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Stability and selective extinction in complex mutualistic networks
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We study species abundance in the empirical plant-pollinator mutualistic networks exhibiting broad degree
distributions, with uniform intragroup competition assumed, by the Lotka-Volterra equation. The stability of a
fixed point is found to be identified by the signs of its nonzero components and those of its neighboring fixed
points. Taking the annealed approximation, we derive the nonzero components to be formulated in terms of
degrees and the rescaled interaction strengths, which lead us to find different stable fixed points depending
on parameters, and we obtain the phase diagram. The selective extinction phase finds small-degree species
extinct and effective interaction reduced, maintaining stability and hindering the onset of instability. The nonzero
minimum species abundances from different empirical networks show data collapse when rescaled as predicted
theoretically.
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I. INTRODUCTION

A community of randomly interacting species can be-
come unstable as the number of species and their interaction
connectivity together go beyond a threshold [1]. Such a
random-interaction model can be informative with the help
of the random matrix theory, and it has been instrumental
in the theoretical study of ecological systems, illuminating
their features from the perspective of stability [2–8]. Recently
available datasets point out the complex organization of inter-
specific interactions, neither completely random nor ordered
[9–18], and they have drawn the attention of researchers to the
origins and implications of overrepresented network structural
features [19–22]. Contrary to the unstructured communities
in which every species is subject to the identical randomness
in its interaction profile, individual species can be in fun-
damentally different states under structured interactions. For
instance, the mutualistic partnership between flowering plants
and pollinating bees is characterized by different numbers of
partners, called degrees, from species to species. Consider-
ing also the intrinsic competitions among plants and among
pollinators due to limited resources [20,23–29], one finds that
the abundance of a species increases due to the benefit from
mutualistic partners but also decreases due to the cost from
competition, the imbalance of which may lead some species
to flourish but others to become extinct [26,27]. The mecha-
nism driving such different fates across species remains to be
elucidated [30–33].

Here we investigate the different abundances and different
likelihood of extinction of individual species in heterogeneous
mutualistic networks from the perspective of stability. We
consider the Lotka-Volterra-type (LV) equation for species
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abundance on plant-animal mutualistic networks, with the
mutualistic interaction constructed from an empirical dataset
[34], which is heterogeneous, and all-to-all intragroup com-
petition assumed [4,20,23–29]. The strengths of mutualism
and competition are set to be uniform. We restrict ourselves
to the stationary state and study the stable fixed points. Ex-
ponentially many fixed points exist with zero components at
different species, but only the stable one is relevant to the
stationary state.

To find the stable fixed point, we first show that stability
can be assessed by the signs of the nonzero components of
the considered fixed point and its neighboring fixed points.
Next, approximating the adjacency matrix to be in factorized
form, we derive the nonzero components of each fixed point
to be formulated in terms of degrees and the rescaled inter-
action strengths. Using these results, we devise an algorithm
to classify species into surviving and extinct ones and thereby
formulate the stable fixed point, which turns out to work well,
as supported by good agreement with numerical solutions.
The extinction or the diverging abundances of selected species
happens depending on parameters, the analytic understanding
of which allows us to obtain the phase diagram, including the
full coexistence, selective extinction, and unstable phase. In
the selective extinction phase, small-degree species go extinct,
which results in reducing the effective interaction among the
surviving species and suppressing the onset of instability. Our
study enables a principled discrimination between surviving
and extinct species and the prediction of the abundances of
the surviving species, helping us to understand the interplay
of stability, species abundance, and extinction in structured
ecological communities.

II. MODEL

We consider a system of N (P) flowering plant species and
N (A) pollinating animal species. Their abundances xi’s evolve
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with time under the LV equation as

dxi(t )

dt
= xi

(
αi +

S∑
j=1

Bi jx j

)
, (1)

where S = N (P) + N (A) is the total number of species, αi = 1
is the intrinsic growth rate, and B = (Bi j ) is the S × S inter-
action matrix,

B ≡ −I − c(J (0) − I) + mA. (2)

Here I ≡ (I(PP) 0
0 I(AA) ) = I(PP) ⊕ I(AA) is the identify matrix

representing intraspecific regulation, J (0) ≡ (J(PP) 0
0 J(AA) ) =

J(PP) ⊕ J(AA) consists of the matrices of 1’s (Jpp′ = Jaa′ = 1
for all p, p′, a, a′) representing all-to-all competition among
plants and among pollinators along with strength 0 < c <

1, and A ≡ ( 0 A(PA)

A(AP) 0 ) = A(PA) ⊕ A(AP) is the symmet-

ric adjacency matrix (Apa = Aap = 0, 1) with A(AP) = A(PA)ᵀ

representing the mutualistic interaction along with the mutu-
alism strength m > 0. The useful properties of the matrices
of 1’s, which are given in Appendix A, enable various ana-
lytic calculations. There are L ≡ ∑

p,a Apa mutualistic partner
pairs.

We select a real-world community [35] in a database [34]
to construct the adjacency matrix A, and use it to define B by
Eq. (2), and we build all our theoretical framework, which
will be applied later to other communities. Notice that the
elements of B are not random numbers but represent the inter-
action relationships among different species with a uniform
interaction strength c or m. The whole interaction network
encoded in B and the distributions of the mutualism degrees,
kp ≡ ∑

a Apa of plants and ka ≡ ∑
p Apa of animals, are pre-

sented in Figs. 1(a) and 1(b), respectively. Different degrees
of species are a fundamental heterogeneity in their mutualistic
interaction profiles, which have been neglected in the random-
interaction model assuming the interaction strength between
each pair of species to be an independent and identically dis-
tributed random variable [1–8], but they are of main concern
in the present study.

Integrating Eq. (1) up to T = 103 with the initial condi-
tion xi(0) = 1, we find, as shown in Fig. 1(c), that xi(t )’s
for different species i exhibit different behaviors as functions
of time. They become stationary in the long-time limit, and
we approximate the stationary-state abundance by the species
abundance at the final time step T ,

x(st)
i ≡ lim

t→∞ xi(t ) � xi(T ). (3)

Some species show x(st)
i = 0, implying their extinction. Also,

as shown in Fig. 1(d), x(st)
i tends to grow with degree ki.

This correlation will be clarified in the next sections. An-
other remarkable feature is that the effect of mutualism on
the species abundance can be drastically different depending
on species [26,27,29]. The species with large degrees find
their abundances increasing with m, but the abundances of
the species having small degrees decrease with m [Fig. 1(d)].
In the next sections, we develop the analytic approach to
understand the nature and origin of such heterogeneity in the
species abundance depending on parameters.

P
A

(a)

(b)

(c)

(d)

FIG. 1. Interaction network and species abundance of the se-
lected community. (a) Interaction network of N (P) = 43 plant species
(green triangle) and N (A) = 64 animal species (red circle) con-
nected by L = 196 mutualistic interaction links (blue) and all-to-all
intragroup competition links (gray). Nodes of light red and light
green represent extinct species for c = 0.1 and m = 0.2. (b) Mutu-
alism degree distributions for plants (triangle) and animals (circle).
(c) Abundances of individual species (different lines) for c = 0.1 and
m = 0.2. (d) The stationary-state abundance vs degree for animal
species with c = 0.1 and selected m’s.

III. STABILITY

The state of a dynamical system, like Eq. (1), is expected
to converge to a stable fixed point in the long-time limit. If a
stable fixed point exists and is unique, its components will
give the stationary-state abundances that we obtain numeri-
cally.

