on the ADA models with m = 3, 5, 7. M is obtained from
10 network configurations for the MC simulation. Dots are the MC
simulation results and solid lines are the numerical solutions from
Eqs. (5) and (6). Inset: The critical value of noise intensity f sd

c

increases monotonically with m. “Simulation” represents the MC
simulation results and “theory” represents the theoretical results from
Eq. (11). Other parameters are set as F (a) ∼ a−2.1 and F (b) ∼ a−2.1

with 〈a〉 = 0.2 and 〈b〉 = 0.2.
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FIG. 5. The impacts of average activity 〈a〉 and the number of
actively connected edges m on the critical noise f in the MV model
with the UD process. (a) The magnetization M is plotted as a function
of noise intensity f for distinct values of 〈a〉. Dotlines represent the
MC simulations. (b) The critical noise f ud

c versus the 〈a〉 for distinct
values of m. “Simulation” represents the MC simulation results and
“theory” represents the theoretical results from Eq. (17). Other pa-
rameters are set as F (a) ∼ a−2.1 and F (b) ∼ b−2.1 with 〈b〉 = 0.2.

We see that with the increase of m, the critical noise threshold
f sd
c increases and the errors decreases. It indicates that actively

interacting with more people promotes the consensus in the
system. When m is relatively large, the instantaneous network
becomes denser and further increase in m has little influence
on the critical noise f sd

c , i.e., m = N − 1 → ∞, f sd
c → 0.5.

B. The MV model with the UD process

In this subsection, we show the phase transitions in the MV
model with the UD process. Active individuals interact with
both actively connected and passively connected neighbors at
the same time, which leads to the variety of the number of
different interactive individuals.

First, we illustrate the effect of f under different activ-
ity averages 〈a〉 on M. Here we perform simulations on the
ADA models with F (a) ∼ a−2.1, F (b) ∼ b−2.1, and m = 7. In
Fig. 5(a), we show the magnetization M as a function of f
for several distinct 〈a〉. By increasing the noise parameter f ,
the magnetization M continuously decreases to zero near the
critical value f ud

c . Comparing the results of different 〈a〉, we
find that smaller 〈a〉 can decrease the critical noise required to
reach the disordered state to a certain extent. As predicted by
the theory analysis, the critical noise f ud

c increases with 〈a〉,
which indicates that more individuals who actively interact
with each other will promote the consensus, thus leading to a
small critical noise f ud

c . More details are shown in Fig. 5(b),
where we present the relationship between f ud

c and 〈a〉 for dif-
ferent m. Like the SD process, f ud

c also increases with m, and
the errors between simulation results and theoretical results
become less with the increase of 〈a〉 and m. When interacting
with more individuals at each time, the results of both the
SD process and the UD process tend to be a consensus state.
It indicates that more active interactions between individuals
will promote the consensus in the network.

Since in the original AD model it does not take into ac-
count the heterogeneity of individuals’ attractiveness [27], we
can take the attractiveness of individuals in the AD models
as a constant value, i.e., F (b) = b0. As shown in Fig. 6(a),
compared with the AD model with constant b0, nonuniform
attractiveness leads to a larger critical noise f ud

c . This is

FIG. 6. The impact of attractiveness heterogeneity γb on the
critical noise f in the MV model with the UD process. Larger γb

represents that the network has lower attractiveness heterogeneity.
(a) The magnetization M as a function of the noise f for several
values of γb with 〈a〉 = 0.2. Dotlines represent the MC simulations.
(b) The critical noise f ud

c versus γb for distinct values of 〈a〉. “Simu-
lation” represents the MC simulation results and “theory” represents
the theoretical results from Eq. (17). Other parameters are set as
F (a) ∼ a−2.1 with 〈b〉 = 0.2 and m = 7.

because the heterogeneity of attractiveness strengthens the
influence of individuals who have large attractiveness. Thus,
when updating opinions, neighboring individuals have to
consider the opinions of these influential individuals. Further-
more, compared with the results with γb = 2.5, the network
with higher attractiveness heterogeneity promotes a higher
consensus level (γb = 2.1). More detailed results are pre-
sented in Fig. 6(b), which shows that the heterogeneity of
attractiveness promotes the transformation of magnetization
near phase transitions under different 〈a〉 and the errors
between simulation results and theoretical results become
smaller with the increase of 〈a〉 and γb. γb determines the
heterogeneity of attractiveness distribution and a larger γb

implies that less heterogeneous distribution of attractiveness
achieves a lower critical noise f ud

c . It indicates that in reality,
improving the credibility of the media and increasing the offi-
cial influence can effectively guide the trend of public opinion
and avoid chaos.

In addition, the comparison results of the SD process and
the UD process are shown in Fig. 7. It highlights the important
notable feature that the UD process (solid points) tends not
only to higher consensus level and larger M than the SD

FIG. 7. Comparison of the SD process and the UD process of the
MV model. Dots are the MC simulation results. The parameters are
set as F (a) ∼ a−2.1, F (b) ∼ b−3.1 with 〈a〉 = 0.2 and 〈b〉 = 0.2,
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FIG. 8. Statistical properties of the CollegeMsg Data Set.
(a) Fraction of active interaction for different time slice �T . The
proportion of interaction is more than 0.01 at most cumulative time
steps. (b) Cumulative distributions of activity and attractiveness for
the CollegeMsg Data Set.

process (hollow points) but also to hold the consensus level
up against larger noise.

