PHYSICAL REVIEW E 105, 014305 (2022)

Dynamical systems on large networks with predator-prey interactions are stable

and exhibit oscillations
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We analyze the stability of linear dynamical systems defined on sparse, random graphs with predator-prey,
competitive, and mutualistic interactions. These systems are aimed at modeling the stability of fixed points in
large systems defined on complex networks, such as ecosystems consisting of a large number of species that
interact through a food web. We develop an exact theory for the spectral distribution and the leading eigenvalue
of the corresponding sparse Jacobian matrices. This theory reveals that the nature of local interactions has a
strong influence on a system’s stability. We show that, in general, linear dynamical systems defined on random
graphs with a prescribed degree distribution of unbounded support are unstable if they are large enough, implying
a tradeoff between stability and diversity. Remarkably, in contrast to the generic case, antagonistic systems
that contain only interactions of the predator-prey type can be stable in the infinite size limit. This feature for
antagonistic systems is accompanied by a peculiar oscillatory behavior of the dynamical response of the system
after a perturbation, when the mean degree of the graph is small enough. Moreover, for antagonistic systems
we also find that there exist a dynamical phase transition and critical mean degree above which the response

becomes nonoscillatory.
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I. INTRODUCTION

Complex systems consist of a large number of compo-
nents interacting through a network [1,2], as it is for instance
the case for neural networks [3-5], ecosystems and food
webs [6,7], financial and economic markets [8—13], and gene-
regulatory networks [14]. In all these fields it is crucial
to understand how the static and dynamic properties of a
complex system depend on the properties of the underlying
network [1,2].

In this paper, we are interested in two main aspects. First,
we focus on how the linear stability of fixed points in complex
systems depends on the network topology and the properties
of the interactions between the system constituents. Second,
we discuss how network topology and the properties of the in-
teractions determine the dynamical response of a large system
to an external perturbation, interestingly giving rise to peculiar
oscillatory patterns in some specific cases.

It has been speculated that the first question on the linear
stability of fixed points in complex systems is relevant to
understand, among others, the resilience of ecosystems to ex-
ternal perturbations to species abundances [15-19], the onset
of chaos in random neural networks [20,21], systemic risk in
financial markets [13,22-25], and homeostasis of protein con-
centrations in cells [14]. In ecology numerical simulations and
full dynamical solutions of ecosystems models show that fixed
points, and their linear stability features, control the large time
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evolution for a large portion of the model parameters [26-28].
Note that there exist other approaches to address stability of
complex systems. In particular, recent studies show that in
the context of ecology structural stability, linked to the ex-
istence (feasibility) of stationary points and referring to their
sensitivity to changes in the ecological parameters, should
be primarily looked at [29-33]. Although this paper mainly
focuses on linear stability, we will show at the end of the paper
that our result on system stability also applies to structural
stability.

The second question on the nature of the dynamical
response of a complex system to external perturbations is rel-
evant to understand, among others, how the patterns of brain
activity that emerge in response to an external perturbation
depend on the structure of cortical networks [21,34,35], or
how ecosystems’ response to external perturbations depends
on the graph structure and type of interactions of the under-
lying food web [36-39]. More specifically, it has been shown
that, when perturbed, the response of a large complex system,
such as a cortical network can be oscillatory [34,35]. Evidence
of oscillations in population abundances of ecological systems
(emerging either as stationary phenomenon or in relaxational
dynamics after perturbation) and studies of their underlying
mechanisms have a long history [39-44]. Despite many steps
forward in both fields [3,45-47], the origin of such oscillatory
behavior in brain responses after solicitation or in ecological
assemblies, especially in the limit of large ecosystems, is not
fully understood. In the present work we show that oscillatory
dynamical patterns may arise with high probability in large
complex systems for specific type of interactions and network
structure that we are able to identify.
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In order to address these questions, we perform a linear
stability analysis of a set of coupled differential equations of
the form

x = f(3), (1)

where %(t) = (x1(¢), x2(t), ..., xy(@))T € RV is a column
vector that describes the state of the system at a time 7, and
where f: RV — RY is an arbitrary function. In the vicinity
of a fixed point X*, defined by the condition

fE) =0, )

the dynamics given by Eq. (1) is well approximated by a set
of linear, coupled differential equations of the form [48,49]

0y = —dy() + Ay(), 3)
where the vector
F=i-¥ *
denotes the deviation from the fixed point X¥*, and where
0jfi(X*) = —d; ;1 + Ay &)

is the Jacobian of f at the fixed point. In Eqgs. (3) and (5)
we have conveniently expressed the Jacobian as the sum of a
diagonal matrix d with diagonal elements d;, and a coupling
matrix A with elements representing interspecies coupling
strengths Ay, so that A;; = 0, for all j. We write §;; for the
Kronecker delta function. If the parameters d; are positive,
then they represent decay rates that describe how fast y re-
laxes to the stationary state ¥ = 0 in the absence of coupling
(Ax; = 0). Equations of the form (1)—(3) are used to model,
among others, the dynamics of neural networks [20,21,50,51]
and ecosystems [15,52,53] in the vicinity of some fixed
point X*.

If the coupling strengths Ay; are small enough, then the
fixed point X* is stable since

Tim [50)] =0 (6)

for all initial states y(0), where | - | is the norm of a vector. On
the other hand, large A;; can destabilize the fixed point giving

Tim [5(1)] = o0 )

for all initial states %(0), although in this limiting case Eq. (3)
does not approximate well Eq. (1) and one should focus on
the nonlinear dynamics.

To quantitatively determine the stability of the system,
we define the leading eigenvalue A; of the matrix A as the
eigenvalue that has the largest real part. If there exist several
eigenvalues with the same real part, for example, because A
has a nonzero imaginary part, then we choose A; to be the
eigenvalue with the largest imaginary part. For instance, under
the assumption that d; = d for all j, if the real part Re(1(A))
of A satisfies

Re(A1(A)) < d, (®)

then the fixed point ¥ = 0 is stable since the matrix M =
—d + A has leading eigenvalue with negative real part, while
if

Re(11(A)) > d, ©))

M = —d + A has leading eigenvalue with positive real part,
then the fixed point is unstable, as we detail in Appendix A.

Besides system stability, we are also interested in how large
dynamical systems respond to external perturbations. As we
discuss in Appendix A, if

Im(2(A)) =0, (10)
then the response of ¥ is nonoscillatory, while if
Im(2(A)) > 0, (1D

then the response is oscillatory. In particular, the imaginary
part of A; determines the frequency of oscillations of the
slowest mode when the system is stable, and of the fastest
destabilizing mode when the system is unstable.

An important prediction in the theory of complex systems
is that a linear system of randomly interacting components is
unstable when N is large enough [54,55]. Indeed, under the
assumption that the A;; can be well approximated by inde-
pendent and identically distributed (i.i.d.) random variables
drawn from a distribution p, with finite second moment o2,
as proposed in a pioneering work by May [55], it holds that
for N large enough [56]

A1 = a~/N. (12)

Hence, for N < N* = (d/o)? the system is stable, while for
N > N* the system is unstable. In the context of ecology, this
result seems to imply that the biodiversity of an ecosystem
is constrained by system stability, standing at the core of the
diversity-stability debate [57-59].

The model of May exhibits an unavoidable tradeoff be-
tween linear stability of fixed points and diversity because
the real part Re(};) of the leading eigenvalue diverges as a
function of N. If on the other hand, Re()\;) converges to a
finite value as a function of N, then fixed points can be stable
even in the limit of infinitely large system size N if d in our
example is sufficiently large, yet finite. On these grounds,
considering random matrix models with distribution of the
nonzero elements A;; that does not depend on N, we define
the following two classes of stability:

(i) Size-dependent stability: the leading eigenvalue Re(A;)
diverges as a function of N. Therefore, there exists a critical
value N* above which models are unstable and biodiversity is
constrained by system stability.

(ii) Absolute stability: the leading eigenvalue Re(A;) con-
verges to a finite value as a function of N. Therefore, a finite
value of d can stabilize the fixed point, even in the limit of
N > 1. Note that absolutely stable models can be constructed
from models with size-dependent stability by simply rescaling
the entries of the matrix A with N, which guarantees that the
matrix norm ||A| = sup{||A%|| : ¥ € R with |#|| = 1} is fi-
nite in the limit of N >> 1 and thus also the leading eigenvalue
is finite. For example, if we consider random matrices A with
entries that are i.i.d. random variables with a variance o2 /N,
i.e., a model where coupling strengths Ay; tend to zero for
large N, then the leading eigenvalue Re(A;) converges to o.
However, such rescaling is introducing a dependence on N of
the matrix elements A;;, and therefore in the following we will
call absolutely stable only those models for which fixed points
can be stabilized by a finite value of d without rescaling of the
matrix entries with N.
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From a network perspective, May’s model [55] can be
described in terms of a dense graph, which can represent
special cases of well-mixed ecosystem. However, usually the
constituents of real-world systems interact through specific
preferential interaction whose structure is better described
by large, complex networks where nodes are not all linked
with all the others. It is therefore interesting to understand
the stability of dynamical systems defined on infinitely large,
sparse, random graphs with edges that are characterized by
random weights. Under these assumptions, interspecies cou-
pling strengths can still be approximated by random variables
but it can be studied how the nontrivial graph structure may
affect a system’s stability.

So far, the leading eigenvalue of adjacency matrices of
sparse graphs has been studied on nondirected graphs with
symmetric couplings and on directed graphs, for which the
couplings are unidirectional. For symmetric matrices, the
leading eigenvalue Re(A) scales as O(x/kmax ) [60—62], where
kmax 1s the maximal degree of the graph. On the other hand,
for adjacency matrices of random, directed graphs [63-65]
Re(A) scales as O(¢), where ¢ is the mean number of links
pointing outward, also known as mean outdegree. Hence,
in the limit N — oo, linear dynamical systems on random
directed graphs require a finite mean outdegree to guarantee
absolute stability, while models defined on nondirected graphs
need that the maximal degree is finite, which is a stronger
requirement. This result gives a first example of how the
nature of the interactions between single components play a
major role on the stability property of the system granting
the absolute stability of models on directed graphs that have
the same structure and statistical properties as models on
undirected graphs that are not absolutely stable.

Symmetric and unidirectional couplings are often not re-
alistic types of interactions for modeling real-world systems,
such as ecosystems [15,27] and neural networks [66]. In gen-
eral, interactions between the constituents of complex systems
are bidirectional and nonsymmetric. For example, the trophic
interactions between species in ecosystems can be of the
predator-prey, competitive, or mutualistic type (see Fig. 1).
Starting from this observation, Refs. [15—17] have considered
how predator-prey, competitive, and mutualistic interactions
affect the stability of ecosystems defined on dense graphs.
Although predator-prey interactions tend to decrease the real
part of the leading eigenvalue Re(A) by a constant prefactor,
it does not alter the scaling of Re(1;) as V/N. Hence, in the
case of dense graphs, stability depends on system sizes in all
cases studied unless absolute stability is restored in the trivial
sense by rescaling the interaction variables.

Inspired by these studies on complex ecosystems
[15,18,27,67,68], we analyze in this paper the linear stability
of fixed points of dynamical systems defined on large sparse
random graphs with predator-prey, competitive, or mutualistic
interactions. Such dynamical systems serve as models for
large ecosystems defined on food webs [7,69] described as
sparse, nondirected, random graphs that have a prescribed
degree distribution [1,70-73] and random interactions. We
obtain the typical leading eigenvalue for these graphs with
the cavity method [74-76], which is applied to specific cases
as an illustration, but also holds for general nonsymmetric
and bidirectional interactions. Using this theory, we determine
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FIG. 1. Sketch of the interactions in the two main models, the
antagonistic and mixture model, that we study in this paper, as well
as in the oriented ensemble studied in Refs. [63,76,77].

linear stability of fixed points in an infinitely large ecosys-
tem, characterized by random interactions on a sparse random
graph. We find that, unlike in the dense cases and at variance
with what generally expected, for sparse graphs the type of in-
teractions can strongly affect stability, leading in some models
to absolute stability, instead of size-dependent stability. The
result also applies to other kind of system stability, such as
structural stability and feasibility of ecosystems, as discussed
in the last section. We also determine how the dynamics in the
vicinity of a fixed point can strongly depend on the nature of
the interactions and the network topology.