014309-2



STABILITY AND SELECTIVE EXTINCTION IN COMPLEX … PHYSICAL REVIEW E 105, 014309 (2022)

Depending on which components are zero, there are 2S

different fixed points of Eq. (1). A fixed point �x∗ = (x∗
i ) has

components

x∗
i =

{
0 for i ∈ S (0),

−∑
j∈S (+) [(B(+) )−1]i j for i ∈ S (+),

(4)

where S (0) and S (+) are the set of the species with zero
and nonzero components in the considered fixed point, re-
spectively, and [(B(+) )−1]i j is the inverse of the effective
interaction matrix B(+) obtained by eliminating the rows and
columns of the species of S (0) in B [8]. We keep the indices i
or j of the original interaction matrix B such that B(+)

i j = Bi j

as long as i, j ∈ S (+).
The fixed point in Eq. (4) is stable if a small perturba-

tion δxi = xi − x∗
i does not grow persistently with time but

vanishes in the long-time limit. The time evolution of the
perturbation is given by d

dt δxi = Hi jδx j , which involves the
Jacobian matrix at the fixed point �x∗ = (x∗

i ) given by

Hi j = δi j

[
1 +

S∑
�=1

Bi�x∗
�

]
+ x∗

i Bi j . (5)

For i ∈ S (0), it holds that x∗
i = 0, and therefore one can see

that Hi j = δi j[1 + ∑S
�=1 Bi�x∗

� ]. For i ∈ S (+), it holds that 1 +∑
� Bi�x∗

� = 1 + ∑
�∈S (+) B(+)

i� x∗
� = 0, leading to Hi j = x∗

i Bi j .
If all the eigenvalues λi’s of H = (Hi j ) have negative real
parts, then the small perturbation will die out and the fixed
point can be considered as stable.

We derive the approximate expression for the eigenval-
ues of H. For i ∈ S (0), let us consider a neighboring fixed
point �x∗′ = (x∗′

� ) with S (+)′ = S (+) ∪ {i}, which satisfies 1 +∑
� Bi�x∗′

� = 1 + ∑
�∈S (+) Bi�x∗′

� + Biix∗′
i = 0. Assuming that

x∗′
� � x∗

� for � ∈ S (+) and using Bii = −1, we find Hi j �
δi jx∗′

i . Therefore, with rows and columns rearranged, the Ja-
cobian matrix H contains one zero submatrix, say, H (0+)

i j = 0,

and three nonzero block submatrices H (00)
i j � x∗′

i δi j, H (+0)
i j =

x∗
i Bi j , and H (++)

i j = x∗
i B(+)

i j such that

H =
(

H(00) 0
H(+0) H(++)

)
=

(
(δi jx∗′

i ) 0
(x∗

i Bi j ) (x∗
i B(+)

i j )

)
. (6)

Given the zero block submatrix, all the eigenvalues of H come
from the diagonal blocks, H (00)

i j � x∗′
i δi j and H (++)

i j = x∗
i B(+)

i j .
H(00) is already diagonalized, with x∗′

i ’s as its eigenvalues. To
obtain the eigenvalues of H(++), we decompose it as H (++)

i j =
−x∗

i δi j + Vi j with Vi j ≡ −cx∗
i (1 − δi j ) + mx∗

i Ai j and apply
the perturbation theory with Vi j taken as a perturbation to
obtain the approximate eigenvalues −x∗

i ’s for small c and m
as described in Appendix B and Ref. [33]. Therefore, we find
that the eigenvalues λi’s of H are approximately

λi �
{

x∗′
i for i ∈ S (0),

−x∗
i for i ∈ S (+).

(7)

A concrete example of constructing the Jacobian matrix and
deriving Eq. (7) for a small community is presented in Ap-
pendix B.

Using Eq. (7), we can see that all the eigenvalues are
negative, and the fixed point in Eq. (4) is stable when the
following conditions are met: (i) every species i that would
have a negative fixed-point abundance (x∗′

i < 0) if it were
added to S (+) has zero abundance (x∗

i = 0) and is in S (0), and
(ii) every species i in S (+) has a positive fixed-point abundance
(x∗

i > 0). If the components of a fixed point are known, one
can use these stability conditions to predict which species go
extinct and which species survive. In the next section, we
derive the approximate analytic formula for the components
of a fixed point and use it along with Eq. (7) to infer the stable
fixed point.

IV. ANALYTIC APPROACHES TO THE FIXED POINT

In this section, we assume that all species survive, S (0) =
∅, and we obtain the components of the corresponding fixed
point in Eq. (4). While the inverse of a matrix is not available
in a closed form in general, here we first consider the case of
zero or weak mutualism and then take an approximation for
the adjacency matrix to derive the components of the fixed
point. The obtained results will be generalized straightfor-
wardly to the case of S (0) = ∅ in Sec. V B.

A. No mutualism

Let us consider the case of no mutualism but competition
only. The interaction matrix for m = 0 is given in a simple
form as

B = B0 ≡ −(1 − c)I − cJ (0). (8)

Trying B−1
0 = − 1

1−c (I(PP) ⊕ I(AA) � b(P)J(PP) � b(A)J(AA)) as
its inverse and inserting it into B0B

−1
0 = I, we find that b(P) =

c̃(P)

N (P) and b(A) = c̃(A)

N (A) , where the rescaled competition strengths
c̃(P) and c̃(A) are defined as

c̃(G) ≡ cN (G)

cN (G) + 1 − c
(9)

with G representing either P or A. The properties of the matrix
of 1’s, such as J(PP)J(PP) = N (P)J(PP), are used for derivation.
The rescaled competition c̃(G) ranges between 0 and 1, and
grows with c and N (G) as long as 0 < c < 1.

The inverse matrix B−1
0 is represented in a compact form

as

B−1
0 = (1 − c)−1(−I + c̃J̃ (0) ) (10)

with c̃ ≡ c̃(P)I(PP) ⊕ c̃(A)I(AA) and J̃ (0) ≡ J(PP)

N (P) ⊕ J(AA)

N (A) . Then
the component of the fixed point in Eq. (4) with S (0) = ∅ is
given by

x∗(0)
i = x(Gi )

0 ≡ 1 − c̃(Gi )

1 − c
= 1

cN (Gi ) + 1 − c
, (11)

where Gi is the group the species i belongs to, either P or
A. The superscript (0) means the zeroth-order approximation.
The first-order correction will be presented as well in the next
subsection, and then we move to the approximation for gen-
eral m. For 0 < c < 1, Eq. (11) is positive for all i. Therefore,
all the eigenvalues of the Jacobian in Eq. (7) with S (0) = ∅
are negative, and the fixed point with Eq. (11) for all i is the
stable fixed point. The increase of the competition strength c
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or of the number of species N (Gi ) leads to the decrease of the
abundance x∗(0)

i .

B. Weak mutualism

Suppose that the mutualism strength m is not zero but
small. Expanding the inverse B−1 as

B−1 = (B0 + mA)−1 = B−1
0

∞∑
n=0

( − mAB−1
0

)n
(12)

with B0 given in Eq. (8), and utilizing the relations like
A(PA)J(AA) = K(PP)J(PA) with Kpp′ = kpδpp′ a block in the de-
gree matrix,

K ≡ K(PP) ⊕ K(AA), (13)

one can evaluate the first-order term in m in Eq. (12) to obtain
the first-order approximation

x∗(1)
i � x(Gi )

0

[
1 + m

1 − c

1 − c̃(Ḡi )

1 − c̃(Gi )
(ki − c̃(Gi )〈k〉(Gi ) )

]
(14)

with the mean degree 〈k〉(G) ≡ L
N (G) . This first-order ap-

proximation works if ||AB−1
0 || is sufficiently small. See

Appendix C for more details.
The formula in Eq. (14) allows us to understand the ori-

gin of the ambivalent effects of mutualism on the species
abundance as observed in Fig. 1(d). The two terms in the
parentheses in Eq. (14) represent the mutualistic benefit of
a species i (in group Gi) from its ki mutualistic partners in
group Ḡi, and the competition with other species in the same
group Gi that also benefit from mutualism, respectively. Their
difference may be positive or negative depending on degree
ki. It is the species with ki > c̃(G)〈k〉(Gi ) that finds abundance
increasing with increasing m; the abundance of the species
with ki < c̃(G)〈k〉(Gi ) decreases with m, as its mutualistic ben-
efit is overwhelmed by the competition with the species in the
same group to the extent proportional to m in the first-order
approximation.

One caveat is that Eq. (14) can be negative depending
on parameters, which suggests that the fixed point with all
species surviving is unstable and that some species will turn
out to have zero abundance in the stable fixed point. This will
be explored in Sec. V B.

