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As opposed to most previous works focusing on random walks on deterministic tree networks, in this paper,
we pay more attention on random growth tree networks. Specifically, we propose two distinct types of random
growth tree networks T (1; t, p) and T (2; t, p) where t represents time step and p is a probability parameter (0 �
p � 1). Tree T (1; t, p) is iteratively built in a fractal manner; however, T (2; t, p) is generated using a nonfractal
operation. Then we study random walks on tree network T (i; t, p) (i = 1, 2) and derive the analytical solution to
mean first-passage time 〈FT (i;t,p)〉. The results suggest that two growth ways have remarkably different influence
on parameters 〈FT (i;t,p)〉. More precisely, the fractal-growth manner makes topological structure of tree network
more loose than the nonfractal one and thus increases drastically mean first-passage time in the large graph limit.
Finally, we extensively conduct experimental simulations, and the results demonstrate that computer simulations
are in strong agreement with the theoretical analysis.
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I. INTRODUCTION

Nowadays, complex network, as a powerful tool, has at-
tracted increasing attention from various disciplines ranging
from applied mathematics and theoretical computer science
to statistical physics and even to social science [1]. One of
the most important reasons for this is that a great variety of
complex systems, such as scientific collaboration networks
[2], metabolic networks [3], protein-protein interaction net-
works [4] and citation networks [5], can be abstractly
interpreted as complex networks. Based on this, complex
networks help one better understand some mechanisms
and structural characteristics behind those various systems.
Roughly speaking, there are two main streams in the realm
of complex networks. The first aims at uncovering generation
mechanisms describing how complex systems evolve over
time [6]. The goal of the other is to study dynamics taking
place on systems and then to understand how the underlying
structures affect dynamical behaviors occurring on them [7,8].
Studied examples contain the spread of epidemic disease in
the crow [9], the spread of rumor on social networks [10],
virus propagation on computer networks [11], and so forth.
In general, the examples above may be well described by
random walks, which are the widely studied dynamics on
corresponding networks [12,13].

*mafei123987@163.com
†Corresponding author: pwang@pku.edu.cn

It is well known that there is a long history of discussions
about random walks on networks in the literature [14–17].
Accordingly, there have been many theoretical assumptions
developed for this kind of dynamical behavior on complex
networks in the past decades, such as the biased random-walk
manner [18] and the maximal entropy random-walk way [19].
Note that in this paper, we will concentrate mainly on discrete-
time unbiased random walks. In this case, a walker will hop
from its current position u to one in its neighboring set with
probability 1/ku, where ku is degree of vertex u. The crucial
issue to answer in research of this type is to measure some
structural parameters closely associated with random walks.
The most fundamental of various parameters is first-passage
time that is defined to be the expected time taken by a walker
to first reach its destination vertex. Based on this, one has the
ability to measure mean first-passage time for a network in
question (defined in detail later).

In fact, more effort has been devoted to studying first-
passage time for random walks on networks in the past
[19–26]. For instance, the sum of first-passage time Fu→v from
vertex u to v and first-passage time Fv→u from vertex v to u
on network is proved to be two times the product between
edge number of network and effective resistance distance
Ruv with the help of both spectral technique and electrical
network [23]. Similarly, an analog associated with tree net-
works is derived by means of a combinatorial method [27].
In particular, random walks on a large number of networks
with interesting structural characteristics such as scale-free
feature and small-world property have been in depth discussed
[28,29]. More recently, some tree networks with intriguing
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structural properties (for instance, fractal) have been widely
considered as well [29–33]. Nonetheless, almost all reported
tree networks are deterministic. As will be stated later, how-
ever, the goal of this paper is to study an ensemble of random
growth tree networks. It will be clear to the eye that some
previous methods suitable for deterministic tree networks can-
not be adequately employed to analyze random growth tree
networks. Therefore, many other effective techniques need to
be developed in order to address this issue. Inspired by this,
we study random walks on random growth tree networks built
in this paper via establishing new methods. More importantly,
the techniques proposed in the subsequent discussions can be
used to more conveniently deal with some published deter-
ministic tree networks than those early methods [34,35]. In the
meantime, some previous results can be naturally covered by
the formulations derived in this paper, as demonstrated later.