The paper is organized as follows: In Sec. II we introduce
the random matrix models we study in this paper, namely,
antagonistic and mixture random matrices defined on sparse
random graphs. In Sec. III we present the main results for
the stability and dynamics of infinitely large ecosystems de-
fined on sparse graphs, which are based on exact results for
the leading eigenvalue of the random matrix models defined
in the previous section. In Sec. IV we present the theory
we use to derive the main results for the leading eigenvalue
of antagonistic and mixture matrices on random graphs. In
Sec. V we present results for the spectra of antagonistic and
mixture matrices, which extend the results for the leading
eigenvalue discussed in Sec. III. In Sec. VI we analyze how
graph topology affects the stability of large ecosystems, and
in Sec. VII we present a discussion of the results in this paper
and their broader application in the ecological context.

A. Notation

We denote real or complex numbers with a regular, serif
font, e.g., a, b, vectors with an arrow, e.g., d, l_; matrices of
size 2 x 2 with a sans serif font, e.g., @, b, and matrices of
size N x N in bold, e.g., a, b. Notationwise, we do not make
a distinction between deterministic numbers and random vari-
ables. If u is a random variable drawn from a distribution p,
then we write (u), for its average. We use u* to denote the
typical value of a random variable u: u* = argmax p(u). If.
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7 = x + iy is a complex number, then we denote its complex
conjugate by 7 = x — iy. We denote the real part of a complex
number z by Re(z), and we denote its imaginary part by Im(z).
The complex conjugate of a vector is denoted by &', b'.

II. MODEL DEFINITIONS

The models we study in this paper generalize the random
matrix models for complex ecosystems with all-to-all interac-
tions defined in Ref. [15] and the models for complex systems
on random graphs with unidirectional interactions studied in
Refs. [63,76,77].

We first define a general model for a dynamical system
defined on a network irrespectively of the specific choice for
the interactions between the nodes of the network. Subse-
quently, we will focus on random matrix models that represent
dynamical systems with predator-prey interactions only or
a combination of predator-prey, mutualistic, and competitive
interactions. We call the former antagonistic ensemble, fol-
lowing Refs. [15,78], and the latter the mixture ensemble; see
Fig. 1 for an illustration of these two models.

A. General model

For simplicity, in Eq. (5) we consider that all diagonal en-
tries of d are all the same, i.e., d; = d for all j. This is because
we want to understand how the properties of the interactions
influence system stability, which will not be directly affected
by having different values d;.

The interspecies coupling strengths are modeled by ran-
dom matrices A with entries

Aij=GCjlij, i,je{l,...,N}, (13)

where C = {C;;} is the adjacency matrix of a nondirected,
random graph with a prescribed degree distribution pyeq (k)
[1,70-73] with mean degree

e=) k) k. (14)

k=0

and where the pairs (J;;,Jj;) are i.i.d. real-valued random
variables drawn from a probability distribution p(u, [) that is
symmetric in its arguments,

pu,l)=pl,u), u,lekR. (15)

So far, in the research literature, the spectral properties of
matrices of the form given by Eq. (13) have been discussed
in the cases of symmetric random matrices [62,79-84], for
which

plu, 1) = pPu, 1) = pu)d(u — 1), (16)
or for oriented random matrices [63—65,74,76], for which
pQu, 1) = p°(u, 1) = 1 p)s() + (s (w), (17)

where p is a probability density generally supported on
(—00, 0). In the oriented case, interactions are unidirec-
tional, as illustrated in Fig. 1. We write §(x) for the Dirac
distribution.

In this paper, we extend these studies and present a theory
for deriving the spectral properties of random matrices of the

type given by Eq. (13) with J;; and C;; as described. We
apply this theory to two types of ensembles that have not
been discussed before in the literature, namely, antagonistic
random matrices, for which p(u, !) represents predator-prey
interactions, and mixture matrices, for which p(u, [) repre-
sent a mixture of predator-prey, competitive, and mutualistic
interactions. We discuss these two cases in the next two sub-
sections, respectively.

B. Antagonistic matrices

Antagonistic coupling matrices are defined in terms of the
sign-constraint of antagonistic interactions:

Jjj]ji <0 (18)

for each pair of indices i # j. Note that antagonistic matrices
are not antisymmetric matrices as in general J;; # —Jj;. In
the context of ecosystems, they represent predator-prey in-
teractions. This condition could be realized by the following

p(u, l):
plu. 1) = p*(u. 1)
= 3P(uDFUDIO@O (=) + 6(=wo D], (19)
where

x<0

t>0 (20)

O(x) = {(1)

is the Heaviside function, and where p for the antagonistic
ensemble is a probability density supported on [0, 00).

C. Mixture matrices

The mixture ensemble consists of a mixture of predator-
prey interactions, for which Eq. (18) holds, mutualistic inter-
actions, which determine the following coupling strengths:

Jij >0 and Jj; >0, 21

and competitive interactions, for which corresponding cou-
pling strengths are

Jij<0 and J; <O. (22)
For mixture matrices the distribution p reads
p(u, 1) = pM(u, 1)
=2, D)+ (1 = ap™Maw, D, (23)

where 72 € [0, 1], p* is the distribution defined in Eq. (19)
that describes predator-prey interactions, and p™ is the dis-
tribution

P™Mu, 1)

= p(|uDpUIDIEMOO D) + (1 — 7™ (—u)d (—1)]
24)

that describes both mutualistic and competitive interactions
with 7™ € [0, 1]. Hence, for mixture matrices the couple
(u, 1) is with probability 7* a predator-prey-like interaction,
while it is mutualistic with probability (1 — 7*)7™ or com-
petitive with probability (1 — 74)(1 — ™).
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D. Two examples: Model A and Model B

In the numerical examples of this paper, we consider that p
is a uniform distribution with unit second moment, namely,

plx) = %[1 —0(x—b)], x=0, (25)

with b = /3.
We set my = 0.5 so that on average couplings are bal-
anced,

(u) = (1) =0, (26)

even though the results of paper also hold for 7y, % 0.5. With
this choice the variance of the coupling strengths (u and /)
is one.

We often consider random matrices defined on Erd&s-
Rényi graphs [85,86]. For an Erd6s-Rényi graph the C;; are
ii.d. random variables that are with a probability c¢/(N — 1)
equal to one and with a probability 1 — c¢/(N — 1) equal to
zero. The Erdds-Rényi ensemble is also a random graph with
the prescribed degree distribution

k N—1-k
= (")) ()@

In the limit N — oo, the degree distribution is Poissonian with
mean degree c,

Il
Pdeg(k) = e (23)

We define two ensembles of reference that we will of-
ten consider in the numerical examples and that we call
Model A and Model B. Model A is an antagonistic, random
matrix defined on an Erd6s-Rényi graph with p given by
Eq. (25). Model B is a mixture random matrix defined on an
Erdés-Rényi graph with 74 = 0.9, 7™M = 0.5 and j given by
Eq. (25). Since 72 = 0.9, most of the interactions in Model B
are predator-prey interactions. Hence, the difference between
Model A and Model B is that all interactions in Model A are
predator-prey interactions, while Model B contains a small
fraction of mutualistic and competitive interactions.

III. MAIN RESULTS

In this section, we present the main results of this study.
In particular we compare the linear stability of antagonistic
systems with systems that contain a mixture of interactions,
and we discuss the peculiar nature of their dynamics in the
vicinity of a fixed point. We consider cases for which the
degree distribution pges (k) has unbounded support so that with
probability one the norm ||A|| diverges as a function of N. It
is natural to expect that if the norm diverges, then also Re(A;)
diverges as a function of N implying that the stability of the
fixed point depends on the system size. However, as we will
show this is not always the case, and whether the stability of
fixed points is size dependent or not size dependent follows
from the nature of the interactions.

A. Infinitely large antagonistic systems are absolutely stable

The first main result of this paper is that infinitely large
systems with predator-prey interactions are significantly more

OMixture _-7]
0O Antagonistic o & e®
15} -2 |
- Schs
= .-®7
& Lo
0.5 = = o 0 o o0 ]
T =
0 -
10! 10? 103 104
N

FIG. 2. Real part (Re[X]) of the mean value of the leading
eigenvalue X, as a function of N for antagonistic matrices (Model A)
and mixture matrices (Model B) on Erd6s-Rényi graphs with mean
degree ¢ = 4. Markers are sample means of A, obtained from directly
diagonalizing 10® matrices. The continuous red line is the typical
value of Re(A}) obtained with the cavity method (see Sec. IV), and
the black dashed line is obtained from fitting the function a log(N) +
b to the data.

stable than their counterparts that contain mutualistic and
competitive interactions. Indeed, we show that in general,
the stability of fixed points of dynamical systems on random
graphs is dependent on the system size, and for large enough
N fixed points are unstable, implying a tradeoff between sta-
bility and diversity. An exception on this generic behavior is
when all interactions are of the predator-prey type. In this
case, fixed points are absolutely stable.
This result follows from an analysis of the mean value

(Re(r1)) = (Re(11(A))) pa) (29)

of the leading eigenvalue A; as a function of N. Figure 2 shows
that for antagonistic random matrices (Re[A;]) converges for
large N to a finite number, while for mixture matrices (Re[A])
diverges as a function of N. Since stability is granted when-
ever Re[A;] < d, this result tells that mixture models are
unstable when N is large enough, while antagonistic ones
can be stable for d sufficiently large but finite, even when N
infinitely large. The results for mixture matrices have been
obtained using 74 = 0.9 for Model B, indicating that a small
fraction of competitive or mutualistic interactions are suffi-
cient to render a system always unstable in the infinite size
limit.

The results presented in Fig. 2 are obtained by using two
independent methods. First, we diagonalize 10? matrices sam-
pled from Model A (antagonistic) and Model B (mixture)
and compute the sample means of the leading eigenvalue.
For mixture matrices (Re[A;]) diverges logarithmically in N,
while for antagonistic random matrices (Re[A;]) is more or
less independent of N. Second, we compute the typical value
A7 of the leading eigenvalue in the limit N — oo with the
cavity method, which is an exact mathematical method for
the spectral properties of sparse non-Hermitian matrices; we
explain the cavity method in full detail in the next section.
For antagonistic matrices, the cavity method provides a finite
value that is confirmed by the numerical diagonalization re-
sults, while for mixture matrices we obtain that A} is infinitely
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FIG. 3. Probability Prob[X; € R] that X, is located on the real
line as a function of N. Markers are numerical results obtained from
directly diagonalizing 10° matrices from the antagonistic ensemble
(Model A, red squares) and the mixture ensemble (Model B, black
circles), both for Erd6s-Rényi graphs with a mean degree ¢ = 2.

large in the infinite N limit, which is also in agreement with
the logarithmic divergence of A} with N observed in the direct
diagonalization results.

B. Large antagonistic systems with a small
mean degree exhibit oscillations

A second main result of this paper is that the dynamics
of infinitely large and sparse systems with predator-prey in-
teractions exhibit oscillations in the vicinity of a fixed point.
In particular, we obtain that infinitely large systems defined
on antagonistic matrices exhibit oscillations when the mean
degree c is small enough. This follows from an analysis of the
imaginary component of the leading eigenvalue.

Figure 3 gives the first evidence that the leading eigenvalue
of infinitely large mixture matrices is real, while the leading
eigenvalue of antagonistic matrices can have a nonzero imagi-
nary part. Indeed, the plot shows the probability Prob[1;(A) €
R] that the leading eigenvalue is real as a function of N for
matrices in Model A (antagonistic) and Model B (mixture)
with mean degree ¢ = 2. We observe that for mixture ma-
trices A is with probability one a real number when N is
large enough, while for antagonistic matrices A; always has
with finite probability a nonzero imaginary component. We
have obtained these results by numerically diagonalizing 103
matrices and by using the criterion Im(X;) < 10~'3 to identify
an eigenvalue as real, where 10~13 is much smaller than the
typical distance between two eigenvalues. Remarkably, just as
in Fig. 2, it is sufficient to have a small finite fraction of mutu-
alistic and competitive interactions to obtain a real-valued 1.
Hence, almost all interactions must be of the predator-prey
type in order to have a nonreal leading eigenvalue ;.