C. Annealed approximation for general m

Each term for n � 1 in Eq. (12) represents the sum of
the influences of other species on the abundance of a species
built up over the pathways involving n mutualistic pairs. To
analytically track such higher-order contributions, we con-
sider the annealed adjacency matrix Ãpa ≡ kpka

L , meaning the
probability to connect p and a in the network ensemble for a
given degree sequence [36], and equivalently

Ã = L−1KJ (1)K, (15)

where K is the degree matrix introduced in Eq. (13), and
J (1) contains the matrices of 1’s at the off-diagonal blocks
as J (1) ≡ J(PA) ⊕ J(AP) with Jpa = Jap = 1 for all p and a.
Then, after some algebra utilizing the properties of the ma-
trices of 1’s as detailed in Appendix D, we find each term

B−1
0 (−mÃB−1

0 )n reduced to

B−1
0

(−mÃB−1
0

)n =
{− m̃n

1−c K̃J̃ (1)K̃ for n = 1, 3, 5, . . . ,

− m̃n

1−c K̃J̃ (0)K̃ for n = 2, 4, 6, . . . ,

(16)

where we introduced J̃ (1) ≡ J(PA)√
N (P)N (A)

⊕ J(AP)√
N (P)N (A)

, K̃ ≡
K(PP)

〈k〉(P) −c̃(P)I(PP)

√
ξ (P)−c̃(P)

⊕
K(AA)

〈k〉(A) −c̃(A)I(AA)

√
ξ (A)−c̃(A)

, and the rescaled mutualism

strength m̃,

m̃ ≡ m

1 − c

√
〈k〉(P)〈k〉(A)(ξ (P) − c̃(P) )(ξ (A) − c̃(A) ) (17)

with the ratio of the first two moments of the mutualism
degree

ξ (G) ≡ 〈k2〉(G)

〈k〉(G)2 (18)

quantifying the heterogeneity of degree [22]. The rescaled
mutualism m̃ is the key parameter governing the species
abundance, capturing the effects of network structural hetero-
geneity on the species abundance.

All the terms for n � 1 in Eq. (12) are proportional to either
J̃ (0) or J̃ (1), with m̃n in the coefficient. Consequently, the sum
of the influences of interspecific interactions over all possible
pathways in Eq. (12) is reduced to two infinite geometric
series, manifesting the advantage of the annealed approxima-
tion. Then the inverse matrix is expressed in a closed form as

B̃−1 = B−1
0 − 1

1 − c

m̃

1 − m̃2
K̃(m̃J̃ (0) + J̃ (1) )K̃. (19)

Substituting Eq. (19) in Eq. (4), we obtain the fixed point

x̃∗
i = x(Gi )

0

(
1 + k̄im̃

m̃ + η(GiḠi )

1 − m̃2

)
(20)

with the rescaled degree

k̄i ≡
ki

〈k〉(Gi ) − c̃(Gi )

ξ (Gi ) − c̃(Gi )
, (21)

and the asymmetry factor

η(PA) ≡ 1 − c̃(A)

1 − c̃(P)

√
〈k〉(P)(ξ (P) − c̃(P))

〈k〉(A)(ξ (A) − c̃(A))
= 1

η(AP)
. (22)

The formula in Eq. (20) is the main result of the present
work, representing the abundance of individual species under
heterogeneous mutualistic interactions and uniform intra-
group competition. It is the cornerstone of the results that
follow in the next sections. The abundance is given by a
nonlinear function of the rescaled mutualism m̃ in Eq. (17),
revealing how the higher-order contributions of interspecific
interactions are combined with the network structure. The
increase of mean connectivity 〈k〉(P,A) or the increase of the
degree heterogeneity ξ (P,A) enhances the rescaled mutualism
strength. As m̃ increases, x̃∗

i may increase or decrease, de-
pending on the sign of the rescaled degree k̄i. The rescaled
degree quantifies the imbalance of the mutualism benefit and
the competition cost; x̃∗

i increases (decreases) with m̃ if k̄i is
positive (negative) as long as 0 < m̃ < 1.
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One can notice that x̃∗
i in Eq. (20) can be negative for some

species i depending on parameters and degree, implying then
that Eq. (20) is not the stable fixed point and invoking the
necessity to classify correctly surviving and extinct species.
The divergence of Eq. (20) at m̃ = 1 suggests the onset of
instability, which can be suppressed up to a larger value of
m̃ than 1, along with the extinction of selected species, as we
will see.

V. PHASE DIAGRAM

Some of the formulated abundances in Eq. (20) can be neg-
ative depending on parameters. Then, by Eq. (7), some species
may have to have zero abundance, and the remaining surviv-
ing species should have positive abundances different from
Eq. (20) as the interspecific interaction among the surviving
species should be considered to formulate their abundances.
In this section, we investigate the stable fixed point depending
on parameters by identifying the species to go extinct, if any,
and recalculating the abundance of the surviving species, and
we obtain the phase diagram.

A. Full coexistence phase

Let us call it full coexistence if there is no extinct species,
i.e., if x(st)

i > 0 for all i. For sufficiently small m̃, the numeri-
cally and analytically obtained values for the stationary-state
abundance, x(st)

i and x̃∗
i in Eq. (20), are in good agreement.

This agreement implies that in the full-coexistence phase
(i) the annealed approximation works, x(st)

i � x̃(st)
i , and (ii)

Eq. (20) is stable, x̃(st)
i = x̃∗

i , where x̃(st)
i is the stationary-state

abundance from the solution to Eq. (1) with the annealed
adjacency matrix Ãi j used. See Appendix E for different kinds
of species abundances used in this paper.

From Eq. (7), the full-coexistence fixed point in Eq. (20) is
stable only if all x̃∗

i ’s are positive. This holds for m̃ < m̃∗
e (c) ≡

min(m̃∗(P)
e (c), m̃∗(A)

e (c)) with

m̃∗(G)
e (c)

≡
⎧⎨⎩1 for c < c∗(G)

min ,√
4(1−k̄(G)

min )+(k̄(G)
minη

(GḠ) )2+k̄(G)
minη

(GḠ)

2(1−k̄(G)
min ) for c > c∗(G)

min .
(23)

Here k̄(G)
min is the rescaled degree of the group-G species having

the smallest degree k(G)
min, and c∗(G)

min is defined as

c∗(G)
min ≡ k(G)

min

N (G)
(〈k〉(G) − k(G)

min

) + k(G)
min

, (24)

such that k̄(G)
min < 0 for c > c(G)

min.
The predicted boundary of the full coexistence phase m̃∗

e (c)
is shown by a dashed line in Fig. 2(a), which is fixed at 1
for c < c∗

min ≡ min(c∗(P)
min , c∗(A)

min ) and decreases with c for c >

c∗
min. For c < c∗

min, all species have positive rescaled degrees,
k̄i > 0, and their fixed-point abundances x̃∗

i increase with m̃
until diverging at m̃ = m̃∗

e (c) = 1. Considering the fraction of
diverging-abundance species ru ≡ S−1 ∑

i θ (x(st)
i − M ) with

M = 105, we call it the unstable phase if ru > 0. We de-
fine the instability threshold m̃u(c) such that ru > 0 for m̃ �
m̃u(c). One finds in Eq. (20) that the theoretical prediction for

Full coexistence

Selective

 extinction

Unstable

(b)

(a)

FIG. 2. Phase diagram and stability for the selected community
[35]. (a) The phase boundaries m̃(st)

e and m̃u based on the stationary-
state abundances are compared with the theoretical prediction m̃∗

e and
m̃∗

u from Eq. (23) and the condition m̃(+)|m̃∗
u

= 1, respectively. (b) The
largest real part 	(st) of the eigenvalues of the Jacobian matrix at �x(st)

and that at �x∗ approximated as 	̃∗ = maxi∈S (0), j∈S (+) (x̃∗′
i , −x̃∗

j , −1)
are shown as functions of m̃ for c = 0.1.