All the above simulation results show that the critical noise
required to reach the disordered state is higher for the UD
process. In the SD process, the consensus level only depends
on m, since individuals only consider actively connected
neighbors’ opinions, while in the UD process, since active in-
dividuals interact with both actively connected and passively
connected neighbors simultaneously, the number of passively
received neighbors is affected by attractiveness distribution.
Consequently, the consensus level M is controlled by the
number of actively connected links and the hub individuals
with high attractiveness.

C. Real networks

In reality, active individuals interact with different individ-
uals on networks. As a next step, we study the process of
opinion dynamics on the real networks with the CollegeMsg
Data Set. The number of nodes is 1899, representing the
website individuals. The number of time-varying edges is
59 836, representing the real-time replies between individuals.
Multiple edges between two nodes are possible and denote
multiple interactions. The data are available in Ref. [38].

The contact sequences can be represented by the triples
χ [i, j, t], indicating that individual i actively interacts with
individual j at time t . The activity and attractiveness of
individiual i can be calculated by ai = ci,out/

∑
j c j,out and

bi = ci,in/
∑

j c j,in, where c j,in and c j,out represent the total
number of actively and passively connected edges in the
whole sequence, respectively. The distribution of activity and
attractiveness is shown in Fig. 8(b).

Since the finite duration of the datasets is not sufficient to
reach stationarity of opinion dissemination, we employ the
method of sequence replication to solve this problem [35].
The contact sequences are repeated on a regular basis, defin-
ing a new extended characteristic function as χ

SRep
e (i, j, t ) =

χ (i, j, t mod T ), where T is the total duration of the contact
sequence.

According to the time stamp of the original interaction
sequence, since the connectivity of the network is too low
to update the whole opinions, we use the method of equal

FIG. 9. The magnetization M versus the noise parameter f for
different time slice �T . (a) The SD process; (b) The UD process.

time interval division to slice the original sequence and in-
tegrate it with all the time series in the slice into a time
sequence snapshot. The size of the time interval determines
the number of active individuals and the number of edges
during the time slice. In order to explore the influence of the
time interval, we set the size of the time interval as follows:
�T = 1 × 105, 1 × 106, and 2 × 106. As shown in Fig. 8(a),
with the increase of �T , the number of active individuals
in the time accumulation network increases accordingly. The
proportion of average active individuals is more than 0.01. In
addition, as shown in Fig. 8(b), we find that the activity dis-
tribution and the attractiveness distribution are heterogeneous,
which indicates that individuals in the network have different
tendencies of active interaction and passive interaction.

Results of numerical simulations of the MV model with
the SD process and the UD process are summarized in Fig. 9.
Both the SD process and the UD process display the contin-
uous transitions. We note that the magnetization M is higher
in the UD process than in the SD process. Significantly, in
Fig. 9(a), different critical noise f sd

c on the SD process are ob-
served. In the previous analysis of the MV model on the ADA
models, we conclude that interacting with more people si-
multaneously will promote the consensus level in the system.
A larger �T implies more individuals and more interactions
occur simultaneously, which leads to the increase of magneti-
zation M and the critical noise f sd

c . As shown in Fig. 9(b), we
obtain similar result for the MV model with the UD process. It
is worth mentioning that f ud

c for the UD process is larger than
f sd
c for the SD process under the same configuration. The UD

process is a two-way interaction pattern which promotes the
interactions between individuals leading to various number of
neighbors for different individuals.

Overall, the results of the MV model on real networks are
similar to the results on the artificial networks. The SD process
is an actively interacting mode where individuals only actively
achieve information, such as review sites, Yelp, and resource
sharing websites. We note that consensus can be prevented
by employing the SD process to avoid the adverse effects of
popular opinion, such as the spread of fake news. For the
UD process, considering the influence of heterogeneity of
attractiveness, we can improve the influence and appeal of
official media to guide the trend of public opinion in a timely
manner.
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V. CONCLUSION

In this work, based on the observation that individuals
update their opinions by considering the neighbors with whom
they actively and passively interact, we formulate the MV
model with the SD process and the UD process on the ADA
models, respectively. In fact, in the SD process, the probability
that an active individual alters his or her state only depends on
actively connected neighbors, while it is dependent on both
actively connected and passively connected neighbors in the
UD process.

With the heterogeneous mean-field method, we obtain the
critical noise for the SD process and the UD process, respec-
tively. In the SD process, the consensus level only depends
on the number of links that active individuals send. More
links sent by active individuals will promote the consensus
level. In the UD process, individuals update their opinion
by considering both the neighbors that they actively connect
with and those that they passively received, determined by
the attractiveness. Thus, the critical noise parameter is de-
termined by the number of active links, average activity, and
the attractiveness distribution. A heterogeneous attractiveness
distribution leads to the existence of influential individuals
whose opinion will promote the consensus. Similarly, more
active individuals also promote the consensus in the network.

Compared with previous work on static networks, our
study aims at understanding the role of dynamical interaction

between individuals in the mode of opinion dynamics. In this
respect, we consider two different modes of interactions and
obtain continuous phase transitions, which is different from
those on static networks [14]. In the SD process, the critical
noise is similar to that of RR network, while in the UD
process, under some special conditions, such as homogeneous
attractiveness, the critical noise can also be recovered to a
similar result as in RR networks. However, several questions
remain open from the perspective of the current opinion mod-
els and the temporal networks in general. Extensions of the
present study to networks structures with more real social
network characteristics are possible, for example, the number
of neighbors that active individuals actively connect with is
different. In addition, models for opinion dynamics adapted
to different social situations deserves further study. We hope
this work could provide new inspiration for all these diverse
directions.
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