The leading eigenvalue A; is not self-averaging in the limit
N — oo as it is evident from Fig. 3; since, if A; were self-
averaging, then Prob[A;(A) € R] should tend either to one or
zero. Since A; is a random quantity, it is interesting to study
its distribution, and in particular in this case the distribution of
its imaginary part,

PimGp (%) = (8(x — Im(21(A)))) (), (30)

2.5 : 2,,
—e—
c=14
21 1
3150
5
21
&
0.5
0
0

FIG. 4. Histograms of the imaginary part Im(X;) of the lead-
ing eigenvalue A; in antagonistic matrices defined on Erd8s-Rényi
graphs (Model A) with mean degrees ¢ = 2 (blue) and ¢ = 4 (yel-
low). Results shown are obtained from diagonalizing 10> matrices
of size N = 5000. The thick vertical line at Im(A,) = O has height
Prob[x, € R]/§, with § = 0.1 the width of the intervals in the his-
togram. Continuous lines are y distributions [see Eq. (34)] fitted to
the histograms [fitted parameters are @ = 3.04 and 8 = 3.31 (blue)
and o = 1.53 and 8 = 4.35 (yellow)].

which is plotted in Fig. 4 for antagonistic matrices of finite
size N = 5000. The distribution takes the form

pm(A)) = mre S(Im(A 1)) + (1 — wre) pc(Im(Ry)),  (31)
where
re = Prob[A; € R] (32)

is the probability that A; is real and where p.(Im(X;)) a con-
tinuous distribution for nonreal values of Im(A,). In turn, from
general considerations on sparse graphs [65] it is expected that
in the limit N — oo the continuous component tends to

pe(x) = ad(x —Im(A7)) + (1 — @)peyere(x),  (33)

where Im(A}) is the typical value of Im(X) and pcycle(x) is
the remaining distribution describing the nontypical values
of Im(X), which are originated due to the presence of small
cycles in the graph [87]. Conveniently, theoretical prediction
of Im(A}) in the limit N — oo when the underlying graph
has a giant component (¢ > 1 for Erdés-Rényi graphs) is
accessible by means of a theory based on the cavity method
that we present in detail in Sec. IV. Moreover from finite N
results, as shown in Fig. 4, we get an independent estimate of
the typical Im(A]) (see Appendix B for a detailed finite-size
study) by identifying it with the mode of a y distribution
ﬁa xafl efﬁx
y(x;a, B) = (1 —Prob[A; € R))————— 34)
I'(e)

fitted on the histogram of nonreal values Im(A;), with I'(«)
the gamma function and 8, @ € R two fitting parameters.

Figure 5 shows that these two independent methods give
compatible results on the typical value Im(1}) of antagonistic
random matrices, which interestingly it is seen to exhibit a
phase transition as a function of the mean degree c. In par-
ticular, Fig. 5 shows that there exists a critical ¢4 such that
Im(A}) converges as N — oo towards zero for ¢ > ¢ and to
a nonzero value for ¢ < cgjt.
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FIG. 5. Imaginary part of the typical value Im(A}) of the leading
eigenvalue A; as a function of the mean degree ¢ for antagonistic ma-
trices defined on Erd6s-Rényi graphs (Model A). Red crosses denote
Im(A}) in the limit of N — oo computed with the cavity method (see
Sec. IV), while the solid line is a guide to the eye. Unfilled markers
denote Im(X}) obtained from directly diagonalizaing 10 matrices of
a given size N as shown in Fig. 4. Results shown are for ¢ > 1 since
Erd6s-Rényi graphs do not have a giant component when ¢ < 1.

The result in Fig. 5 has deep implications on the dynamics
of ¥(t). Indeed, assuming we are in the vicinity of a stable
fixed point, the critical mean degree c.; separates a regime
at low connectivities, where infinitely large, antagonistic sys-
tems oscillate towards the fixed point, from a regime at high
connectivities, where infinitely large, antagonistic systems re-
lax monotonously to the fixed point. Figure 6 illustrates the
distinction between the dynamics atc =2 < ¢y and c = 4 >
cerit by plotting trajectories of y as a function of ¢ for three
different matrix realizations A drawn from the Model A. Since
¥ is a vector in a high dimensional space, we plot its projection
F(t) - $(0)/]7(0)|? on the initial state, for which we have set all
entries equal to one, i.e., ¥(0) = (1,1, ..., 1)T. We observe
a clear qualitative difference between the ¢ =2 and ¢ =4
trajectories of y(r): for ¢ = 2 the trajectory is reminiscent of

—c=2Im(\(A)) = 0.77]
¢ =4;Im(A\(A)) = 0.08
-cc=4Im(M(A) =0 -

f/vvxmeV%ﬁfvwﬂﬁfvm

-6 s ‘ ‘
20 40 60 80 100 120 140

t

FIG. 6. Plot of ¥(t) - ¥(0)/|¥(0)|* as a function of ¢ for three
different realizations of antagonistic matrices A drawn from Model A
with N = 10%, and with ¢ = 2 or ¢ = 4 as denoted in the legend. We
have chosen matrix realizations such that the Im(A;(A)) (numerical
values reported in the figure) correspond to the typical values of
Im(X,) in Fig. 4.

a harmonic oscillator in the underdamped regime while for
¢ = 4 the trajectory is reminiscent of a harmonic oscillator in
the overdamped regime.

More specifically these oscillations emerge most clearly if
the timescale 1, that the system needs to relax to its fixed
point

1
" d—Re(r))
is similar or larger than the transient time 7, at which the
mode associated with the leading eigenvalue starts to domi-

nate the dynamics, Tl 2 Tgap. The timescale Ty, is given by
the inverse of the spectral gap,

(35)

Trel

1
To = N
EP 7 Re(h1) — Re(Ay1)

where M denotes the number of eigenvalues with a real part
equal to Re(X;); see Appendix A. Hence Re(Xy4;) denotes
the second largest value of the real parts of the eigenvalues
of A. In this situation perturbed systems will show simple
exponential recovery of the fixed point if A; is real or barely
visible oscillations if their period
2

Toscil = Im(kl) (37)
is such that 7, > Tre. Otherwise for 7o << Tl @ typical
characteristic oscillatory dynamics of y(¢) will emerge during
relaxation towards equilibrium. Finally for 7 < Tgqap the dy-
namics of y(¢) appears chaotic.

For large systems, where spectral gap is expected to be
small and vanishing in the limit N — 00, 7w > Tgep Can be
obtained only at the verge of instability, i.e., for d — Re(})
even smaller than the gap. In this setting, systems with A,
typically real, or that rely on finite-size fluctuations of Im(A;)
to have a large but finite 7, will mostly present a nonoscilla-
tory relaxation dynamics. This occurs for antagonistic systems
characterized by connectivity ¢ = 4 > ¢, an example of
which is shown in Fig. 6, where for the instance with A;
real the gap is 0.03 (zgp ~ 30), and it is 0.02 (7gp = 50)
in the other case. In this example already 1. = 40 lets the
dominating mode emerge at around ¢ = 60, after a short
transient. Note that some oscillation is still visible in the
second case, but they are expected to disappear completely
for N — o0, as they are originated by finite size fluctuations
of the leading eigenvalue. On the contrary, antagonistic sys-
tems with ¢ = 2 < ¢ and typically finite Im(A;) in the large
size limit, will necessary be characterized by Tosij <K Trel aS
$00N aS Tre 2, Tgap and therefore will typically present evident
oscillatory dynamics towards equilibrium as in the example of
Fig. 6 where the gap is 0.02, 743, = 50 and again we have set
Trel — 40.

Interestingly, oscillatory recovery of the fixed point after
a perturbation has been observed in experiments on brain
functioning during wakefulness and not during sleep [34,35].
Several models for different parts of the brain build on the
interconnections of neurons through synapses [88], with pro-
gressive accent on the nonsymmetric nature of the interactions
and the nontrivial topology of the network, including the
proposal that a change in the interconnection structure could
be responsible of the lost of consciousness during sleep [34].

(36)
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Remarkably some indirect evidence of this phenomenon has
emerged in the different response of the brain to controlled
external stimuli, showing longer and oscillatory recovery of
the prestimulus stadium with long-range repercussion during
waking and a rapid monotonic and localized decay of the
stimulus effect during sleep [34,35]. The theoretical result
discussed in this section in full generality for the schematic
antagonistic model proposed provides a general and statisti-
cally sound explanation of the typical emergence of similar
oscillatory dynamical behavior for perturbed complex sys-
tems characterized by sparse interaction graphs and poised at
the verge of instability as well as its typical absence when
graph connectivity increases [20,66,89].

IV. THEORY FOR THE SPECTRA OF INFINITELY LARGE
RANDOM MATRICES

We present now the theory that we have used in Figs. 2 and
5 to determine the typical value A} of the leading eigenvalue
of infinitely large matrices.

First, we derive an exact expression for the spectral dis-
tribution of infinitely large random matrices in the general
model defined in Sec. IT A, which includes antagonistic and
mixture matrices. The spectral distribution of a sequence of
square matrices A of increasing size N is defined by

N
. 1
p(2) =ngnooﬁzla(z—xj) (38)
J:
for
z=x+1iyeC 39
and where
A'lv)\Za"'»)‘N (40)

are the N complex roots of the algebraic equation
det[A — z1y] = 0. 41)

Using the cavity method of Refs. [74-76], we will derive a
closed form expression for the spectral distribution p(z) of
random matrices in the general model defined in Sec. IT A.
Note that p is in principle a random quantity, as A is random,
but numerical evidence shows that in the limit of large N
the spectral distribution converges to a deterministic limit
[74-76].

Since we are mainly interested in the leading eigenvalue,
we will focus on the support of p, which is defined as

S={zeC:pz) # 0}, (42)

where @ denotes the closure of a set ®. The typical value of
the leading eigenvalue follows from

A} = argmax{Re(z):z € S}, (43)

where in Eq. (43) we use the convention, as before, to choose
the value with the largest imaginary part in case there are
several eigenvalues with a maximum Re(z). Equation (43)
is valid only in the case the leading eigenvalue belongs to
the continuous part of the spectrum. This condition holds
when the spectrum does not have outlier eigenvalues [63]. In
particular, a deterministic outlier eigenvalue can be originated

when Eq. (26) is not satisfied. Moreover, in the left-hand side
of Eq. (43), we have set the typical value A} of A;. This is nec-
essary because the leading eigenvalue A; is, on contrary to the
support set S, not a self-averaging quantity. Indeed, infinitely
large random graphs contain cycles of finite length and these
may create stochastic outlier eigenvalues in the spectrum that
may also be leading eigenvalues, as discussed in Refs. [76,87].
The cavity method assumes that the ensemble does not contain
cycles of finite length in the limit of large N. This assumption
does not influence the support set S because S does not
depend on the stochastic outlier eigenvalues in the spectrum.
However, when considering the leading eigenvalue, there is a
finite, albeit small, probability that the leading eigenvalue is
contributed by a cycle of finite length [76] and therefore A,
is not a self-averaging quantity. Although we cannot compute
the contribution to A; due to cycles, we can use the cavity
method together with Eq. (43) to compute the most likely
value A} of the leading eigenvalue.

A. Spectral distribution for locally tree-like matrices

We start the theoretical analysis with revisiting the cavity
method of Refs. [74—76] for the spectral distribution p of ran-
dom matrices that are locally tree-like. We say that a random
matrix ensemble is locally tree-like if with probability one
in the limit N — oo the finite neighbourhood of a randomly
selected node is a tree [90]. We note that an alternative method
[91,92] based on replica theory could be used to obtain similar
results.