the instability threshold is given by m̃∗
u (c) = 1 for c < c∗

min,
which agrees with the boundary of the full coexistence phase
m̃∗

e (c) = 1 in Eq. (23). Notice that the unstable phase meets
the full coexistence phase at m̃ = 1 for c < c∗

min [Fig. 2(a)].
When c is larger than c∗

min and m̃ is larger than m̃∗
e (c),

there appear some species i with x̃∗
i < 0 according to Eq. (20),

implying that they should go extinct, having zero abundance
in the true stable fixed point. Computing the fraction of extinct
species in terms of their stationary-state abundances as

r (st)
e ≡ S−1

S∑
i=1

θ
(
ε − x(st)

i

)
, (25)

with ε = 10−5 introduced under finite precision of numerics
and the Heaviside step function θ (x) = 1 for x > 0 and 0
otherwise, we find that r (st)

e becomes nonzero as m̃ exceeds
the extinction threshold m̃(st)

e (c) for c > c∗
min, which is well

approximated by the predicted threshold m̃∗
e (c) in Eq. (23)

[Fig. 2(a)]. Let us call it selective extinction if there exist
extinct species (r (st)

e > 0) but no abundance-diverging species
(ru = 0). Our analysis shows that the full-coexistence phase
meets the selective extinction phase at m̃(st)

e � m̃∗
e for c > c∗

min.
While we showed that the full-coexistence phase ends at m̃(st)

e ,
it remains to be explored which species go extinct and what
happens for the remaining surviving species. This will be
addressed in the next subsection in details.
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In Fig. 2(b), the largest real part 	(st) of the eigenvalues
of the Jacobian H computed at the stationary-state abundance
�x(st) = (x(st)

i ) is shown to be negative in the full-coexistence
phase, demonstrating the stability of �x(st). The analytically
obtained fixed point �̃x∗ = (x̃∗

i ) is stable as well; the largest
eigenvalue 	̃∗ of the Jacobian H̃i j = δi j[1 + ∑S

�=1 B̃i�x̃∗
� ] +

x̃∗
i B̃i j is evaluated as 	̃∗ = maxi(−x̃∗

i ,−1), from Eq. (7) and
the property that H̃i j has the eigenvalue −1 (Appendix B), and
it remains negative in the full-coexistence phase. Moreover,
we see a good agreement between 	 and 	̃∗.

B. Selective extinction phase

If the set S (0) of extinct species is known, one can apply
Eq. (20) to the subcommunity of the surviving species and
obtain their abundances analytically. Removing the rows and
columns of the species belonging to S (0) in the full matrix
B̃ and also in the adjacency matrix Ã, one can obtain the
effective interaction matrix B̃(+) and the effective adjacency
matrix Ã(+) for the surviving-species community, from which
we can compute the effective quantities such as x(G,+)

0 , k̄(+)
i ,

m̃(+), and η(PA,+) as described in Appendix F. Using them in
Eq. (20), one can obtain the approximate stable fixed point

x̃∗
i =

{
0 for i ∈ S (0),

x(Gi,+)
0

(
1 + k̄(+)

i m̃(+) m̃(+)+η(Gi Ḡi ,+)

1−(m̃(+) )2

)
for i ∈ S (+).

(26)

The sets of extinct and surviving species, S (0)
stable and S (+)

stable,
for the stable fixed point are not given a priori. Examining all
possible sets S (0) and identifying the one yielding all negative
eigenvalues as given in Eq. (7) could be done, but it takes a
very long time.

Our analytic results, Eqs. (7) and (26), give a clue to pro-
ceed. Suppose that we have a pair of disjoint sets S (0) and S (+)

with S ≡ S (0) ∪ S (+) the set of all species. If a species in S (+)

with a small (large) effective degree has a negative (positive)
value of x̃∗

i from Eq. (26), then it will be likely to be in the
right set S (0)

stable (S (+)
stable) for the stable fixed point according to

Eq. (7). Using this reasoning, we can update iteratively S (0)

and S (+) towards obtaining S (0)
stable and S (+)

stable as follows.
Initially we begin with S (0) = ∅, S (+) = S , B̃(+) = B̃, and

x̃∗
i evaluated by Eq. (26). Then, the following procedures are

repeated until stopping at step (iii):
(i) We label as new extinct species all the plant (animal)

species pe’s (ae’s) with their fixed-point abundances x̃∗
pe

(x̃∗
ae

)
having a different sign from that of the hub plant species
x̃∗

phub
(animal species x̃∗

ahub
), the one having the largest effective

degree.
(ii) Go to step (iv) if there are such new extinct species, or
(iii) Stop if there are none.
(iv) We remove those new extinct species from S (+) and

add them to S (0) and update B̃(+) by eliminating their rows
and columns, and

(v) Set x̃∗
pe

= x̃∗
ae

= 0, and evaluate x̃∗
i ’s for the remaining

surviving species i by Eq. (26) using the new B̃(+).
Note that the effective rescaled mutualism strength m̃(+)

can be larger than 1, making the hub abundances negative
according to Eq. (26) in the middle of the above procedures,

which is why we compare the sign of the abundance of a
species with that of hub species to identify extinct species. At
the end of these procedures we are given S (0)

stable and S (+)
stable,

which we use to obtain the stable fixed point x̃∗
i ’s from

Eq. (26) [37].
As shown in Fig. 3(a), the predicted abundance x̃∗

i ap-
proximates reasonably the stationary-state abundance x(st)

i . It
grows with degree ki and takes a zero value for the species
with the smallest degrees, demonstrating the crucial role of
degree on extinction. Its origin can be understood by exam-
ining the rescaled degree, the imbalance of the mutualistic
benefit, and the competition cost, the former of which is
proportional to the raw degree. The stable fixed point x̃∗

i
predicts whether a species survives or goes extinct correctly
for 80% of species across parameters; the predicted fraction
r̃∗

e ≡ S−1 ∑
i θ (ε − x̃∗

i ) of extinct species is in good agreement
with the true value r (st)

e in Eq. (25), which plays the role of
the order parameter distinguishing the full-coexistence phase
(re = 0) and the selective extinction phase (re > 0) [Fig. 3(b)].

Deviations stem from the annealed approximation. The
stationary-state abundance x̃(st)

i under the annealed adjacency
matrix agrees perfectly with x̃∗

i (Appendix G), and the pre-
dicted fraction of extinct species r̃∗

e explains very well the true
value r̃e under the annealed adjacency matrix (Appendix H).
Instead of using B̃ and Eq. (26), one can also use B and
Eq. (4) in the above procedures to identify the set of extinct
and surviving species and obtain the stable fixed point x∗

i from
Eq. (4), which agrees very well with x(st)

i as shown in Fig. 3(a).
One might have expected instability to arise at m̃ = 1 from

Eq. (20). However, the extinction of the small-degree species
effectively reduces m̃ to m̃(+) [Fig. 3(b)] and the abundances
of the surviving species are evaluated by Eq. (26). The effec-
tive rescaled mutualism strength m̃(+) is kept smaller than 1,
preventing the onset of instability, up to m̃u(c) for c > c∗

min. As
the smallest-degree species go extinct, we find that the degree
heterogeneity is reduced in the interaction network of the
surviving species, which drives the reduction of the effective
rescaled mutualism strength (Appendix F). Like in the full
coexistence phase, the largest real part of the eigenvalues 	

at �x(st) and 	̃∗ = maxi∈S (0)
stable, j∈S (+)

stable
(x̃∗′

i ,−x̃∗
j ,−1) at the stable

fixed point x̃∗
i remains negative in the selective extinction

phase, demonstrating stability [Fig. 2(b)].
The selective extinction phase meets the unstable phase at

m̃u(c) where the fraction of abundance-diverging species ru

becomes nonzero. The instability threshold m̃u(c) coincides
with its theoretical prediction m̃∗

u at which m̃(+) = 1 and x̃∗
i in

Eq. (26) diverges [Fig. 3(b)]. For m̃ > m̃∗
u , the nonzero com-

ponents of the stable fixed point become negative, featuring
the nonzero fraction r̃∗

u ≡ S−1 ∑
i θ (−ε − x̃∗

i ) of the species
having negative x̃∗

i .
Lastly, to demonstrate the general applicability of our

analytic results, we study the minimum stationary-state abun-
dance of the surviving species x(st)

min in 46 large empirical
mutualistic networks with N (P), N (A) � 20 [34]. As in Sec. II,
we assume the uniform intragroup competition with strength
c, and we use the datasets to construct the mutualism adja-
cency matrices with the mutualism strength m.