The rest of this paper is organized as follows. In Sec. II, we
will introduce some helpful notations, including matrix repre-
sentation of network, Wiener index on network, and graphic
operations. Two random growth tree networks T (1; t, p) and
T (2; t, p) are proposed in Sec. III, and then some fundamental
structural properties are discussed in detail. Next, the core of
all our work is shown in Sec. IV. Specifically, we analytically
obtain the closed-form expressions of mean first-passage time
for random walks on the proposed tree networks. Follow-
ing the theoretical demonstrations above, we perform a great
number of experimental simulations, and the results firmly
imply that computer simulations are in strong agreement with
theoretical analysis. Finally, we conclude with a brief descrip-
tion about this work in Sec. V.

II. BASIC NOTATIONS

A graph G(V, E ) is an ordered pair (V, E) consisting of a
set V of vertices and a set E of edges running between vertices.
The total number of vertices is denoted by |V|, and |E | repre-
sents the edge number. A connected acyclic graph is called
a tree. Equivalently, there is only a path between arbitrary
two vertices in a tree. Notation [a, b] indicates a collection
of integers {a, a + 1, . . . , b}. Throughout this paper, all the
discussed graphs are simple and connected, that is, without
multiedges and loops. Note also that the two terms graph and
network are used indistinctly.

Matrix representation of graph [36].
It is conventional to interpret a graph G(V, E ) by its adja-

cency matrix AG = (ai j ) in the following form:

ai j =
{

1, vertex i is adjacent to j

0, otherwise.

This thus contains some basic information about a graph itself,
such as the degree ki of vertex i is equal to ki = ∑|V|

j=1 ai j . Ac-
cordingly, the diagonal matrix, denoted by DG , may be defined
as follows: The ith diagonal entry is ki, while all nondiagonal
elements are zero, i.e., DG = diag[k1, k2, . . . , k|V|].

Wiener index [37].
Given a graph G(V, E ), the distance between vertices u and

v (u, v ∈ V), referred to as duv , is the number of edges on
a shortest path joining u to v. Then the well-known Wiener
index for a graph G(V, E ), denoted by WG , can be expressed

as

WG =
∑

u,v∈V
duv = 1

2

∑
u∈V

∑
v∈V

duv, (1)

where u is distinct with v. Note that the distance of the same
pair of vertices is only considered one time.

Random walks on network [38].
Consider random walks on a graph G(V, E ), the first-

passage time for a walker starting out from source vertex u to
visit destination v, defined as Fu→v , is equal to the expected
time taken by the walker to first reach v. Accordingly, the
quantity called mean first-passage time for graph G(V, E ) as a
whole, denoted by 〈FG〉, can be clearly written as

〈FG〉 = 1

|V|(|V| − 1)

∑
u∈V

∑
v( �=u)∈V

Fu→v. (2)

If we let λi (i ∈ [2, |V|]) represent all the nonzero eigenvalues
of Laplacian matrix, LT = DT − AT , of a tree T (V, E ), then
Eq. (2) can be rewritten as

〈FT 〉 = 2
|V|∑
i=2

1

λi
. (3)

More generally, the Kirchhoff index RG can be defined in
terms of the |V| − 1 nonzero eigenvalues of Laplacian matrix
LG for network G(V, E ) as follows:

RG = 2|V|
|V|∑
i=2

1

λi
. (4)

Also, the mean effective resistance over all vertex pairs in
G(V, E ), also referred to as network criticality, is viewed as

〈RG〉 = RG
|V|(|V| − 1)

= 2

|V| − 1

|V|∑
i=2

1

λi
. (5)

This quantity quantifies the robustness of network
G(V, E ): The smaller the value 〈RG〉, the more robust the
network G(V, E ).

Graphic operations.. For a given edge uv, one can intro-
duce an operation that is viewed as n-order fractal operation
[39]. Specifically speaking, one inserts a star with n leaves,
also called an n-star, into edge uv. An illustrative example
is plotted in Fig. 1(a). Analogously, one may connect n new
vertices to a given vertex u, resulting in a star with n leaves,
which is referred to as n-order vertex operation as shown in
Fig. 1(b).

It should be mentioned that, in the following, we are par-
ticularly interested in the simplest connected graph, namely a
tree. In fact, a tree, as a fundamental model, has been used
in various applications. For example, the famous T-graph
is used to study fractal features encountered in the physics
community [39].