As shown in Refs. [74-76], the spectral distribution of a
locally tree-like random matrix is given by

(z) = lim_ i L5~ d [G)] (44)
= lim lim — —I[G;
IO 2 r/~>0+ N—oo JTN =1 dZ Jiat
where
d L(d +i d 45)
— = =+i—),
dz  2\dx dy

and where the 2 x 2 matrices G; satisfy the relations
-1

z,— Y JuG | - (46)

keo;

G, =

In Eq. (46) we have used the notation
0; = {j:G; # 0} “47)

for the neighborhood of node i, and we have also used

_(—in 2 = (0
z, = < - —iﬂ) and Jj = (jkj 0 ) (48)

The matrices Gj.z) on the right-hand side of Eq. (46) are
2 x 2 matrices of complex numbers that satisfy the recursion
relations
~1
G;Z) =12, — Z ijGl(g)ka y (49)
ked\{e}

foreach £ € 9; .
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Equations (46) and (49) are relations between random
variables defined on a locally tree-like matrix. In the next
section, we derive a set of recursive distributional equations
for infinitely large matrices drawn from the general model
defined in Sec. IT A.

B. Spectral distribution for the general model of Sec. IIA

Since the general random-matrix model in Sec. IT A is de-
fined on random graphs with a prescribed degree distribution,
it is a locally tree-like ensemble [90] and the cavity method
thus applies.

We use Eqgs. (46) and (49) to derive a self-consistent set of
equations in the distributions

3 1
4(@ = lim — ; 59— Gy (50)
and
N
q(g) := lim LZZS(Q—G@). (51)
N—oo cN i=1 £ed; l

Since for the general model defined in Sec. IT A the random
variables on the right-hand side of Egs. (46) and (49) are
independent, we obtain the recursive distributional equations

[ee) k
2@ =Y. paes) [ [] dguatan
k=0 (=1
k

x / [ [ pue. 1) due di,

(=1

k -1
x8|g— (zn - ZJgggJZ) (52)
=1

and
00 k . k k—1
q(9) = Zpd—g() / [ ] d9eatge)
P =1
k—1
x /Hp(ul,l@)dug dly
=1
k=1 . -1
x 8 g—(zn—ZJeng;> . (53
=1
where

0 Uy
Ji = (75 O)' (54)
The distribution §(g) provides us with the spectral distribu-
tion, which admits according to Eq. (44) the expression

1d
p(z) = lim ——__/ dg 4(9) [gla1- (55)
n—0+ 7 dZ

Since we are mainly interested in the leading eigenvalue
A1, we discuss in the next section how to obtain the boundary
of the support set S of p.

C. Support of the spectral distribution

In this section, we derive an equation for for the support
set S of the spectral distribution p. We use the fact that
Egs. (52)—(55) admit the so-called trivial solution for which

10 - [ aea®wis- (%, )] oo

_ 0 -z
q(g)—/dgq(o)(g)(s[g— (_g 0)]. (57)

Substituting Egs. (56) and (57) into Eqs. (52) and (53), we
obtain that 4@ and ¢(® solve the equations

oo k
7”@ = pacs(h) / []dgea® 0
k=0 =1

and

k
x / [ ] ptue. 1) dug al,
=1
-1

k
x 8| g+ (z + ngm) (58)

=1

and

[e¢]

kpaes®) [T
9@=> decg / []d2a® g0
=1

k=1

k—1
x / [ [ ptue. 1oy due di,
(=1
k—1 -1
X8| g+ <Z + Z Mzg(lg> . 59)

=1

In addition, substituting the trivial solution into Eq. (55) for
the spectral distribution, we obtain that p(z) = 0, and there-
fore the trivial solution holds for values of 7 ¢ S.

In order to obtain the boundary of the support S of the
spectral distribution, we perform a linear stability analysis
of Egs. (52) and (53) around the trivial solution given by
Eq. (57). We consider a perturbation

a9 = [ ag [ an [ ar oce.n h’)8|:g - ( ! ;?)]
(60)

around the trivial solution Eq. (57), where

/ dg / dh / dh' h'(h')"Q(g, h,l') € O(™™)  (61)

are assumed to be of order O(¢"*™) and where € <« 1 is a
small number that quantifies the strength of the perturbation
around the trivial solution.
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In Appendix C, we show that Egs. (53), (60), and (61)
imply up to order O(¢) that

[e.¢]

kpdeg(k) =
Qs =) = / [ dgedh0ee, he)
=1

k=1

k=1
X/HP(Me,le)duedlz
=1
k-1
x 8<h — |g|22h[15>

=1

k-1 -1
X6 g+ (Z + Z Mzg(lg) R (62)

=1

where
0(g, h) = f dh'Q(g, h, h'). (63)

Since Eq. (62) is obtained through a linear stability analysis
of the recursive distributional equations (53) at the trivial
solution Eq. (57), we obtain that z ¢ S if

0(g. h) = ¢V ()8(h) (64)

is a stable solution of Eq. (62), where ¢ solves the relations
in Eq. (§9). On the other hand, if z € S then Eq. (62) will not
be stable at the trivial solution given by Eq. (64). Hence, the
boundary of the support set S is given by the edge of stability
of Eq. (62) at the fixed point solution (64).

There exist two limiting case for which we can obtain the
edge of stability analytically. First, there is the case of a highly
connected graph with ¢ — oo, which we will discuss later.
Second, there is the case of matrices with oriented interactions
for which p is of the form given by Eq. (17). In this case, we
recover that

(k(k = 1)) pyeg

= N 2<
S {ze(C |z] e

<u2>,~,.}, (65)
which is consistent with the results in Ref. [65], as we show
in Appendix F1.

For antagonistic and mixture random matrices, it is difficult
to make analytical progress. However, we can determine the
edge of stability of Eq. (62) at the fixed point solution (64),
and thus also the support set S, with a population dynamics
algorithm that we describe in detail in Appendixes D and E.
We have used this algorithm to determine the real part and
imaginary part of A} in Figs. 2 and 5. In the following section,
we use this algorithm to determine the support set S of both
antagonistic and mixture random matrices.

V. SPECTRA OF ANTAGONISTIC
AND MIXTURE MATRICES

In Sec. III we have found that the leading eigenvalues of
antagonistic and mixture matrices behave in qualitatively dif-
ferent ways. As a consequence, we expect that also the spectra
of these ensembles are qualitatively different. Therefore, in
this section we analyze the spectra of antagonistic and mixture

ensembles and provide a holistic view on the results for the
leading eigenvalue in Sec. III.

A. Antagonistic matrices

We first consider the spectra of antagonistic matrices given
by Model A, defined in Sec. IID and whose leading eigen-
value results are shown in Figs. 2-5. Figure 7 presents the
spectra of antagonistic matrices on graphs with mean degrees
¢ =4 and ¢ = 2. Each panel shows 10* eigenvalues obtained
from diagonalizing m; = 10*/N matrices. In addition to these
results from numerical experiments, the plot also shows the
boundary of the spectrum for N infinitely large, which is
obtained with the cavity theory in Sec. IV C.

We observe a very good correspondence between theory
and numerical results when N ~ 10*, while for smaller N
deviation appears, due to fluctuations in the spectral properties
for matrices of finite size. For example, from Fig. 7 it appears
that the leading eigenvalue at low values of N = 10 is larger
than the leading eigenvalue at N = 10*. However, as shown
in Fig. 2, the average of the leading eigenvalue is independent
of N, and therefore what we observe in Fig. 7 are sample-
to-sample fluctuations, which are significant for small system
sizes N. In Appendix E, we compare theoretical results for the
spectral distribution p(z) with histograms of eigenvalues at
finite N, and we obtain again an excellent agreement between
theory and numerical experiments, which further corroborates
the theory.

The most striking feature observed in Fig. 7 is the quali-
tative difference between ¢ = 4 and ¢ = 2 in the boundaries
of the spectra of antagonistic matrices. For ¢ = 4, the bound-
ary of the spectrum has a shape similar to the elliptic law
given by Egs. (66) and (67), while for ¢ = 2 a feature ap-
pears in the profile of the boundary: at the intersection with
the real axis it shows negative curvature accompanied by a
rarefaction of eigenvalues in correspondence of the real axis
(excepts from some noteworthy finite size effects). This phe-
nomenon, hereafter called reentrance behavior or reentrance
effect, corresponds to the fact that typically, for large systems,
the leading eigenvalue of the spectrum is not real but it is
a pair of complex conjugate numbers with finite imaginary
parts. The qualitative change observed when comparing the
boundary of the spectra at c = 4 and ¢ = 2 provides a holistic
view on the phase transition at ¢ =~ 2.75, depicted in Fig. 5
for the imaginary part of the leading eigenvalue, which is
real for ¢ =4 > cqi1, while for ¢ = 2 < ¢ it has a finite
nonzero imaginary part because of the reentrance effect in
the spectrum boundary. Hence, the phase transition in Fig. 5
reflects a qualitative change in the spectrum of antagonistic
matrices at low c.

B. Mixture matrices

We consider now the spectra of mixture matrices (Model
B), for which we have seen that the leading eigenvalue di-
verges as a function of N (Fig. 2), and is real (Fig. 3). Figure 8,
which is the equivalent for mixture matrices of the Fig. 7
for antagonistic matrices, shows a good agreement between
numerical results and the boundary of the spectrum, a part
from important sample fluctuations for small sizes. Remark-
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FIG. 7. Spectra of antagonistic random matrices on Erdés-Rényi graphs (Model A in Sec. I D) with mean degree ¢ = 4 (panels (a)—(d))
and ¢ = 2 (panels (e)—(h)). Gray markers are the eigenvalues of mg matrices of size N, with m; = 10*/N, that are randomly drawn from this
ensemble and are obtained through direct diagonalization routines. Continuous black lines are theoretical results for N — oo obtained with
the cavity theory of Sec. IV solved by population dynamics algorithm with population size N, = 25 000; note that the boundary would not
change using larger N,. Red dashed lines shown in panels (d) and (h) represent the boundary of the elliptic law given by Eqgs. (66) and (67)
with 02 = c and T = —3c/4.
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(a)N =10

(b)N = 10?
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FIG. 8. Spectra of mixture random matrices on Erdés-Rényi graphs with mean degree ¢ =2 (Model B in Sec. IID). Gray markers
are the eigenvalues of m, matrices of size N, with m, = 10*/N, randomly drawn from this ensemble and obtained through direct di-
agonalization routines. Continuous black lines are theoretical results for N — oo obtained with the cavity theory of Sec. IV solved by
population dynamics algorithm with population size N, = 25000. Note that the boundary will change using larger N,; see Fig. 13 in
Appendix D. Red dashed lines shown in panel (d) represents the boundary of the elliptic law given by Egs. (66) and (67) with 0> = ¢ and

T = —3¢/5.

ably the big difference with the antagonistic case is visible in
proximity of the real axis, where eigenvalues seem this time
to accumulate and every remnant of the reentrant behavior
previously emerging at small ¢ has disappeared. Moreover
we observe that mixture matrices develop long tails of eigen-
values on the real axis, which are absent in the spectra of
antagonistic matrices. These tails are directly responsible of
the divergence as a function of N of the leading eigenvalue,
which turns out to be real with probability one. The observed
tails are reminiscent of the Lifshitz tails in nondirected graphs
[60,92-96], which also appear in non-Hermitian random ma-
trices. Further details about the tails of the spectrum are
discussed in Appendix D, where we focus on the boundary of
the spectrum in proximity of the real axis as obtained by the
cavity method (see in particular Fig. 13 below). Interestingly
we find that strong finite size effects affect these theoretical
results obtained with population dynamics similarly to what
happens for results from direct diagonalization giving evi-
dence that the support set S of the spectrum contains the
entire real line. Note that in particular the result shown in
Fig. 8 has been obtained for population size N, = 25000.
Larger population size would push the boundary on the real
line further away from the origin. On the other hand we have
observed that the boundary far from the real line is not af-
fected by population size. We anticipate here that this result is

particularly relevant for its implications for structural stability
as we will discuss in Sec. VIIL.