From the theoretical framework developed in the previous
sections, x(st)

min can be approximated by the nonzero minimum

014309-6



STABILITY AND SELECTIVE EXTINCTION IN COMPLEX … PHYSICAL REVIEW E 105, 014309 (2022)

(c)

(a)

(b)

FIG. 3. Selective extinction phase. (a) Stationary-state abundances x(st)
i are compared with the stable fixed-point ones x∗

i ’s and x̃∗
i ’s for

c = 0.1 and m̃ = 0.8. The species index i is arranged in descending order of degree among plants and animals. Inset: Abundance vs degree.
(b) Fraction r (st)

e of extinct species and ru of the abundance-diverging species based on the stationary-state abundance for c = 0.1. They are
compared with r̃∗

e and r̃∗
u based on the stable fixed point x̃∗

i ’s and also with r∗
e based on x∗

i ’s. The critical points are also marked, m̃(st)
e � 0.53

and m̃∗
e � 0.61. Inset: The effective rescaled mutualism strength m̃(+) reaches 1 at m̃ = m̃∗

u � 1.3 for c = 0.1. (c) The collapse of the nonzero
minimum abundances x(st)

min rescaled as in Eq. (27) in 46 real-world communities as functions of m̃(+).

component of the stable fixed point, x̃∗
min = mini∈S (+)

stable
x̃∗

i =
x̃∗

imin
representing the predicted abundance of species imin.

From Eq. (26), we find that x̃∗
min behaves as a function of m̃(+)

as
x̃∗

min

x(+)
0,min

− 1

k̄(+)
minη

(+)
min

� m̃(+)

1 − m̃(+)
, (27)

where k̄(+)
min ≡ k̄imin , x(+)

0,min ≡ x
(Gimin ,+)
0 , and η

(+)
min ≡

η(Gimin Ḡimin ,+), and we approximate 1 + m̃(+)/η
(+)
min by 1 + m̃(+)

on the right-hand-side. In Fig. 3(c), the plots of the rescaled
minimum abundance given by the left-hand-side of Eq. (27)
with x(st)

min in place of x̃∗
min versus m̃(+) for c = 0.1 in 46

empirical mutualistic networks collapse reasonably onto
m̃(+)

1−m̃(+) in agreement with Eq. (27). There are outliers, though.
About 6% of the data points have their rescaled minimum
abundances negative, and they are thus neglected in Fig. 3(c).
Some of the outliers seen in Fig. 3(c) are attributed to the
annealed approximation, which returns close to the theoretical
curve in the annealed network [see Fig. 6(e)]. Outliers seen
for m̃(+) � 1 in Fig. 6(e) suggest the possible relevance of
network characteristics beyond the degree sequence, which
needs further investigation.

VI. SUMMARY AND DISCUSSION

While various theoretical approaches have been estab-
lished for studying the stability and biodiversity of random
unstructured communities, the relation between the structured
interaction, universal in the real world, and the emergent phe-
nomena of the community has been little understood, partly
due to the lack of an analytically tractable model. Here we
considered a model community of two groups of species—
plants and pollinators—under uniform intragroup competition
and empirical heterogeneous intergroup mutualism, and we
investigated analytically and numerically the abundance and
extinction of individual species in that community.

Deriving the stability condition and the stable fixed point of
the LV equation, we quantified the influences of the structural
heterogeneity. The strength of mutualism is rescaled by the
degree heterogeneity. The species with few mutualistic part-
ners are driven to extinction by their little benefit of mutualism
compared with the high cost of competition. As the mutualism
strength increases, more species find benefit falling short of
cost, resulting in the increase of the number of extinct species.
The effective rescaled mutualism among the surviving species
is reduced with respect to the original one, which enables the
community of the surviving species to be stable for a wide
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range of parameters, delaying the onset of instability. The
number of extinct species and the fraction of the abundance-
diverging species play the roles of the order parameter in the
phase diagram.

Going beyond the annealed approximation to identify fur-
ther network characteristics than degree may provide rich
concepts and methods to characterize the structure-function
relationship of ecological communities. Contrary to the un-
structured communities where the interspecific interaction
patterns and strengths are random and distributed identically
across species, the number of mutualistic partners is different
from species to species in the structured community that we
study in the present work. We showed how the abundance and
the likelihood of extinction depend on the degree of a species.
Real-world communities should exhibit both nonuniform in-
teraction strengths and heterogeneous connection patterns.
If our analytic framework can be generalized to handle not
only heterogeneity but also the randomness of the interaction
matrix, it will help us to better understand how structural
heterogeneity and randomness together govern the stability
and species extinction of real-world communities.
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APPENDIX A: PROPERTIES OF THE MATRICES OF 1’S

The matrix of 1’s denoted by J having all elements equal
to 1, Ji j = 1 for all i and j, is used in the present work to
represent the all-to-all uniform competition among plants and
among animals via J(PP) and J(AA) of dimension N (P) × N (P)

and N (A) × N (A), respectively, and also to represent the uni-
form coupling between plants and animals, appearing in the
annealed adjacency matrix, via J(PA) and J(AP) of dimension
N (P) × N (A) and N (A) × N (P), respectively. We also consider
its integrated versions in block-matrix form

J (0) ≡
(

J(PP) 0
0 J(AA)

)
= J(PP) ⊕ J(AA),

J (1) ≡
(

0 J(PA)

J(AP) 0

)
= J(PA) ⊕ J(AP), (A1)

with ⊕ representing the direct sums of two matrices of 1’s
defined on different groups of nodes, and the rescaled matrices
given by

J̃ (0) ≡
( J(PP)

N (P) 0
0 J(AA)

N (A)

)
= J(PP)

N (P)
⊕ J(AA)

N (A)
,

J̃ (1) ≡
(

0 J(PA)√
N (P)N (A)

J(AP)√
N (P)N (A)

0

)
= J(PA) ⊕ J(AP)

√
N (P)N (A)

. (A2)

In this Appendix, we present their useful properties, which are
used to derive the analytic results presented in the main text.

Let us denote the matrices of 1’s of dimension
N1 × N2 by J(N1×N2 ). If one multiplies J(N1×N2 ) and
J(N2×N3 ), then she obtains J(N1×N2 )J(N2×N3 ) = N2J(N1×N3 ), since∑N2

j=1 J (N1×N2 )
i j J (N2×N3 )

jk = ∑N2
j=1 1 = N2 for all 1 � i � N1

and 1 � k � N3. Therefore, we have

J(G1G2 )J(G2G3 ) = N (G2 )J(G1G3 ), (A3)

where G1, G2, G3 ∈ {P, A}. Using this result, one can see that
the rescaled block matrices of 1’s satisfy

J̃ (0)J̃ (0) = J̃ (0),

J̃ (1)J̃ (1) = J̃ (0),

J̃ (0)J̃ (1) = J̃ (1)J̃ (0) = J̃ (1). (A4)

The multiplication of J with the adjacency matrix A(PA) or
A(AP) = A(PA)ᵀ is evaluated as

A(G1G2 )J(G2G3 ) = K(G1 )J(G1G3 ),

J(G1G2 )A(G2G3 ) = J(G1G3 )K(G3 ), (A5)

where we use, for instance, that
∑

a′ Apa′Ja′a = ∑
a′ Apa′ = kp

and
∑

p′ Jpp′Ap′a = ka. Note that Kpp′ = kpδpp′ and Kaa′ =
kaδaa′ . The block adjacency matrix defined as

A ≡
(

0 A(PA)

A(AP) 0

)
= A(PA) ⊕ A(AP), (A6)

the block rescaled matrices of 1’s J̃ (0) and J̃ (1), and the block
degree matrix defined as

K ≡
(

K(PP) 0
0 K(AA)

)
= K(PP) ⊕ K(AA) (A7)

satisfy the following equalities:

AJ̃ (0) = KÑJ̃ (1), J̃ (0)A = J̃ (1)ÑK,

AJ̃ (1) = KÑJ̃ (0), J̃ (1)A = J̃ (0)ÑK (A8)

with Ñ ≡ (

√
N (P)

N (A) I(PP) 0

0
√

N (A)

N (P) I(AA)
) =

√
N (P)

N (A) I(PP) ⊕
√

N (A)

N (P) I(AA).