III. RANDOM GROWTH TREE NETWORKS T (i; t, p)

In this section, we will introduce two different fami-
lies of random growth tree networks, T (i; t, p). Specifically,
T (1; t, p) is built based on an n-order fractal operation, and
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FIG. 1. The diagram of two graphic operations. Panel (a) shows
3-order fractal operation implemented on an edge. The other,
i.e., panel (b), describes 3-order vertex operation implemented on
a vertex.

T (2; t, p) is generated using an n-order vertex operation. Pa-
rameters t and p denote the time step and a given probability
value, respectively. Note that this section is divided into two
subsections, one for construction of tree network T (1; t, p)
and the other for tree network T (2; t, p). At the same time,
some fundamental structural properties on both types of tree
network will be studied analytically.

A. Tree networks T (1; t, p)

The concrete construction of a random growth tree network
T (1; t, p) is shown in the following algorithm.

Algorithm 1
At t = 0, an arbitrary tree T with N vertices is chose as the

seed, which is viewed as T (1; 0, p) for convenience.
At t = 1, new tree T (1; 1, p) is created from T (1; 0, p)

by applying either n-order fractal operation on each edge in
T (1; 0, p) with probability p or m-order fractal operation on
the same edge with probability 1 − p.

At t � 2, the next tree T (1; t, p) is generated based on tree
T (1; t − 1, p) in a similar in spirit manner as stated above.

Obviously, our tree T (1; t, p) will become deterministic
when m = n. In particular, if the parameters m and n are
supposed to equal 1, then tree T (1; t, p) is the well-known
T-graph [39]. As is known, a T-graph has fractal dimension
d f = ln 3/ ln 2. Analogously, we can find the fractal dimen-
sion of tree T (1; t, p) to equal ln[pn + (1 − p)m + 2]/ ln 2
with respect to probability.

After t time steps, the total number |V (1; t, p)| of vertices
in tree T (1; t, p) is given by

|V (1; t, p)| = (N − 1)[2 + m + p(n − m)]t + 1. (6)

B. Tree networks T (2; t, p)

Here we present Algorithm 2 for constructing a random
growth tree network T (2; t, p).

Algorithm 2
At t = 0, an arbitrary tree T with N vertices is selected as

the seed, which is viewed as T (2; 0, p) for our purposes.
At t = 1, new tree T (2; 1, p) is obtained from T (2; 0, p)

by applying either n-order vertex operation on each vertex in
T (2; 0, p) with probability p or m-order vertex operation on
the same vertex with probability 1 − p.

At t � 2, the next tree T (2; t, p) is constructed based on
tree T (2; t − 1, p) in a similar manner to that mentioned
above.

Clearly, our tree T (2; t, p) will also become deterministic
when m = n. After t time steps, tree T (2; t, p) has the total
number |V (2; t, p)| of vertices,

|V (2; t, p)| = N[1 + m + p(n − m)]t . (7)

To make further progress, using the concept of cumulative
degree distribution, the probability Pcum(k) of selecting at
random vertex with degree no less than k is given by

Pcum(ki � k) =
∑

ki�k Nki

|V (2; t, p)| ≈ [1 + m + p(n − m)]i−t , (8)

where we denote by Nki the total number of vertices having
degree equal to ki.

Substituting quantity ki = 1 + (t − i − 1)[pn + (1 − p)m]
into the above equation yields

Pcum(ki � k) ≈ exp(αk), α = ln[1 + m + p(n − m)]

pn + (1 − p)m
,

(9)
which suggests that tree T (2; t, p) follows exponential degree
distribution.

IV. MEAN FIRST-PASSAGE TIME ON TREE
NETWORKS T (i; t, p)

This section aims at determining the closed-form solutions
to parameters 〈FT (i;t,p)〉 on tree networks T (i; t, p). As will
show shortly, we do not employ a typical method based on
Laplacian matrix of network to derive the analytical solutions
to mean first-passage time 〈FT (i;t,p)〉 and instead make use of
a close connection between WT and 〈FT 〉 on a tree network,
i.e., 〈FT 〉 = 2WT /|T | [27] to obtain what we want. One of
the most important reasons for this is that it is not convenient
to build up the corresponding matrix representations for both
tree networks proposed above. Thus, the method based on
Laplacian matrix can be no longer in force. In what fol-
lows, the key step in calculation of parameters is to exactly
determine the expression of Wiener index WT (i;1,p) of tree
T (i; t, p).