C. Comparing the spectra of sparse matrices
with the elliptic law

In the limiting case of sparse matrices of high connectivity,
¢ — 00, Egs. (52)—(55) imply the elliptic law for the spectral
distribution [15,89,97,98], as we show in Appendix F2,

o2 . Re(z)? Im(z)? 1

f + >

_ m(o4—12) I (0241 =1y X o2
pz) = g Re? Im(o)? N (66)

(02+1)* (02—1)° a2’

where
T = lim c(ul), and o= lim c(u?), (67)
c—>00 c—>00

and where p is the distribution of # and / in the general model
of Sec. I A. Hence, in this limit it holds that
Re(z)? I 2 1
5= {ze(C: @ ImG <—2}, (68)
(02 +1) (02—-7) ©
where o and t are defined as in Eq. (67). Equation (68) is
consistent with the elliptic law Eq. (66).
The elliptic law derived to describe the boundary of the
spectrum of dense matrices is by definition insensitive of the
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local network topology. To highlight how important is the in-
fluence of network topology on the spectral results presented
so far we adapt the elliptic law [15] of Egs. (66) and (67) to
matrices from Model A, and to matrices of Model B as they
were dense matrices, and thus ignoring the network structure.
To do so, we consider the elliptic law for an i.i.d. matrix
ensemble whose entries (4;;, A ;) have the same variance and
correlations as in the sparse ensembles represented by Model
A, 0> =c and T = —3¢/4, and Model B, 6> =c and 7 =
—3c¢/5. The first consequence of this adaptation is that the
elliptic law has finite support, at variance with what happens
for N x N dense matrices with finite elements. In other words
the elliptic law adapted to the sparse case predicts that systems
whose coupling strengths are described by sparse matrices can
be stable in all cases as the leading eigenvalue does not diverge
with N.

In Fig. 7 we observe that the elliptic law thus obtained
gives an acceptable quantitative prediction for the boundary
of the spectrum and the leading eigenvalue of an antagonistic
matrix with ¢ = 4. On the other hand, for ¢ = 2 the spectrum
and the leading eigenvalue deviate considerably between the
elliptic and sparse ensembles. The difference is in this case
mainly due to the reentrance effect, which is absent in the
dense ensemble.

Discrepancies emerge also for mixture matrices, as shown
in Fig. 8 and this time are due to the emergence of tails on
the real line, which cannot be described by the elliptic law.
Such tails reinstate the divergence of the leading eigenvalue
of sparse large matrices which is not simply originated by an
extensive mean connectivity as for dense matrices, but it is
due to unbounded maximum degree kp,x similarly to what oc-
curs for symmetric matrices as discussed in the introduction.
Therefore, especially for mixture matrices, the predictions on
the leading eigenvalue that can be obtained by neglecting the
local graph topology and using an adaptation of the elliptic
law to the sparse case are completely unreliable.

Finally, although for antagonistic matrices with ¢ = 4 the
elliptic law predicts well the boundary of the support set
S, this is not the case for the spectral distribution p. In
Appendix E, we plot p for antagonistic random matrices in
Model A and find that their spectral distribution deviates
significantly from the uniform elliptic law. In fact, for sparse
ensembles, there is even a divergence for z — 0. We expect
this discrepancy to hold more generally for ¢ = 4 and an
eventual recovery of the elliptic law at much larger c.

VI. INFLUENCE OF NETWORK TOPOLOGY
ON SYSTEM STABILITY

So far, we have studied how the properties of the in-
teractions (J;;,Jj;), which may be of the predator-prey,
competitive, or mutualistic type, affect the stability of large
dynamical systems. However, we have focused on only one
random graph ensemble, namely, the Erd6s-Rényi ensemble
with a Poisson degree distribution. Here, on the other hand,
we will study how graph structure affects system stability.
We discuss how the leading eigenvalue A; depends on mean
degree ¢ and the variance

var(k) = (k%) .. — c*. (69)

Pdeg
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FIG. 9. Phase diagrams for the linear stability of fixed points for
antagonistic matrices (a) and oriented matrices (b), both defined on
either Erd6s-Rényi or regular graphs. The lines denote the edge of
stability given by the values of the system parameters for which the
leading eigenvalue of M has null real part, which is obtained where
d = Re(A}), as Re(A}) is the real part of the typical leading eigen-
value of the coupling matrix A. For antagonistic matrices p is given
by Eq. (25) and for oriented matrices p is an arbitrary distribution
with unit variance and zero mean. (a) Predictions from the theory
in Sec. IV (markers) are compared with the elliptic law given by
Egs. (66) and (67) (dashed blue line). The red line connecting the red
crosses is a guide to the eye. (b) Analytical predictions from Eq. (72)
are compared with the elliptic law given by Egs. (66) and (67).

We determine the parameter regimes for which fixed points
in antagonistic systems, which have exclusively predator-prey
interactions, are stable and compare the resultant phase dia-
grams with those of models with unidirectional interactions.
We do not consider models with a mixture of interactions
as for such systems the stability of fixed points is dependent
on system size and therefore we would obtain a trivial phase
diagram in the limit of infinitely large N, as in the infinite size
limit the system is unstable for all parameter values.

For the antagonistic ensemble, we consider the distribution
p given by Eq. (25) and for the oriented ensemble p is an
arbitrary distribution with unit variance and zero mean; for
oriented matrices the precise form of p does not matter as
Re(A) depends on only its variance and mean value [65].

A. Large mean degree has for all interaction types a negative
effect on system stability

Figure 9(a) shows the edge of stability, given by the val-
ues of the parameters for which Re(A}) = d, for infinitely
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large, antagonistic, random matrices on Erd6s-Rényi graphs
(Model A) as a function of ¢, with ¢ > 1 so that there exists
a giant component (see Appendix G). We find that the value
Re(A}), and therefore the edge of the stability, increases as
a function of ¢ implying that interactions destabilize fixed
points in dynamical systems. Note that on the y-axis we have

d/+/ (%) as the result is invariant under a rescaling of both d

and /(I%) = \/{(u?) by the same factor.

In order to better understand the effect of network topology
on system stability, we compare the results for Erdés-Rényi
graphs with those for regular graphs, for which

pdeg(k) = sk,m (70)

with ¢ € {3, 4, ...} so that there exists a giant component (see
Appendix G). Figure 9(a) shows that if interactions are of the
predator-prey type, then Erd6s-Rényi graphs are more stable
than regular graphs.

Comparing the results for sparse matrices obtained with the
cavity method with predictions from the elliptic law, which
ignores the presence of an underlying network, we find that
the elliptic law provides a reasonable quantitative predic-
tion of the leading eigenvalue of antagonistic matrices for
values ¢ = 4.

Figure 9(b) presents similar results as in Figure 9(a), but
this time for oriented matrices with (J;;, J;;) random variables
drawn from the distribution given by Eq. (17) with p an
arbitrary distribution with zero mean and unit variance. In this
case, the boundary of the support set S is given by [65]

(k(k — 1))

Pdeg ;42
= — TS 71
2C ( )pv ( )

as shown in Appendix F1, and therefore

2
|z]

2 _
Re()\*{)z\/(p)ﬁvar(k);_%'

Equation (72) applies as long as the graph has a giant strongly
connected component (otherwise, the leading eigenvalue is
determined by small cycles; see Ref. [65]). As shown in
Appendix G, for Erdés-Rényi graphs the condition for the ex-
istence of a giant strongly connected component corresponds
with ¢ > 2, while for regular graphs ¢ > 3.

Comparing Figs. 9(a) and 9(b), we observe that dynam-
ical systems with predator-prey interactions are more stable
than those with unidirectional interactions. Moreover, we find
that for systems with predator-prey interactions Erd6s-Rényi
graphs are more stable than regular graphs, while for systems
with unidirectional interactions it is the other way around.
Hence, how network topology affects system stability depends
on the nature of the interactions.

To focus more specifically on the role played by network
topology in the next subsection we directly study how degree
fluctuations affect system stability interpolating between the
two extreme cases of Erd6s-Rényi (maximum degree fluctua-
tions) and random regular graphs (no degree fluctuations).

(72)

B. The effect of degree fluctuations on system stability depends
on the nature of the interactions

One of the biggest advantage of the cavity approach is to be
able to include in the computation and show in the results the

role of local network topology on spectral properties, which
in this case turn out to be far from trivial. From Figs. 9(a) and
9(b) we gathered first evidences that degree fluctuations can
have both a stabilizing and a destabilizing effect on system
stability, depending on the nature of the interactions. Here we
aim at systematically studying the effect of degree fluctuations
on system stability by analyzing the dependency of the leading
eigenvalue on the variance of the degree distribution at a fixed
value of the mean degree ¢ interpolating between the random
regular and Erd6s-Rényi graphs discussed in the previous sub-
section. We therefore consider random graphs with the degree
distribution

ck

Paeg(k) = ade i + (1 — a)e’cﬁ, (73)
where a € [0, 1]. By varying the parameter a, we modulate
the variance of the degree distribution, which is given by

Var(k) = c(1 — a), (74)

while keeping the mean degree c fixed.

In Fig. 10(a) we plot the edge of stability, i.e., the line
where leading eigenvalue of M has null real part, which is
obtained where d = Re(A}]), for antagonistic matrices with p
given by Eq. (25) as a function of the ratio between the vari-
ance of the degree distribution pge in Eq. (73). We observe
that degree fluctuations generally tend to stabilize antagonistic
dynamical systems as the area where linear stability holds
increases as a function of Var(k). Therefore a smaller d will
suffice to stabilize the system. A notable exception is when the
mean degree is ¢ = 2, in which case the regions of the phase
diagram where stability holds shrinks when degree fluctua-
tions get larger.

In Fig. 10(b) we plot the edge of stability, for oriented
matrices with p a arbitrary distribution with zero mean and
unit variance. Remarkably, in this case we obtain the oppo-
site result, namely, that degree fluctuations always destabilize
systems with unidirectional interactions. In fact, this result
follows readily from Eq. (72).

It is surprising that for antagonistic systems variability in
the degrees can enhance the stability of fixed points. The fact
that this behavior emerges only for ¢ > 2, while ¢ = 2 shows
a more standard destabilizing effect due to degree variability,
suggests that it is connected with the absence or presence of
the reentrance effect in the boundary of the spectral distribu-
tion. A more accurate study of the effect of degree variability
of linear stability and its relation to the shape of the boundary
of the spectral distribution is left to future inspection.

Taken together, we have found that in certain situations
systems with degree fluctuations have the tendency to be more
stable than systems without degree fluctuations and this is
an unexpected example of how complexity of a disordered
system can increase its stability.

VII. DISCUSSION AND OUTLOOK

We have analyzed the stability of linear dynamical systems
defined on sparse random graphs that contain interactions of
the predator-prey, competitive, and mutualistic type, extend-
ing previous studies that considered the stability of systems
defined on dense graphs; see Refs. [15-18,67]. For random
graphs with a prescribed degree distribution that has un-
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FIG. 10. Comparison between the phase diagrams for the linear stability of fixed points in systems with predator-prey interactions (a) and
those with unidirectional interactions (b). The lines denote the edge of stability, this is given by the values of the system parameters Var[k]/c
and d/,/(I?)5 for which the leading eigenvalue of M has null real part, which is obtained where d = Re(A}). Results are for random graphs
with the prescribed degree distribution Eq. (73). For antagonistic matrices (a) p is given by Eq. (25) and for oriented matrices (b) p is an
arbitrary distribution with unit variance and zero mean. The markers in (a) are obtained with the theory in Sec. IV, and lines are guides to the

eye. The lines in (b) are the theoretical results given by Eq. (72).

bounded support, we have shown that system stability is
strongly dependent on the interaction type. Indeed, we have
shown that the stability of general systems that contain a
mixture of interactions is size dependent as Re(X;) diverges
as a function of N. For such systems there exists for each
finite value of d a critical size N* above which the system
is unstable implying a tradeoff between stability and diversity.
On the other hand, when the interactions are exclusively of the
predator-prey type, then there exists values of d for which the
system exhibits absolute stability as Re(x;) converges to a fi-
nite value as a function of N. These results are unexpected and
noteworthy as previous studies have shown that for dynamical
systems on dense graphs the scaling of the leading eigenvalue
with system size does not depend on the interaction type; see
Refs. [15-18,67].