Multiplying the degree matrices K(PP) and K(AA) by J
matrices yields

J(G1G2 )K(G2 )J(G2G3 ) = LJ(G1G3 ),

J(G1G2 )(K(G2 ))2J(G2G3 ) = N (G2 )〈k2〉(G2 )J(G1G3 ), (A9)

where we used
∑

a1a2
Jaa1 Ka1a2 Ja2 p = ∑

a1
ka1 = L and∑

p1,p2,p3
Jpp1 Kp1 p2 Kp2 p3 Jp3a = ∑

p1
k2

p1
= N (P)〈k2〉(P), and

〈k2〉(G) = ∑
i∈S (G) k2

i /N (G) is the mean of the square of the
degree of species of group G with S (G) the set of group-G
species. The block matrices satisfy

J̃ (0)KJ̃ (0) = J̃ (0)〈K〉,
J̃ (0)KJ̃ (1) = 〈K〉J̃ (1),

J̃ (1)KJ̃ (0) = J̃ (1)〈K〉,
J̃ (1)KJ̃ (1) = 〈k〉(P)〈k〉(A)〈K〉−1J̃ (0),

J̃ (1)K2J̃ (1) = 〈k2〉(P)〈k2〉(A)〈K2〉−1J̃ (0), (A10)

with 〈K〉 ≡ 〈k〉(P)I(PP) + 〈k〉(A)I(AA) being the sum of the
identity matrices multiplied by the group averages. These
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relations are valid also for a function f (K) of K as

J̃ (0) f (K)J̃ (0) = J̃ (0)〈 f (K)〉,
J̃ (0) f (K)J̃ (1) = 〈 f (K)〉J̃ (1),

J̃ (1) f (K)J̃ (0) = J̃ (1)〈 f (K)〉,
J̃ (1) f (K)J̃ (1) = 〈 f (K)〉(P)〈 f (K)〉(A)〈 f (K)〉−1J̃ (0), (A11)

where

〈 f (K)〉 ≡ Tr f (K(PP))

N (P)
I(PP) ⊕ Tr f (K(AA))

N (A)
I(AA)

= 〈 f (K)〉(P)I(PP) ⊕ 〈 f (K)〉(A)I(AA) (A12)

is the sum of the group averages of f (K), and its inverse
means 〈 f (K)〉−1 = 1

〈 f (K)〉(P) I(PP) ⊕ 1
〈 f (K)〉(A) I(AA). For general

z, 〈 f (K)〉z = (〈 f 〉(P))zI(PP) ⊕ (〈 f 〉(A))zI(AA). The multiplica-
tion of 〈 f (K)〉 and J̃ (1) is not commutative:

〈 f (K)〉J̃ (1) = 〈 f (K)〉(P)〈 f (K)〉(A)J̃ (1)〈 f (K)〉−1,

J̃ (1)〈 f (K)〉 = 〈 f (K)〉(P)〈 f (K)〉(A)〈 f (K)〉−1J̃ (1), (A13)

which can be seen by considering, for instance, the P-block of
〈 f (K)〉J̃ (1)X as 〈 f 〉(P)J(PA)X(A) = 〈 f 〉(P)〈 f 〉(A)J(PA) 1

〈 f 〉(A) X(A)

with X = X(P) ⊕ X(A).

APPENDIX B: EIGENVALUES
OF THE JACOBIAN MATRIX

To help understand Eq. (7), here we construct the Jacobian
matrix for a small community as a concrete example, and we
present the eigenvalue perturbation theory that we used in the
main text.

1. Jacobian matrix for a small community

Let us consider a community consisting of S = 4 species
and a fixed point �x∗ = (x∗

1 = 0, 0, 0, x∗
4 = 0) of the LV equa-

tion for the community, which corresponds to S (0) = {2, 3}
and S (+) = {1, 4}. As shown in Eq. (4), the nonzero compo-
nents (abundances) of species 1 and 4 in S (+) satisfy

B(+)

(
x∗

1
x∗

4

)
=

(
B11 B14

B41 B44

)(
x∗

1
x∗

4

)
= −

(
1
1

)
,

where we introduced the effective interaction matrix B(+) by
eliminating the rows and columns of the species, 2 and 3, of
S (0) in the original 4 × 4 interaction matrix B while keeping
the original indices of rows and columns. Using Eq. (5) and
rearranging the order of indices as (2 3 1 4), we find the
Jacobian matrix at the considered fixed point given by

H =⎛⎜⎝1+B21x∗
1+B24x∗

4 0 0 0
0 1+B31x∗

1+B34x∗
4 0 0

x∗
1B12 x∗

1B13 x∗
1B11 x∗

1B14

x∗
4B42 x∗

4B43 x∗
4B41 x∗

4B44

⎞⎟⎠,

which is represented as in Eq. (6) in terms of the block
matrices

H(00) =
(

H22 0
0 H33

)

=
(

1 + B21x∗
1 + B24x∗

4 0
0 1 + B31x∗

1 + B34x∗
4

)
and

H(++) =
(

H11 H14

H41 H44

)
=

(
x∗

1B11 x∗
1B14

x∗
4B41 x∗

4B44

)
.

Note that B(+)
i j = Bi j if i, j = 1 or 4 in our example.

The diagonal elements H22 and H33 are the eigenvalues
of H(00), as H(00) is a diagonal matrix. The diagonal ele-
ments can be further simplified. Let us first consider H22 =
1 + B21x∗

1 + B24x∗
4 . A clue is obtained by considering a neigh-

boring fixed point �x∗′ = (x∗′
1 , x∗′

2 , 0, x∗′
4 ) with S (0)′ = {3} and

S (+)′ = {1, 2, 4}, where species 2 has a nonzero component,
as well as species 1 and 4. Their abundances satisfy⎛⎝B11 B12 B14

B21 B22 B24

B41 B42 B44

⎞⎠⎛⎝x∗′
1

x∗′
2

x∗′
4

⎞⎠ = −
⎛⎝1

1
1

⎞⎠.

Among the three equalities from this equation is B21x∗′
1 +

B22x∗′
2 + B24x∗′

4 = −1. Rearranging the terms and recalling
B22 = −1, we find that x∗′

2 = 1 + B21x∗′
1 + B24x∗′

4 . If we
assume that x∗′

1 � x∗
1 and x∗′

4 � x∗
4 , i.e., that the nonzero com-

ponents of species 1 and 4 are similar between the two fixed
points �x∗ and �x∗′, then we find that

H22 = 1 + B21x∗
1 + B24x∗

4 � 1 + B21x∗′
1 + B24x∗′

4 = x∗′
2 .

The assumption is expected to be valid if S is large and the
number of species having nonzero components is sufficiently
large at the fixed point, for which allowing one more species
to have a nonzero component would not change much the
nonzero components of other species. Similarly, one can sim-
plify H33 as H33 � x∗′

3 by using another neighboring fixed
point corresponding to S (0)′ = {2} and S (+)′ = {1, 3, 4}. In
general, one can obtain the approximate expression Hii � x∗′

i
for every i ∈ S (0) by considering the neighboring fixed point
corresponding to S (0)′ = S (0) − {i} and S (+)′ = S (+) ∪ {i}.
Therefore, given a fixed point corresponding to S (0) and S (+),
x∗′

i for i ∈ S (0) means the abundance that the species i would
have if it had a nonzero component like the species of S (+).

2. Eigenvalues of H (++)
i j and its largest one

To obtain the eigenvalues λ
(+)
i ’s of the S(+) × S(+)

matrix H (++)
i j ≡ x∗

i B(+)
i j at x∗

i , we decompose H (++)
i j as

H (++)
i j = −x∗

i δi j + Vi j with Vi j ≡ −cx∗
i (1 − δi j ) + mx∗

i Ai j .