A. Determining 〈FT (1;t,p)〉
As mentioned above, we need to derive the analytical

formula for the Wiener index WT (1;t,p) of tree T (1; t, p) in
order to successfully obtain parameter 〈FT (1;t,p)〉. Below we
elaborate on calculation of Wiener index WT (1;t,p) according
to construction of tree T (1; 1, p) shown in Algorithm 1.

First, let us focus on the quantity WT (1;1,p). It is straight-
forward to observe that for a given tree T on N vertices,
there will exist two different vertex sets after manipulating the
procedure defined in Algorithm 1. One set, denoted by V∗

1 ,
consists of all the old vertices of the seed T , and the other,
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called V∗
2 , contains those newly created vertices. Clearly, the

problem of determining the Wiener index on tree T (1; 1, p) is
handled by calculating the following three sub-Wiener indices
W∗

i : W∗
1 for the sum over distances of all possible vertex

pairs in vertex set V∗
1 , W∗

2 for vertex set V∗
2 , as well as W∗

3
for arbitrary pair of vertices where one vertex is from vertex
set V∗

1 and the other is selected from vertex set V∗
2 . In what

follows, we will show the detailed calculations of indices W∗
i

defined above in stages.

1. Case 1

For an arbitrary pair of vertices u and v in vertex set V∗
1 , the

distance d∗
uv between them turns out to be equal to two times

duv , which is the corresponding distance for the same vertex
pair on seed T in terms of description in Algorithm 1. This
thus gives

W∗
1 = 2WT , (10)

where symbol WT represents the Wiener index of the seed T .

2. Case 2

For convenience, vertex set V∗
2 may be further divided into

two disjoint sets having smaller size with respect to definition
of n-order fractal operation, namely V∗

2 = V∗
2 (1) ∪ V∗

2 (2). The
subset V∗

2 (1) contains the central vertices of all newly added
stars using either n-order fractal operation with probability
p or m-order fractal operation with probability 1 − p. The leaf
vertices introduced by the fractal operations above constitute
the subset V∗

2 (2). From now on, let us derive the closed-form
solution to index W∗

2 .
First, for each edge in tree T , Algorithm 1 produces a star

with either n leaf vertices with probability p or m leaf vertices
with probability 1 − p. The contribution from these stars to
index W∗

2 , denoted by W∗
2,1, is given by

W∗
2,1 = [pn(n − 1) + (1 − p)m(m − 1)] × (N − 1). (11)

Note that the first term accounts for the sum of distances over
all possible leaf vertex pairs in a star according to probability.

As previously, for an arbitrary path Puv :=
uη1η2 . . . ηduv−1v with length duv no less than 2 in seed
T , we may suppose that vertices x and y as central vertices
of n-star and m-star, respectively, are inserted into two
end-edges, i.e., uη1 and ηduv−1v, of path Puv using Algorithm
1. As a result, there is a bijection f ∗

1 from paths P∗
xy to P∗

uv in
the resulting tree T (1; 1, p) as follows:

f ∗
1 : P∗

xy 
→ P∗
uv.

This is because path P∗
uv reduces to path P∗

xy via removing
two end-edges ux and yv. Clearly, this leads to the following
solution:

W∗
2,2 = W∗

1 − N (N − 1), (12)

in which W∗
2,2 is the sum over distances between arbitrary two

central vertices of such type in tree T (1; 1, p).
Next, for an arbitrary leaf vertex xi in the n-star and leaf

vertex y j in the m-star, the same reasoning as above yields a
[pm + (1 − p)n]2-regular mapping f ∗

2 from aspect of proba-
bility, which is as follows:

f ∗
2 : P∗

xiy j

→ P∗

xy.

Such a mapping f ∗
2 is established based on a fact that path P∗

xiy j

may be induced to path P∗
xy through deleting two edges xix and

y jy. In this case, we are able to derive the sum of distances for
all possible leaf vertex pairs belonging to newly added stars in
tree T (1; 1, p), denoted by W∗

2,3, which is given by

W∗
2,3 =

N−2∑
i=1

2[pn + (1 − p)m]2(N − 1 − i)

+ [pn + (1 − p)m]2W∗
2,2. (13)

Last, we need to consider the distance between the central
vertex x in an n-star inserted into edge uη1 and a leaf vertex
yi in an m-star added into edge ηduv−1v. The sum of distances
between vertex pairs of this kind is referred to as W∗

2,4, which
follows

W∗
2,4 = 2[pn + (1 − p)m]W∗

2,2 + [pn + (1 − p)m](N − 1)2.