We can provide an intuitive interpretation for the enhanced
stability of dynamical systems with predator-prey interactions
that is based on an analysis of the local neighborhood of a
randomly selected node. Although random graphs contain a
large number of cycles of length log N [99], the local neigh-
borhood of a node in a large random graph is with probability
one a tree graph [90]. As we discuss in Appendix H, numerical
evidences suggest that the eigenvalues of antagonistic, tree
matrices are imaginary. Therefore, the stability of antagonistic
dynamical systems defined on tree graphs is granted for any
—d < 0. For antagonistic matrices, this implies that the local
neighbourhood of a randomly selected node represents a sta-
ble dynamical system enhancing global stability. In contrast,
the leading eigenvalues of tree graphs with competitive and
mutualistic interactions have unbounded real part, which typ-
ically increases with the maximum degree and the strength
of the interactions involved. This implies that, for any d,
large mixture matrices with unbounded degree distribution
or unbounded interaction distribution always contain local
neighborhoods that are unstable. Taken together, stability of
dynamical systems defined on random graphs is strongly
related to their local structure, and this is captured by the
cavity method. Note that the above reasoning suggests that
antagonistic systems exhibit absolute stability as long as the
local neighborhood of a randomly selected node is with prob-
ability one an antagonistic tree graph. Hence, more general

antagonistic ensembles than the one described in Eq. (19), also
including asymmetries between predators and preys, could be
studied and are expected to give qualitatively similar results.
Moreover, it is not required that the interaction strengths
are i.i.d. random variables drawn from a certain distribution
p(u, ) as considered in Eq. (15). Any random coupling ma-
trix is expected to lead to absolute stability for antagonistic
systems as long as it is locally tree like and antagonistic.

Linear stability of fixed points in large systems defined
on complex networks is a problem of broad interest (see
introduction for several applications of linear stability anal-
ysis). In theoretical ecology it has also been the subject of
intensive studies, including the still open discussion about
how well the Jacobian can be approximated by a random
matrix [59,100,101]. On the other hand, it has been argued
[29,31-33,102] that another kind of stability, called structural
stability, is more relevant to describe ecosystem stability. Im-
portantly, the main result of this paper, namely, that dynamical
systems on random graphs with predator-prey interactions
exhibit absolute stability while those with a mixture of inter-
actions exhibit size-dependent stability, remains valid when
one uses structural stability to characterize the stability of an
ecosystem as discussed in the following.

Consider an ecosystem described by a set of generalized
Lotka-Volterra equations

N
hxi = x; (ri + Y Bix —8x,->, (75)

j=lj#i

where x; denotes the population abundance of the ith species,
r; is the intrinsic growth rate of the ith species, B is the
interaction matrix that describes the effect species j has on
the population abundance of species i, and § is a parameter
that determines the finite carrying capacity of species i. Note
that within the linear stability analysis the Jacobian at a fixed
point X* for such model has elements x;B;; for i # j, which
preserve the antagonistic, mutualistic, or competitive structure
of interactions contained in B, as x} > 0 V i. More generally
a fixed point solution X* must solve

= (=B +81ly)" % (76)

014305-15



MAMBUCA, CAMMAROTA, AND NERI

PHYSICAL REVIEW E 105, 014305 (2022)

Therefore, a necessary condition for the mere existence of a
fixed point is that the matrix —B + 61y is invertible, i.e., has
no zero eigenvalues, and it is said that a system is structurally
stable if this condition is satisfied [29,31-33]. If the com-
munity matrix B is modeled as a random matrix describing
either mixture or antagonistic interactions on a sparse random
graph, the results obtained in this work apply. In particular,
it is impossible for a system to exhibit structural stability
in the limit N — oo if the spectrum of B covers the whole
real axis, as it is the case for mixture systems. Indeed, for
any finite § the spectrum of B will be shifted by a finite
amount but will always contain zero eigenvalues (note that
for large but finite N the matrix —B + 61y will have many
near zero eigenvalues leading to strong sensitivity from 7
fluctuations). Moreover, for a finite §, structural stability will
depend on the size of the system giving rise to a tradeoff
between diversity and stability. On the other hand, the spectra
of antagonistic community matrices B defined on random
graphs form a compact set for any system size, and therefore
there exists a finite value of § for which the ecosystem exhibits
absolute structural stability (where the attribute “absolute” is
intended as discussed in the Introduction). The values of § that
render the system structurally stable are in general different
than the values of d that render the system linearly stable,
but the most important point is that such a finite value of
§ exists.

We have also analyzed how network topology affects sys-
tem stability in dynamical systems described by antagonistic
and oriented matrices. The mean degree of a graph has a clear
destabilizing effect on system stability, as it was first shown
in other contexts [55]. However, the impact of degree fluc-
tuations on system stability is more subtle: it depends on the
nature of the interactions and on the mean degree of the graph.
For example, for antagonistic systems degree fluctuations can
have a stabilizing and a destabilizing effect, depending on
whether the mean degree c is large or small. On the other hand,
for oriented matrices, degree fluctuations always destabilize
large systems. All these results hold both for linear stability
and structural stability.

The second main result of this paper instead is entirely
relying on linear stability approach. We have found that the
dynamics in the vicinity of a fixed point is oscillatory only
if almost all interactions are of the predator-prey type and
the mean degree of the graph c is small enough. In partic-
ular we have shown that the typical value of the imaginary
part of the leading eigenvalue of antagonistic sparse matrices
exhibits a phase transition as a function of ¢, as shown in
Fig. 5. This phase transition is due to a reentrance behavior
in the spectra of antagonistic matrices at low values of c,
as shown in Fig. 7. Conversely, for mixture matrices, the
leading eigenvalue, not only diverges as a function of N, but
is also real with probability one. This is because the spectra
of mixture matrices are characterized by long tails on the real
line, as shown in Fig. 8. These tails are reminiscent of Lifshitz
tails in symmetric random matrices [60,92-96]. Remarkably,
it is sufficient to have a small, finite fraction of competitive
and mutualistic interactions in order for Lifshitz tails to de-
velop. We have thus found that antagonistic sparse systems
can oscillate in response to an external perturbation because
the spectra of corresponding matrices do not develop Lifshitz

tails and undergo a transition in the shape of the spectral
boundary.

It is important to stress again that, within the linear stability
approach, the present paper relies on the assumption that the
Jacobian of the nonlinear dynamics describing an ecosystem
in the vicinity of a fixed point is well described by a ran-
dom matrix ensemble [15-18,67]. If and how generally this
assumption is valid is still under debate [59,100,101].

We end the paper with a few open questions.

It will be interesting to relate the derived results for the
spectra of antagonistic and mixture matrices to the properties
of the corresponding right and left eigenvectors for two rea-
sons. First, since the right eigenvectors of random directed
graphs exhibit power-law localization at small values of the
mean degree c (see Ref. [77]), one expects the same to hap-
pen for antagonistic matrices. As a consequence, the phase
transition in Fig. 5 from a nonoscillatory to an oscillatory
phase could be related to a localization-delocalization phase
transition. Second, for sparse symmetric matrices the Lifshitz
tails correspond with exponentially localized modes in the
spectrum [60,92-96]. It would be interesting to investigate
whether this is also the case for Lifshitz tails developing in
mixture matrices.

So far we have considered a situation for which d; = d for
all j and we have assumed that the spectrum does not contain
outlier eigenvalues. Note that the latter assumption is valid
as we have considered a balanced scenario for which (u) =
(I) = 0. These two conditions can however be relaxed. It is
straightforward to incorporate variable diagonal elements in
the cavity method analysis of the present paper. A study of
the outlier eigenvalues is more challenging, but it can also be
dealt with a cavity method approach (see Refs. [63,65]).

Finally, it will be interesting to compare predictions of
sparse random graph theory with spectra of real ecosystems.
In this regard, Ref. [69] shows that the spectra of food webs
depend strongly on the type of interactions that cover the food
web, and Ref. [6] shows that food webs contain a small num-
ber of cycles. These two empirical observations are consistent
with the theoretical results found in this paper. It will also
be interesting to relate the phase transition in the imaginary
component of the leading eigenvalue of antagonistic random
matrices, reported in Fig. 5, to the oscillatory response ob-
served in real-world systems [34,35,39,45-47].
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APPENDIX A: LEADING EIGENVALUE: STABILITY
CRITERION AND FREQUENCY OF OSCILLATIONS

We show that the leading eigenvalue A; of A governs the
dynamics of ¥ in the limit # >> 1. In particular, we derive the
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FIG. 11. Distributions of the imaginary part of the leading eigenvalue for antagonistic matrices (Model A) with ¢ = 2 (a) and ¢ = 4 (b). The
thick vertical line at Im(%,) = O has height Prob[X, € R]/§, with § = 0.1 the width of the intervals in the histogram. Markers are histograms
of imaginary part of the leading eigenvalues obtained through direct diagonalization of m; = 1000 antagonistic matrices for different values of
N. Continuous lines are obtained by fitting the y distribution on these data.

conditions given by Egs. (8) and (9) for the stability of linear
systems and the conditions given by Egs. (10) and (11) for
oscillations in the dynamical response.

We order the eigenvalues of the N x N matrix A such that

Re(x1) = Re(A2) = --- > Re(Ay). (AL)

If two consequent eigenvalues, say A; and A j, 1, have the same
real part, then we use the convention that Im[A ;] > Im(X j41).

We assume that the matrix A is diagonalizable so that it can
be decomposed as

A= "1RL, (A2)

N
j=1

where R ; 1s a right eigenvector associated with 2, Zj is a
left eigenvector associated A ;, and ZJ denotes the complex

conjugate of L;. We normalize left and right eigenvectors,
such that

R-Li =6, (A3)
forall j,k e {1,2,...,N}.
Substitution of Eq. (A2) in Eq. (3) yields ford; = d
N
) = ey ML - FO)IR;. (A4)
j=1

Hence, in the limit ¢ — o0, we obtain

M
F(t) = e®el=dr {Z MO SO)R

j=1

L O(elReusn—Re( )k )} , (AS)

where M denotes the number of eigenvalues for which
Re(r;) = Re(ry) = --- = Re(ry). From Eq. (AS) both the
stability conditions, given by Egs. (8) and (9), and the con-

ditions for oscillations in ¥(¢), given by Eqgs. (10) and (11),
readily follow.

The conditions (8)-(11) also apply when A is nondi-
agonalizable. However, in this case we cannot employ the
eigendecomposition (A2), and we should instead rely on a
Jordan decomposition; see Ref. [65].

APPENDIX B: FINITE-SIZE STUDY
OF LEADING EIGENVALUE

Figure 5 shows that finite-size effects are significant
in sparse random matrices. Therefore, we analyze here
how the distribution p(Im(X;)), plotted in Fig. 4, depends
onN.

Figure 11 presents empirical data for the distribution of
Im(X;) in antagonistic matrices with parameters that are the
same as in Fig. 4, except for the system size N, which now
takes three values N = 200, N = 1000, and N = 5000. Just as
in Fig. 4, we observe that the distribution of Im(X;) consists
of two parts and is of the form given by Eq. (31). We make
a couple of interesting observations from Fig. 11. First, we
observe that the probability Prob[A; € R] that the leading
eigenvalue is real is independent of N, consistent with the
results obtained in Fig. 3. A possible explanation for the
observed N-independence of Prob[A; € R] is that the lead-
ing eigenvalue is real when the matrix A contains a cycle
that induces a strong enough feedback loop. Since for sparse
random graphs the number of cycles of a given fixed length
is independent of N, and since cycles of finite length are
not accounted for by the cavity method, this explanation is
consistent with the numerical diagonalization results and the
theoretical results obtained in this paper. Second, we observe
that the mode Im(A}) of the continuous part of the distribution
decreases as a function of N. For ¢ = 4 > ¢ the distribution
moves swiftly towards zero while for ¢ = 2 < ¢ the mode
appears to converge to a finite nonzero value, which is consis-
tent with the phase transition at N — oo shown in Fig. 5 and
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FIG. 12. Distributions of the imaginary part of the leading eigenvalue mixture matrices (Model B) with ¢ =2 and ¢ = 4. The thick

vertical line at Im(A;) = O has height Prob[A; € R]/8, with § = 0.1 the width of the intervals in the histogram. Markers are histograms
of imaginary part of the leading eigenvalues obtained through direct diagonalization of m, = 1000 mixture matrices and for different values of
N. Continuous lines are obtained by fitting the y distribution on these data. Vertical axes are in log-scale to make visible the continuous part of

the distributions.

the conjecture that the cavity method provides an estimate for
the mode of the continuous part of the distribution of [Im(X)].