Considering the eigenvalue expansion λ
(+)
i � −x∗

i + Vii +∑
j =i

x∗
j VjiVi j x∗

i

x∗
i −x∗

j
� −x∗

i and noting that Vii = 0, one finds that

the eigenvalues can be approximated by the zeroth-order term
as λ

(+)
i � −x∗

i when Vi j is sufficiently small.
It should also be noted that H (++)

i j has �x∗ = (x∗
i )

as an eigenvector with eigenvalue −1;
∑

j H (++)
i j x∗

j =∑
j x∗

i B(+)
i j (−∑

�[(B(+) )−1] j�) = −x∗
i . Therefore, the largest

real part of the eigenvalues λ
(+)
i ’s is approximated by

max(−x∗
i ,−1).
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APPENDIX C: B−1 TO THE FIRST ORDER IN m

For B = B0 + mA, one can expand its inverse B−1 in terms
of the mutualism strength m as

B−1 = B−1
0

∞∑
n=0

(−mAB−1
0

)n

= B−1
0 − mB−1

0 AB−1
0 + O(m2). (C1)

Using Eqs. (A8), (A10), and (10), one can evaluate B−1 up to
the first order of m as

B−1 � B−1
0 − m

(1 − c)2

[ − I + c̃J̃ (0)
]
A
[ − I + c̃J̃ (0)

]
= B−1

0 − m

(1−c)2

[
A−Ac̃J̃ (0) − c̃J̃ (0)A+c̃J̃ (0)Ac̃J̃ (0)

]
= B−1

0 − m

(1−c)2

[
A − KÑJ̃ (1)c̃−c̃J̃ (1)Ñ(K−〈K〉c̃)

]
.

(C2)

Then the abundance of a plant species p is given by

x∗(1)
p = −

∑
j

(B−1)p j = x(P)
0

+ m

(1 − c)2

[
kp − kpc̃(A) − c̃(P) L

N (P)
+ c̃(P) L

N (P)
c̃(A)

]
= x(P)

0 + m

(1 − c)2
(1 − c̃(A))(kp − c̃(P)〈k〉(P))

= x(P)
0

[
1 + m

1 − c

1 − c̃(A)

1 − c̃(P)
(kp − c̃(P)〈k〉(P))

]
, (C3)

and that of an animal species a is

x∗(1)
a = x(A)

0

[
1 + m

1 − c

1 − c̃(P)

1 − c̃(A)
(ka − c̃(A)〈k〉(A))

]
. (C4)

APPENDIX D: B−1 UNDER THE ANNEALED
APPROXIMATION FOR THE ADJACENCY MATRIX

In the annealed approximation, the adjacency matrix ele-
ment Ai j is approximated by the probability that the two nodes
i and j are connected by a link in the ensemble of networks
preserving the given degree sequence {ki} as

Ãi j = kik j

L
(D1)

with L the total number of links. Equivalently, the block adja-
cency matrix takes the form

Ã = 1

L
KJ (1)K = 1√

〈k〉(P)〈k〉(A)
KJ̃ (1)K. (D2)

Using this, one finds that the terms B−1
0 (−mÃB−1

0 )n ap-
pearing in Eq. (12) are simplified. Evaluating the first three
terms, one can find the expression for general n by induc-
tion. Let us first consider the term with n = 1, which is
evaluated as

B−1
0 (−mÃ)B−1

0

= −m

(1 − c)2

(−I + c̃J̃ (0) )KJ̃ (1)K(−I + c̃J̃ (0) )√
〈k〉(P)〈k〉(A)

= −m

(1 − c)2

× KJ̃ (1)K−c̃〈K〉J̃ (1)K−KJ̃ (1)c̃〈K〉+c̃〈K〉J̃ (1)〈K〉c̃√
〈k〉(P)〈k〉(A)

= −m

(1 − c)2

(K − c̃〈K〉)J̃ (1)(K − c̃〈K〉)√
〈k〉(P)〈k〉(A)

= − m̃

1 − c
K̃J̃ (1)K̃, (D3)

where Eq. (A11) is used and the rescaled degree matrix is
introduced,

K̃ ≡ K − c̃〈K〉√〈K(K − c̃〈K〉)〉 = K − c̃〈K〉
〈K̃K〉 , (D4)

and the rescaled mutualism strength m̃, defined in Eq. (17) in
the main text, is also represented here as

m̃ = m

1 − c

〈KK̃〉(P)〈KK̃〉(A)√
〈K〉(P)〈K〉(A)

. (D5)

Notice that 〈k〉(P) = 〈K〉(P) and 〈KK̃〉(P) = 〈k2〉(P) −
c̃(P)(〈k〉(P))2 = (〈k〉(P))2(ξ (P) − c̃(P)) from Eq. (A12).

The term with n = 2 is evaluated as

B−1
0 (−mÃ)B−1

0 (−mÃ)B−1
0

= −m̃

1 − c
K̃J̃ (1)K̃

−m√
〈k〉(P)〈k〉(A)

KJ̃ (1)K
−I + c̃J̃ (0)

1 − c

= m̃

1 − c
K̃

m〈K̃K〉(P)〈K̃K〉(A)〈K̃K〉−1J̃ (0)√
〈k〉(P)〈k〉(A)

−K + c̃〈K〉
1 − c

= − m̃2

1 − c
K̃J̃ (0)K̃. (D6)

The term with n = 3 is

B−1
0 (−mÃ)B−1

0 (−mÃ)B−1
0 (−mÃ)B−1

0

= −m̃2

1 − c
K̃J̃ (0)K̃

−m√
〈k〉(P)〈k〉(A)

KJ̃ (1)K
−I + c̃J̃ (0)

1 − c

= m̃2

1 − c
K̃

m〈K̃K〉J̃ (1)√
〈k〉(P)〈k〉(A)

−K + c̃〈K〉
1 − c

= − m̃2

1 − c
K̃

m〈K̃K〉(P)〈K̃K〉(A)

(1 − c)
√

〈k〉(P)〈k〉(A)
J̃ (1)

×〈KK̃〉−1(K − c̃〈K〉)

= − m̃3

1 − c
K̃J̃ (1)K̃. (D7)

From Eqs. (D3), (D6), and (D7), one can obtain by induc-
tion Eq. (16), and we find that the inverse of the interaction
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FIG. 4. Species abundance in the full-coexistence phase. Stationary-state abundances x(st)
i of individual species i are compared with the

stable fixed-point ones x∗
i ’s and x̃∗

i ’s for c = 0.1 and m̃ = 0.4. The species index i is arranged in descending order of degree among plants and
among animals. Inset: abundance vs degree.

matrix is evaluated as

B̃−1 = B−1
0 − 1

1 − c
K̃

(
J̃ (1)

∑
n=1,3,5,...

m̃n + J̃ (0)
∑

n=2,4,6,...

m̃n

)
K̃

= B−1
0 − 1

1 − c

m̃

1 − m̃2
K̃(m̃J̃ (0) + J̃ (1) )K̃, (D8)

which is given also in Eq. (19).

APPENDIX E: DIFFERENT MEASURES OF THE SPECIES
ABUNDANCE IN THE LONG-TIME LIMIT

In the present study, a couple of different measures of
the species abundance appear, being numerical or analytical
solutions to the LV equations. We summarize their notations
here to help distinguish and understand them.

(i) x(st)
i : It is defined in Eq. (3) and represents the numerical

solution xi(T ) at the final step to the LV equation in Eq. (1)

FIG. 5. Relative variations of the network structural properties
with the rescaled mutualism strength m̃ for c = 0.1. Shown are the
relative variations of the mean degree 〈k〉 and the degree heterogene-
ity minus the rescaled competition ξ − c̃ for plants and animals. The
relative variation is evaluated, e.g., as 〈k〉(P,+)−〈k〉(P)

〈k〉(P) .

using the interaction matrix B constructed from the original
adjacency matrix A.

(ii) x̃(st)
i : It represents the numerical solution x̃i(T )

at the final step to the LV equation in Eq. (1) using
the interaction matrix B̃ constructed from the factor-
ized adjacency matrix Ã in Eq. (15) under the annealed
approximation.

(iii) x∗
i : It is defined in Eq. (4) and represents the stable

fixed point to the LV equation in Eq. (1) using B. The sets of
surviving and extinct species, S (+) and S (0), can be obtained
by updating iteratively B(+) and x∗

i , using Eq. (4), as described
in Sec. V B.