(14)
The correctness of Eq. (14) is based on a 2[pn + (1 − p)m]-
regular mapping f ∗

3 ,

f ∗
3 : P∗

xy j

→ P∗

xy, and, f ∗
3 : P∗

xiy 
→ P∗
xy.

The first term indicates that with the mapping f ∗
3 , path P∗

xy j

may be reduced to path P∗
xy by means of removal of edge y jy.

The similar reasoning is also suitable for the second term.
Taken together, we have

W∗
2 =

4∑
i=1

W∗
2,i.

The remainder is to calculate solution of index W∗
3 defined

above.

3. Case 3

Along the same research line, we can see that there is
always a star added into each internal edge of an arbitrary path
Puv := u(η0)η1η2 . . . ηduv−1v(ηduv

) with length duv in seed T .
Without loss of generality, we denote by wi the central vertex
of star inserted into internal edge ηi−1ηi (i ∈ [1, duv]). This
thus results in a 2-regular mapping f ∗

4 as follows:

f ∗
4 : P∗

uwduv

→ P∗

w1wduv
, and, f ∗

4 : P∗
w1v


→ P∗
w1wduv

.

It is clear to see that one can obtain path P∗
uwduv

from path
P∗

w1wduv
by connecting an additional edge uw1 and similarly for

the second term. Therefore, the sum of distances between an
arbitrary vertex in set V∗

1 and each vertex in set V∗
2 (1), viewed

as W∗
3,1, is calculated to equal

W∗
3,1 = N (N − 1) + 2W∗

2,2. (15)

Analogously, from the probability point of view, there ex-
ists a [pn + (1 − p)m]-regular mapping f ∗

5 from path P∗
uwduv

to path P∗
uwi

duv

in which wi
duv

is a leaf vertex connected to the

central vertex wduv
. That is,

f ∗
5 : P∗

uwduv

→ P∗

uwi
duv

.

This suggests that the summation W∗
3,2 over distances for

this type of vertex pairs in which one comes from set V∗
1 and
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the other is in set V∗
2 (2) can read

W∗
3,2 = [pn + (1 − p)m]W∗

3,1 + [pn + (1 − p)m]N (N − 1).
(16)

To summarize, we have

W∗
3 = W∗

3,1 + W∗
3,2.

Putting everything together leads to what we look for, i.e.,

WT (1;1,p) = W∗
1 + W∗

2 + W∗
3

= 2[pn + (1 − p)m + 2]2WT − [pn + (1 − p)m + 2]N (N − 1)

+ {
n(n − 1)p + m(m − 1)(1 − p) − 2[pn + (1 − p)m]2 − [pn + (1 − p)m]

}
(N − 1). (17)

From this we can easily derive the solution to the Wiener index WT (1;t,p) in an iterative fashion. Then the analytical solution to
mean first-passage time 〈FT (1;t,p)〉 can be expressed as

FT (1;t,p)〉 = 2
(
�t

1WT − �2
∑t−1

i=0 |V (1; t − 1 − i, p)|2�i
1 + �3

∑t−1
i=0 |V (1; t − 1 − i, p)|�i

1 + �4
∑t−1

i=0 �i
1

)
(N − 1)[2 + m + p(n − m)]t + 1

, (18)

where

�1 = 2[pn + (1 − p)m + 2]2, (19a)

�2 = pn + (1 − p)m + 2, (19b)

�3 = 2 + n(n − 1)p + m(m − 1)(1 − p)

−2[pn + (1 − p)m]2, (19c)

�4 = 2[pn + (1 − p)m]2 + pn + (1 − p)m

−n(n − 1)p + m(m − 1)(1 − p). (19d)

As a case study, tree T (1; t, p) will be induced into a
specific iterative model when the seed is limited to a single
edge and parameter p is supposed to equal 1. Such a model
has been discussed in depth in Ref. [34]. Consequently, the
corresponding solution of mean first-passage time is already
analytically evaluated using the method based on Laplacian
spectra. For our purposes and convenience, this model is
thought of as model At hereinafter. After that, from Eq. (18),
we can find that the exact solution of mean first-passage time
〈FAt 〉 on model At is given by

〈FAt 〉 = 2(n + 2)t

(2n2 + 7n + 6)[(n + 2)t + 1]

[
(n + 1)2(n + 2)t[1+ln 2/ ln(n+2)] + (2n + 3)(n + 2)t + n2 + 3n + 2

]
, (20)

which is identical with that derived in Ref. [34]. From this one
can see that Eq. (18) shows a more general result, which is
helpful to understand the underlying structure of tree network
of this kind.