Figure 12 plots p(Im(A;)) for mixture matrices, which is
the equivalent of Fig. 11 for antagonistic matrices. Comparing
the distribution in Figs. 11 and 12, we see that the main
difference is the behavior of Prob[A; € R], which rapidly
converges to 1 for mixture matrices, as also shown in Fig. 3.
As a consequence, for mixture matrices the continuous part of
the distribution p(Im(A,)) disappears for large enough N.

k—1 B -1
7\ O u\( he —8\(0 [
0 = l( 0 —& h% Uy 0
=Xl

N O

APPENDIX C: DERIVATION OF THE ITERATION (62) FOR
THE LINEAR STABILITY OF THE TRIVIAL SOLUTION

We perform a linear stability analysis of Eq. (53) around
the trivial solution given by Eq. (57). To this aim, we consider
a perturbation around the trivial solution given by Egs. (60)
and (61).

After substitution of Egs. (60) and (61) into Eq. (53), we
obtain in the argument of the delta distribution on the right-
hand side of Eq. (53) the following:

-z— Zt;: gz“ﬂi)

( = i) heu?
= X4 Beele -l (C1)

_ -1
B ( 7+ Z’EZ} gzuzle)
2+ Y00 Beule

k—1 2
o=1 hettg
Expanding up to linear order in / and /', we obtain

[e¢]

ORI T b — (2 ) Bouele) (2 + ) genele)

k—1 k—1
, k paeg(k) , ,
0e. 1) = 3 =P [T dgednean; OGee heo iy [ T duedle a1
=1 =1

k=1
—1

k=1 7772
=1 hlle

k—1
X6 g+ <Z+Zuzg(gl[) 8(/’1—

(=1

where € is defined in Eq. (61).
In Eq. (C2), the recursions for 4 and /' are decoupled.
Hence, we can integrate out one of these variables. Defining

0. h) = / di Q(g, h, ), ©3)

we obtain from Eq. (C2) that Q(g, /) obeys Eq. (62).

(=1 heu? -
k—1 k—1
|2+ > 02 gettele]? 2+ D021 geuele]?

) + 0@, (C2)

APPENDIX D: COMPUTING THE BOUNDARY OF THE
SUPPORT SET FOR INFINITELY LARGE MATRICES

We detail the numerical algorithm we use to obtain the
boundary of the support set S in the Figs. 7 and 8 and the
typical leading eigenvalue A} in Figs. 2, 4, 9(a), and 10(a). We
first present in Sec. D 1 the population dynamics algorithm
we use to obtain the boundary of S, and in Sec. D 3 we show
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FIG. 13. Plots of log(|A|), as a function of Re(z) for antagonistic matrices [Model A in Sec. II D, (a)] and mixture matrices [Model B in
Sec. II D, (b)]. The mean degree ¢ = 4 and Im(z) = 0. The markers are obtained with the population dynamics algorithm described in Sec. D 1
with the population size N, and the number of sweeps 7, as given in the legend, and the error bars denote the estimated error obtained with

repeated realizations of the population dynamics algorithm.

the method we use to obtain A} from the population dynamics
results.

1. Population dynamics algorithm

Recursive distributional equations of the form Eq. (62) can
be solved numerically with a population dynamics algorithm;
see Refs. [79,91,103,104].

The population dynamics algorithm represents the distribu-
tion Q(g, 1) with a population of N, realizations of the random
variables (g, #). The population is initialized and updated as
follows:

(1) Initialize the population by drawing N, independent
realizations of random variables (g, 2) from a certain dis-
tribution piyic (g, ).

(2) Generate a degree k from the distribution ’f Ddeg (k).

(3) Uniformly and randomly select k — 1 elements (g, /)
from the population and draw k — 1 random variables (ug, [;)
from the distribution p(uy, ly), with £ = 1,2, ...,k — 1.

(4) Compute

k-1 -1
g§=- <Z +y Megzle)
=1

(5) Uniformly and randomly select an
{1,...,N,} and replace (g, h) by (g, h).

Steps (2)—(5) are repeated for a certain number Ny = ngN,
of iterations, where ng is the number of sweeps for which
the whole population is updated. After ng sweeps, the steps
(2)—(5) are repeated for another N, = n;N, of iterations after
which the population is estimated as

k—1
and b =gl Y hellel®. (D)
=1

index i€

Ny

Y 8g— gt —h). (D2
j=1

Qg h) = neNy 2

If N, — oo, then the pairs (g, 1)) in the population are
independent realizations drawn from the distribution Q(g, k)
and the algorithm is exact.

Since Eq. (62) follows from a stability analysis, it holds
that if the initial population is of the form given by Eq. (64),

then

z¢S,

lim lim (|h P

ng— 00 Np—>oo

07
)o = {Oo’ (D3)
Hence, we obtain the boundary of S by determining the value
of z that separates the region where (|h|), diverges from the
region where (|h[), converges to zero.

2. Numerical results for finite population size of the boundary

Figure 13 shows the mean of log(|h|), taken over the
N realizations of the population dynamics algorithm as a
function of Re(z) for antagonistic matrices (Model A in
Sec. II D) and mixture matrices (Model B in Sec. I D) with
mean degree ¢ =4 and Im(z) = 0. Practically, we evaluate
(A1) as follows. We initialize the (¢, ) with the uniform
distribution

Pinic(8, h) = é, gel—A, AL, he[-A Al (D4
for which we have set A = 10, but the precise value of A does
not matter much. Subsequently, we compute

ny

VAL
Bl s = 3 o
(1A} o i, j:1| |

with n, = 500. In addition, in order to obtain an estimate of
the fluctuations in (|h|), between different realizations of the
population dynamics algorithm, we repeat this procedure a
N =10 times, i.e., we compute (|h|), for N runs of the
population dynamics algorithm with different initial realiza-
tions of (¢, k™). Plots show log(|h|), for various values
of the population size N, and the number of sweeps ny; the
error on the mean value of log(|A[), is obtained from the
standard deviation of log(|A[), on the sample of N =10
realizations.

In the case of antagonistic matrices, all lines intersect in a
common point, which provides the estimate of the boundary
of the support set S. On the other hand, in the case of mixture
matrices, the intersection point for different n, increases as
a function of the population size N,. This implies that the

(D5)
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Im(z)

0.16 0.18 0.01 0.015 0.02
Re(z) Re(z)
(b)e=2 (¢)e=1.3

FIG. 14. Cubic fits to the data points, obtained with the pop-
ulation dynamics algorithm described in Appendix D1, for the
boundary of the support set in the vicinity of A}. Results shown are
for Model A with mean degrees ¢ =4, ¢ =2 and ¢ = 1.3. Panels
(a) and (b) are a zoom of the spectra shown in Fig. 7.

intersection point diverges as a function of N, and the real
axis belongs to the support set S. This corroborates the result
of Fig. 2 that show that the leading eigenvalue of mixture
matrices diverges as a function of N, while the leading eigen-
value of antagonistic matrices converges to a finite value as a
function of N.

3. Determination of the leading eigenvalue

We discuss how in Figs. 2, 4, 9(a), and 10(a), we have
implemented Eq. (43) to obtain A}, the typical value of the
leading eigenvalue, from the population dynamics results.

Since for antagonistic matrices the slope of the boundary
of § is vertical, as shown in Fig. 7, one needs to control the
fluctuations in the population dynamics algorithm to obtain
an accurate value of A}. To this aim, we use a cubic fit on the
values for the boundary of S obtained with the population dy-
namics algorithm. This procedure is shown in Fig. 14, which
shows data points for the boundary of S in the vicinity of A}
for three values of ¢ and also shows a cubic fit through these
data points. We obtain an estimate of A} by computing the
maximum value of the fitted cubic polynomial. It this estimate
for A7 that we plotted in Figs. 2, 4, 9(a), and 10(a).

APPENDIX E: SPECTRAL DISTRIBUTION

We compute the spectral distribution p(z) for random an-
tagonistic matrices defined on sparse graphs. In principle,
we can solve Egs. (52)—(55) with a population dynamics
algorithm to obtain the spectral distribution p. However, this

J

requires one to take a numerical derivative, which leads to a
large numerical error when the population size is small. One
can avoid this numerical error by considering a joint distribu-
tion for G and its derivative d%G, as discussed in Ref. [74].
We apply this approach to the general model of Sec. II A and
then present numerical results for the spectral distribution of
antagonistic, random matrices.

1. Alternative expression for the spectral distribution
We first take the derivative of Egs. (46) and (49). Using the

chain rule
%A“ =—-A"! (%A)A“ (El)
z z
on Egs. (46), we obtain
d )
—=Gj=-Gj|o - > i d_G Jij |G, (B2
< ked;
where
d 0 0
o_ = d-z”_<l O)' (E3)

Analogously, we obtain from Egs. (49),

d ) © () ©
728 =6 o= > Jil G’ Jij |G

ked;\(1}
(E4)
Equations (46), (49), (E2), and (E4), together with
| N
=—1 G E5
R D 2

provide the spectral distribution of a locally tree-like random
matrix model.

For the general model defined in Sec. IT A, we derive now
a set of recursion relations in the distributions

~ / : 1 a / d
4(9.9) = lim ;8(9 - G.f)S(g - d—ZG./) (E6)
and

N
d
a9.9):= fim ;33560 -6 )s(9' - )
=1 e
(E7)
Taking an ensemble average of Egs. (46), (49), (E2), and (E4),
we obtain the recursive distributional equations

kpges(k
q(9.9) = Z p“g( )/HdgdeZQ(gz,gg)/n dug dly plug, Iy)

k=1

-1

k—1 k—1
, 0 0 :
x 8 g—(zn—zdzgzdﬁ> 8{9 +g[<1 0)—2&9»49}
=1 =1

(E8)
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and

00 k k
79.9)= Y paat®) [ T dardgiacor. gy [ T duedt pa 10
k=0 =1 =1

k -1 k
: ) 0 0 -
x8lg— (z,,— E J@N}) Sig +g[(1 0) — § Jggzdjz}g}. (E9)
(=1 =1

The spectral distribution follows from the ensemble-
averaged version of Eq. (ES), which is given by

. 1 ! o~ ! /
p(z) = lim —/ dgdg 4(g. 9)lg - (E10)
n—0+ 7T
In the next section, we solve Egs. (E§)—(E10) with a popu-
lation dynamics algorithm. Note that Eqs. (E8)—(E10) do not
involve a numerical derivative d /dz.

2. Population dynamics algorithm for the spectral distribution

We use a population dynamics algorithm similar as de-
scribed in Sec. D1 to solve Eq. (E8). We represent the
distributions ¢(g, g') with a population of pairs ("), g’ of
2 x 2 matrices g and g’V with complex entries.

The population is initialized and updated as follows:

(1) Initialize the population by drawing N, independent
realizations of random variables (g, g"”) from a certain
distribution piy;c(9, 9).

(2) Generate a degree k from the distribution ’f Ddeg (k).

(3) Uniformly and randomly select & — 1 elements
(9¢, 9;) from the population and draw k — 1 random variables
(u¢, ly) from the distribution p(ug,ly), with £ =1,2,...,
k—1.