(iv) x̃∗
i : It represents the stable fixed point to the LV equa-

tion in Eq. (1) using B̃ under the annealed approximation.
While it can be evaluated numerically by Eq. (4) using B̃, its
analytic expression is available in Eq. (26). The sets of sur-
viving and extinct species, S (+) and S (0), can be obtained by
updating iteratively B̃(+) and x̃∗

i , using Eq. (26), as described
in Sec. V B.

In Fig. 4. we present x(st)
i , x∗

i , and x̃∗
i for c = 0.1 and m̃ =

0.4 in the full-coexistence phase.

APPENDIX F: EFFECTIVE QUANTITIES IN EQ. (26)

The effective interaction matrix B̃(+) for the surviving
species is obtained by removing the rows and columns corre-
sponding to the species belonging to S (0) in the full interaction
matrix B̃. For later use, we introduce S (P,+) and S (A,+) to
denote the set of plant and animal species, respectively, in
S (+) to be assigned nonzero components, and S (P,0) and S (A,0)

to denote the set of plant and animal species, respectively, in
S (0) to be assigned zero components. Their sizes are N (P,+),
N (A,+), N (P,0), and N (A,0). The effective interaction matrix
B̃(+) is of size S(+) × S(+) with S(+) = N (P,+) + N (A,+) and
takes the form

B̃(+) = −I(+) + c(J (0,+) − I(+) ) + mÃ(+), (F1)

where Ã(+) is the effective adjacency matrix for the plant and
animal species in S (+).
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FIG. 6. Species abundance under the annealed adjacency matrix. (a) Time evolution of the abundances of individual species (different
lines) obtained by numerically integrating Eq. (1) with the annealed adjacency matrix Ãi j used for c = 0.1 and m = 0.2. (b) The stationary-state
abundance vs degree for animal species with c = 0.1. (c) Stationary-state abundances x̃(st)

i of individual species i are compared with the stable
fixed-point components x̃∗

i ’s for c = 0.1 and m̃ = 0.8 belonging to the selective extinction phase. (d) Fraction r̃ (st)
e of extinct species and r̃u of

the abundance-diverging species based on the stationary-state abundance x̃(st)
i . They are compared with the theoretical predictions r̃∗

e and r̃∗
u

based on the stable fixed point x̃∗
i ’s. (e) The collapse of the minimum abundances x̃(st)

min rescaled as in Eq. (27) in 46 real-world communities as
functions of m̃(+).

The effective adjacency matrix Ã(+) = Ã(PA,+) ⊕ Ã(AP,+)

is obtained by removing in Ã the rows and columns of the
species in S (0). Therefore, it holds that Ã(+)

pa = Ãpa = kpka/L

if p and a are in S (+). Once Ã(+) is given, the effective
network quantities such as the effective degree can be derived
from Ã(+). Moreover, Ã(+) maintains the factorized form in
terms of the effective degrees and the effective number of
links. Therefore, the effective quantities can be inserted into
Eq. (20), developed originally with the factorized adjacency

matrix, to yield Eq. (26). Below, we illustrate how to evaluate
them specifically.

(i) The effective rescaled competition strength is c̃(G,+) ≡
cN (G,+)

cN (G,+)+1−c with G being P or A.

(ii) The effective zeroth-order abundance is x(G,+)
0 ≡

1−c̃(G,+)

1−c .
(iii) The total number of links is L(+) ≡∑
p∈S (P,+),a∈S (A,+) Ã(+)

pa = 1
L

∑
p∈S (P,+) kp

∑
a∈S (A,+) ka = L�(P,+)
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�(A,+), with �(P,+) ≡ 1
L

∑
p∈S (P,+) kp and �(A,+) ≡

1
L

∑
a∈S (A,+) ka denoting the ratio of the links incident on

the plant and animal species of S (+), respectively, to the
original number of links L = ∑

p kp = ∑
a ka.

(iv) The effective degree of a plant or animal
species in S (+) is evaluated as k(+)

p ≡ ∑
a∈S (A,+) Ã(+)

pa =
kp

∑
a∈S (A,+)

ka
L = kp�

(A,+) and k(+)
a ≡ ∑

p∈S (P,+) Ã(+)
pa =

ka�
(P,+), satisfying L(+) = ∑

p∈S (P,+) k(+)
p = ∑

a∈S (A,+) k(+)
a .

(v) The effective adjacency matrix maintains its factorized

form Ã(+)
pa = Ãpa = kpka

L = k(+)
p k(+)

a

L(+) in terms of the effective de-
grees and the effective numbers of links defined above.

(vi) The effective degree heterogeneity is evaluated as
ξ (P,+) = 〈k2〉(P,+)

〈k〉(P,+) with the moments given by 〈kn〉(P,+) =
1

N (P,+)

∑
p∈S (P,+) (k(+)

p )n. ξ (A,+) and 〈kn〉(A,+) are evaluated in the
same manner.

(vii) The effective rescaled degree is evaluated by k̄(+)
i ≡

k(+)
i

〈k〉(Gi ,+) −c̃(Gi ,+)

ξ (Gi ,+)−c̃(Gi ,+) .
(viii) The effective asymmetry factor is evaluated by

η(PA,+) ≡ 1−c̃(A,+)

1−c̃(P,+)

√
〈k〉(P,+) (ξ (P,+)−c̃(P,+) )
〈k〉(A,+) (ξ (A,+)−c̃(A,+) ) = 1

η(AP,+) .

(ix) The effective rescaled mutualism strength m̃(+) is eval-
uated by

m̃(+) ≡ m

1 − c

×
√

〈k〉(P,+)〈k〉(A,+)(ξ (P,+) − c̃(P,+) )(ξ (A,+) − c̃(A,+) )
(F2)

exactly in the same manner as Eq. (17) using the effective
quantities.

The relative variations of the effective quantities with re-
spect to their original values are shown in Fig. 5. While the
extinction of small-degree species may make the effective
mean degree 〈k〉(+) larger than the original one 〈k〉, the hub
plants and animals lose their significant portions of partners,
resulting in the reduction of the effective degree heterogeneity.
The rescaled competition c̃(+) decreases as more species go
extinct with increasing m̃. These quantities together determine
the effective rescaled mutualism m̃(+), which turns out to be
smaller than m̃ as shown in Fig. 3(b).

APPENDIX G: SPECIES ABUNDANCE UNDER
THE ANNEALED ADJACENCY MATRIX

Here we present the plots of the species abundances, the
fraction of extinct and abundance-diverging species, and the
rescaled minimum abundance in the case of the annealed
interaction matrix B̃ and the annealed adjacency matrix Ã in
Fig. 6.

APPENDIX H: ACCURACY IN THE PREDICTION
OF THE EXTINCTION OF INDIVIDUAL SPECIES

We consider a species extinct if its abundance is smaller
than ε = 10−5 and surviving otherwise. The criterion is used

0.7

0.8

0.9

1

0.7

0.8

0.9

1

(a)

(b)

FIG. 7. Accuracy of the analytic formula of the stable fixed-point
abundances in predicting the extinction or survival of individual
species. Shown in the (c, m̃) plane is the fraction of the species
whose survival or extinction is predicted identically by (a) both the
stationary-state abundance x(st)

i under the original interaction matrix
B, and the stable fixed point x̃∗

i , and (b) both x̃(st)
i under the annealed

interaction matrix B̃, and the stable fixed point x̃∗
i .

to assess the stationary-state abundance x(st)
i and x̃(st)

i and
discriminate the fate of i evolving under the original and the
annealed interaction matrix, respectively. To illuminate the
predictive power of the stable fixed-point abundance x̃∗

i for the
fate—survival or extinction—of individual species, we com-
pute the fraction of the species that are correctly predicted,
i.e., found to be surviving in both abundances, x(st)

i � ε and
x̃∗

i � ε, or found to be extinct in both, x(st)
i < ε and x̃∗

i < ε,
which we can consider as the accuracy of the stable fixed-
point abundances in the prediction of species extinction and
we present in Fig. 7(a). We also do the same analysis with x̃(st)

i
and x̃∗

i and show the result in Fig. 7(b). On the average across
parameters in the selective extinction phase, the accuracy of
x̃∗

i in predicting extinction/survival amounts to 79.3% for x(st)
i

under the original interaction matrix and 99.2% for x̃(st)
i under

the annealed interaction matrix.
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