B. Determining 〈FT (2;t,p)〉
Now let us focus on tree network T (2; t, p). As previously,

the primary task is to determine the exact formula for the
Wiener index of tree T (2; t, p). This will be answered by the
coming calculations.

Given a tree T on N vertices, we suppose that the Wiener
index of tree T is equal to WT . Now let us recall the concrete
procedure in Algorithm 2. For each pre-existing vertex v in
tree T , we find that (1) n new vertices will be connected to
vertex v with probability p or (2) m new vertices are linked to
the same vertex with probability 1 − p. It is clear to see that
vertices of tree T (2; 1, p) can also be classified into two sub-
sets. More concretely, the total vertices in tree T are grouped
into set V ′

1 and those newly created vertices using Algorithm 2
in the resulting tree T (2; 1, p) are naturally collected in set V ′

2.
After that, the analytical solution to Wiener index WT (2;1,p)

is derived through precisely determining solutions to three
quantities W ′

i (i ∈ [1, 3]), which are defined in the following:

W ′
1: The sum over distances between arbitrary vertex pair

in set V ′
1.

W ′
2: The sum over distances between each vertex in set V ′

1
and an arbitrary vertex in set V ′

2.
W ′

3: The sum over distances between two vertices at ran-
dom selected from set V ′

2.
We are now ready to perform the detailed calculations,

which is shown in stages.

1. Case 1

Obviously, there is no influence on distance d ′
uv between

vertices u and v in set V ′
1 after applying Algorithm 2. By

definition, this immediately suggests that

W ′
1 =

∑
u,v∈V ′

1

d ′
uv =

∑
u,v∈V

duv = WT , (21)

in which V and duv represent the vertex set of seed T and the
distance between vertices u and v in seed T , separately.

2. Case 2

For each vertex u in set V ′
1, Algorithm 2 produces either

with probability p an n-star whose center is vertex u or with
probability 1 − p an m-star whose center is still vertex u.
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According to the probability viewpoint, we can write

W ′
2,1 = [pn(n − 1) + (1 − p)m(m − 1)] × N. (22)

The first term accounts for the sum of distances over all
possible leaf vertex pairs in a star with an arbitrary vertex in
set V ′

1 as central vertex.
Following the computations above, we consider the case of

double stars. Without loss of generality, we choose two stars
in the resulting tree T (2; 1, p) whose centers are, respectively,
vertices u and v. The former star has leaf vertices ui and the
leaf vertices in the latter are labeled utilizing v j . So far, there is
a provable [pn + (1 − p)m]2-mapping f ′

1 between two paths
P′

uiv j
and P′

uv , namely,

f ′
1 : P′

uiv j

→ P′

uv,

such that we can have d ′
uiv j

= 2 + d ′
uv and finally find

W ′
2,2 = [pn + (1 − p)m]2

[
W ′

1 + 2
N (N − 1)

2

]
. (23)

Here let index W ′
2,2 be the sum of distances between two leaf

vertices of such type, say, ui and v j .

On the basis of both situations above, the sum of distances
over all possible newly generated vertex pairs, denoted by W ′

2,
is equivalent to

W ′
2 =

∑
ui∈V ′

2

∑
v j∈V ′

2

d ′
uiv j

= W ′
2,1 + W ′

2,2.

3. Case 3

The rest of our task is to estimate distance d ′
uv j

of both
vertex u in set V ′

1 and vertex v j in set V ′
2. By analogy with

determining the aforementioned equations, we take a 2[pn +
(1 − p)m]-mapping f ′

2 defined as follows:

f ′
2 : P′

uv j

→ P′

uv, and, f ′
2 : P′

uiv

→ P′

uv,

in which we abuse symbols ui and v j whose definitions are
shown in the preceding case. This leads to

W ′
3 =

∑
u∈V ′

1

∑
v j∈V ′

2

d ′
uv j

= [pn + (1 − p)m](2W ′
1 + N2). (24)

Last, using some fundamental arithmetic, Eqs. (21)–(24)
together yield what we are seeking. That is, Wiener index
WT (2;1,p) is given by

WT (2;1,p) = W ′
1 + W ′

2 + W ′
3

= [pn + (1 − p)m + 1]2WT + [pn + (1 − p)m][pn + (1 − p)m + 1]N2

− {[pn + (1 − p)m]2 − [pn(n − 1) + (1 − p)m(m − 1)]}N. (25)

With the results of Eq. (25), we can obtain the expression of the Wiener index WT (2;t,p) in a recursive manner and further
write the mean first-passage time 〈FT (2;t,p)〉 as follows:

〈FT (2;t,p)〉 = 2[pn + (1 − p)m + 1]tWT
N

+ 2t[pn + (1 − p)m + 1]t−1 × [pn + (1 − p)m]N

− 2{[pn + (1 − p)m]2 − [pn(n − 1) + (1 − p)m(m − 1)]} × [pn + (1 − p)m + 1]t − 1

[pn + (1 − p)m + 1][pn + (1 − p)m]
. (26)

As mentioned previously, tree T (2; t, p) will also degen-
erate into a recursive growth deterministic tree if we let the
seed be a single edge and parameter p be equal to 1. For
our purposes and convenience, such a deterministic model
is viewed as model Bt . Using the intrinsic self-similarity of
model Bt itself, the authors in Ref. [40] have reported the an-
alytical solution to mean first-passage time. At present, from
Eq. (26), we can choose appropriate parameter values and then
reach the exact solution of mean first-passage time 〈FBt 〉 on
model Bt ,

〈FBt 〉 = (n + 1)t + 2(n + 1)t−1(2nt − 1) + 2

n + 1
. (27)

Clearly, this suggests that our result is more general. Based on
this, one is able to understand a tree network of such type in
detail.

C. Scaling relation

Last, we unveil in detail how the underlying structures of
the generated tree networks, T (1; t, p) and T (2; t, p), affect
random walks on them discussed above. The following pa-

rameters will allow us to obtain what we want. Note also that
the limit behavior of parameters is just considered as below.

According to Eqs. (6), (7), (18), and (26), we can obtain

〈FT (1;t,p)〉 = O(|VT (1;t,p)|γ ∗
1 ), (28)

in which γ ∗
1 = 1 + 2

pn+(1−p)m+2 , and

〈FT (2;t,p)〉 = O(|VT (2;t,p)|γ ′
1 ln |VT (2;t,p)|), (29)

in which γ ′
1 = 1.

Clearly, the larger power exponent γ ∗
1 clarifies that, on av-

erage, the efficiency of transmitting a pair of information from
a source to destination on tree network T (1; t, p) is lower
than that on tree network T (2; t, p) in a random-walks-based
situation.

In addition, the solutions to Kirchhoff index on two tree
networks T (i; t, p) can read

RT (1;t,p) = O(|VT (1;t,p)|γ ∗
2 ), (30)

where γ ∗
2 = 2 + 2

pn+(1−p)m+2 , and

RT (2;t,p) = O(|VT (2;t,p)|γ ′
2 ln |VT (2;t,p)|), (31)
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FIG. 2. The diagram of parameter �1 as a function of both variables, p and t . From left to right, three panels in the first line illustrate case
of n = m = 1 when varying parameter p. Similarly, those panels in the second and last lines are correlated to case of both n = 2 and m = 1
and case of both n = 3 and m = 1, respectively.

where γ ′
2 = 2. Here we have made use of Eqs. (3) and (4).

From this, it is straightforward to find that the expressions of
network criticality on both tree networks are as follows:

〈RT (1;t,p)〉 = O(|VT (1;t,p)|γ ∗
2 −2), (32a)

〈RT (2;t,p)〉 = O(ln |VT (2;t,p)|). (32b)

This implies that tree network T (2; t, p) is more robust
than T (1; t, p).

In other words, the parameters mentioned above, mean
first-passage time and network criticality, together indicate
that the topological structure corresponding to tree net-
work T (2; t, p) is more optimal than tree network T (1; t, p)
when distributing information in a random-walk manner.
Once again, our results show that the underlying struc-
ture on network plays a key role in discussion about
random walks.

D. Simulations

Despite the completeness of theoretical analysis, we want
to uncover how varying values for different parameters in-
cluding p, n, and m affects the convergence of experimental
simulations to analytical solutions. Therefore, we conduct
extensive computer simulations. Note that while an arbitrary

tree may be selected as the input of two algorithms introduced
in Sec. III, we will be concerned with the simplest case where
the seed is a single edge so as to conveniently understand
the behaviors of simulation results in the large-t limit. As a
result, the previously supposed parameters WT and N in all
the derived formulas are now equal to 1 and 2, respectively.

First, we verify the correctness of Eq. (18). For conve-
nience, we define a symbol �1

�1 = 〈FT (1;t,p)〉
〈FT (1;t,p)〉 , (33)

which is used to represent ratio of the numerical solution
〈FT (1;t,p)〉, which is viewed as the averaged value over mean
first-passage times on tree networks T (1; t, p) after running
computer simulations 100 times to the theoretical result in
Eq. (18). Specifically, in view of parameters m and n, the
following three cases will be considered, i.e., (1) m = 1 and
n = 1, (2) m = 1 and n = 2, as well as (3) m = 1 and n = 3.
Refer to Fig. 2 for more information.

From Fig. 2, one can easily see that in Figs. 2(a)– 2(c),
numerical simulations align with the theoretical analysis. This
is mainly because, in this setting, tree T (1; t, p) is in fact
deterministic. In other panels, numerical simulations always
fluctuate around the theoretical results, which implies that
the randomness introduced into the development of growth
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FIG. 3. The diagram of parameter �2 in Eq. (34). From left to right, three panels in the first line illustrate case of n = m = 1 where p is
equal to 0.2, 0.5, or 0.8. Analogously, those panels in the second and last lines, respectively, show the case of both n = 2 and m = 1 and the
case of both n = 3 and m = 1.

tree networks T (1; t, p) has a certain effect on mean first-
passage time for random walks on them. Nevertheless, it is
clear to the eye that empirical analysis is in good agreement
with the theoretical results. This confirms that the analytical
solution derived in Eq. (18) holds true in the large-graph-size
limit.

Now let us divert our attention to numerical simulations
of mean first-passage time 〈FT (2;t,p)〉. Specifically speaking,
the following presentation shows how different combinations
among parameters m, n, and p impact mean first-passage time
for random walks on tree networks T (2; t, p). As shown in
Eq. (26), the analytical solution to quantity 〈FT (2;t,p)〉 is a
power function of variable t . As previously, we also need to
define an available parameter as follows:

�2 = 〈FT (2;t,p)〉
〈FT (2;t,p)〉 . (34)

Here symbol 〈FT (2;t,p)〉 denotes the experimental value for
mean first-passage time averaged over 100 runs given a pair of
parameters n and m in tree networks T (2; t, p). Analogously,
we have the ability to consider other cases. For brevity, we,
however, omit other comparisons between analytical formu-
las and experimental simulations. More details are shown
in Fig. 3.

As Fig. 3 makes clear, it is straightforward to see that
network T (2; t, p) will become deterministic when we let
parameters n and m be equal to the same value. In this case, the
ratio �1 should be constant 1. Figures 3(a)– 3(c) firmly verify
this assertion, implying that the formula developed in Eq. (26)
is valid. In addition, the remaining panels, i.e., Figures 3(d)–
3(i), consistently show that the randomness controlled by
probability parameter p leads to some fluctuations that are
in the reasonable range. At the same time, the first several
growth steps have a significantly critical influence on the form
of fluctuation in the large-graph-size limit as plotted here. In
a nutshell, computer simulations are perfectly consistent with
the analytical results.

V. CONCLUSION

In conclusion, we study random walks on two families
of random growth tree networks T (1; t, p) and T (2; t, p) in
more detail. Especially, we derive the analytical solutions
to mean first-passage time for random walks on both tree
networks T (i; t, p). The results suggest that, by adopting
some specified parameters, the previous works focusing
mainly on deterministic tree networks can be clearly seen
as the specific cases of the derived formulas. More impor-
tantly, the results also suggest that the underlying structure
on network has a remarkable influence on random walks. The
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fractal-growth manner makes the topological structure of a
tree network looser than the nonfractal one and thus increases
drastically the mean first-passage time in the large-graph limit.

Besides correctness and convenience of the proposed for-
mulations, it is worth stressing that there are a number of
interesting tree networks that have various applications in the
real world that were not probed in this paper. Thus, this will
be our future work.
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