(4) Compute

k-1 -1
g= (Zﬂ — ZJ@Q@J&) and
(=1
0 0 k—1
=1

(5) Uniformly and randomly select an
{1,...,N,} and replace (g, g¥) by (g, g).

In this case, the precise form of the distribution py,;; does
not matter. Steps (2)—(5) are repeated a number Neq of times
until the estimated distribution

index i€

N,
1 & , .
45 N — S(a — a¥Msa — gV’ E12
4(9.9) N, E (9—g7)é@g —-g*’) (E12)

j=1

has converged to its stationary value.

After the distribution §(g, g’) has converged, we compute
a first estimate p; of p from Eqgs. (E9) and (E10) with a Monte
Carlo integration algorithm. We then repeat steps (2)—(5) a
number N, of times and then compute a second estimate of p,
of p. We repeat this procedure a number n,, of times to obtain

(

the final estimate

np

L1 N
p—Esz.

i=1

(E13)

The error on p is computed based on the standard deviation of
the set of sampled p;.

3. Numerical results for antagonistic matrices
on Erdés-Rényi graphs

We show the spectral distribution of antagonistic matrices
on Erd6s-Rényi graphs (Model A) with ¢ = 4 along cuts in the
complex plane that are parallel to the real or imaginary axis,
as indicated in Fig. 15.

Figures 16 and 17 show numerical results for the spectral
distribution obtained with the population dynamics algorithm
explained above. In addition, the figures show histograms
obtained from directly diagonalizing matrices of finite size
N = 5000.

We find an excellent agreement between theory and nu-
merical experiments. Although some care should be taken to
interpret the results in Fig. 16(b). While in the population
dynamics we can compute p exactly along a cut parallel to the

—6.5 —d.2 0:2 0:5
Re(z)

FIG. 15. Eigenvalues of one matrix sampled from Model A with
¢ =4, as in Figs. 7(a)—(d), but now with N = 5000. The blue lines
denote the cuts along which we compute the spectral distribution p
in Figs. 16 and 17. The red dashed line is the elliptic law given by
Egs. (66)—(68) with 0> = ¢ and T = —3c¢/4, and the black solid line
denotes the boundary of the spectrum in the limit of infinitely large
N obtained with the cavity theory of Sec. IV.
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0.3 +Theory Theory
ON = 5000, Agy, =0.02 J(gN i "
0.25 ;3( 15»0(10'&‘“ =0k N = 5000, Apy =0.2
---Elliptic law sy
§ 02 4 ---Elliptic law
j; ..................................................................................
0.15 3
& 3
= 0.1
3 % .
0.05 ! Qh\\%%
0 09 po=]
-0.4 -0.2 0 0.2 0.4 J B . O\/f“%c‘tﬁ:!})
Re(a) Re(z)
(a)Im(z) = 2 (b)Im(z) =0

FIG. 16. The spectral distribution p along cuts parallel to the real axis for random matrices of Model A with ¢ = 4. The values of Im(z)
are indicated in the captions and the cuts are shown in Fig. 15. Theoretical results from the cavity method (solid black line) are compared
with histograms obtained by numerically diagonalizing 10* matrices of size N = 5000 and collecting all eigenvalues in a strip of width Ay,
(markers). The spectral distribution is also compared with the elliptic law given by Egs. (66)—(68) with 6> = ¢ and T = —3c/4 (red dashed
line). Error bars denote the numerical error on the p value computed with population dynamics, as explained in the main text.

imaginary axis, in direct diagonalization results the spectral is smaller than the typical separation between eigenvalues,
distribution p is estimated with a histogram of eigenvalues then the strip contains only the O(v/N) of real eigenvalues,
located in a strip of width Ay,. For cuts that are not on the which do not follow the statistics given by p. Therefore, for
real line, Im(z) # 0, the estimate of p improves when Apy Im(z) = 0 it is necessary to consider a Ay, that is small but
decreases, as shown in Fig. 16(a). On the other hand, when not too small.

the cut is along the real line, Im(z) = 0, then the estimate of Figures 16 and 17 also compare p with the elliptic law
o worsens when Ay, decreases. This is because of finite size given by Eqs. (66)-(68), which here amounts to o> = ¢ and
effects that are significant for p on the real line. Indeed, onthe v = —3c¢/4. While the boundary of the spectrum is well pre-
real line there is an accumulation of eigenvalues, as one can dicted by the elliptic law, a feature already observed in Fig. 7,
clearly observe in Fig. 7. The number of eigenvalues that is this is not the case for the spectral distribution p.

real scales as O(+/N) [76,105] and is thus a subleading con- From Fig. 16(b) we observe that the spectral distribution
tribution to p. However, if we set Im(z) = 0 and the width Ay, of antagonistic matrices on Erd6s-Rényi graphs diverges for

0.2 -
+Theory T Y S
ON = 5000 f = 8
---Elliptic law

0.4

=)
o

p(0.1+iIm(z))
p(0.24iIm(z)

+Theory
O N = 5000
---Elliptic law

o
—

F 4 2 0 2 4
Im(z) Im(z)
(a)Re(z) = 0.1 (b)Re(z) = 0.2

+Theory
ON = 5000
---Elliptic law

4 2 0 2 4
Im(z)

(c)Re(z) = 0.3

FIG. 17. The spectral distribution p along cuts parallel to the imaginary axis for random matrices of Model A with ¢ = 4. The present
figure is similar to Fig. 16, with the difference that the spectral distribution p shown is for cuts parallel to the imaginary axis. The values of

Re(z) are given and the width Ag. = 0.02.
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z — 0. Interestingly, this divergence is also observed in the
adjacency matrices of nondirected Erd6s-Rényi graphs (see
Ref. [91]) and in the adjacency matrices of directed Erdds-
Rényi graphs; see the figure in Ref. [76]. On the other hand,
the divergence does not occur in regular graphs. Hence, the
divergence of the spectral distribution for z — 0 is a generic
feature due to network topology and is independent of the
nature of the interactions J;;. It would be interesting to have a
precise understanding of the origin of the peak.

APPENDIX F: LIMITING CASES

In Sec. IV we have derived an exact formula for the bound-
ary of the support set S of the spectral distribution p of
random matrices in the general model defined in Sec. IL A.
In particular, we have shown that the boundary of S is given
by the edge of stability of Eq. (62) at the trivial solution given
by Eq. (64). Here we show that the boundary of S obtained
from the stability analysis of Eq. (62) corresponds with results
obtained previously in the literature for the limiting cases of
oriented random matrices [65], for which J;;J;; = 0, and of
dense matrices [15,89,97,98], for which ¢ — o0.

1. Oriented ensemble

In the oriented ensemble, p(u,!) is of the form given by
Eq. (17), such that J;;J; = 0 for each pair of indices i and

R(h) =

Jj- We show in this Appendix that for oriented matrices the
boundary of the continuous part of the spectrum is given by
values of z € C for which

, (kk=D),,
lz|” = e ()5, (F1)
where p is the distribution that appears on the right-hand
side of Eq. (17). First, we show that Eq. (F1) determines the
edge of stability of Egs. (62) at the solution Eq. (64), and
subsequently we show the correspondence with the results for
the boundary of S in Ref. [65].

a. Derivation of Eq. (F1) from the general theory in Sec. IV

We show that the edge of stability of Eq. (62) at the trivial
solution (64) is determined by Eq. (F1).

In the oriented ensemble, the denominators in the delta
distributions of Eq. (62) simplify since u,l;, = 0. As a con-
sequence, Eq. (62) reads

1
(g, h) = 5<g + Z)R(h)’ (F2)

where R solves

k ok L l?
pdg( )/]—[ degR(hg)/l—[ dug dly p (ug,lg)(S(h— . |2‘5 ) (F3)

where pO is the distribution defined in Eq. (17). Equation (F2) implies that for oriented matrices the variables g and & decouple.
Hence, it suffices to study the stability of Eq. (F3) at the trivial solution Ry(h) = &(h).

Evaluating the average value of /1, we readily obtain

() = f dgdh h Q(g, h) = / dhR(h)h =

where p is the distribution appearing on the right-hand side of
Eq. (17). Hence, the edge of stability is given by the values of
z for which Eq. (F1) holds, which is what we were meant to
show.

b. Derivation of Eq. (F1) from the theory in Ref. [65]

We derive the result Eq. (F1) from the results obtained in
Ref. [65]. Reference [65] considers random matrices A of the
form

A=JoC, (F5)

where C is the adjacency matrix of a random, directed graph
with a prescribed joint degree distribution pgeg(Kin, kour) Of
indegrees ki, and outdegrees koy, and where J is a ran-
dom matrix with real-valued i.i.d. entries drawn from a
distribution p(x).

According to Ref. [65], in the limit N — oo the boundary
of the continuous part of the spectrum of A is given by the

ktk = Dlps 1, ()

R F4
2¢ Pz)? (F4)

(

values z € C for which

- (%) 5, (F6)
where ¢ is the mean indegree (or outdegree)

&= {kin) py, = (Kout) - (F7)

Note that Eq. (F5) considers a random, directed graph
C with symmetric couplings J, while Eq. (13) with p = p°
considers a random, nondirected graph C with asymmetric
couplings J. Both models are related through the correspon-
dence

k

00
1 k
pdeg(kim kout) = § pdeg(k)i E <Vl) 8ki",n6kom.k—n (FS)
k=0 n=0

between the degree distributions of the directed and nondi-
rected graphs.
Using Eq. (F8), one can show that
c

e=7 (F9)
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and
(Kinkout) py = 5 (k(k = 1)) 5. - (F10)

Substituting Eqgs. (F9) and (F10) into Eq. (F6), we obtain
Eq. (F1), which we meant to derive.

2. Large connectivity limit

We take the limit ¢ — oo, with ¢/N = 0, and find the law
given by Eq. (66), which is reminiscent of the elliptic law for
ii.d. matrices with ¢ = N — 1. In order to obtain a bounded
support set, we rescale o and t as in Eq. (67).

a. Support set

We first derive an expression for the support set S. We
show that the edge of stability of Eq. (62) at the trivial solution
Eq. (64) provides us with the boundary of the elliptic law in
Egs. (66). Using the law of large numbers, we can identify
the sums inside the delta distributions on the right-hand side
of Eq. (62) with their mean values. As a consequence, to the
leading order 1/c, the distribution Q takes the form

O(g. 1) = 8(g — §)8(h — ), (F11)
where g and h satisfy the self-consistent equations
g = ! (F12)
8= 748t
and
h = h|g|*0?. (F13)
The edge of stability of the previous equation is given by
IR
18" = ek (F14)
In order to obtain |2|, we first consider the two equations
2+8=—12lle+7+ @+l (F15)
and
g—8=—lgllz—z+@-®rl. (F16)

which are readily obtained from Eq. (F12). Using Eq. (F14) in
Egs. (F15) and (F16), we obtain

2Re(z)

2Re(®) =8+8=— F17
e(@=8+28 - (F17)
and
A = 2Im(z)
2Im@) =8-8=— , (F18)
c?—1
and thus also
Re(z) 2 Im(z) 2
A2
=|—— — . F19
i [ROT [T

Lastly, the stability condition Eq. (F14) together with (F19)
provides us with the boundary

Re(z) T L[ Im@ 2

ol+1 o2—1] o2
for the support set of the spectral distribution of a highly
connected random matrix, which is equivalent to Eq. (68).

(F20)

b. Spectral distribution

We compute the spectral distribution of highly connected
matrices. In this case, we rely on Eqs. (52)—(55). In the limit
¢ — 00, we can apply the law of large numbers inside the
Dirac distributions of Egs. (52) and (53), leading to

4(@) = q(g) = 8(g — 9), (F21)
where § solves the self-consistent equation (setting n = 0)
N N N N —1
g= s 812y _ —8n0?  z—@nt
&1 &» Z—8nt  —&no?
. 1
811820% — (T — &nt)(z —gur)

A 2 A

—8110 —z+ 8t
x| _° . N F22
<—Z+glzf —82202> F22)

and the spectral distribution is given by

1d,
p(z) = ——=8a1. (F23)
T dz
Equation (F22) implies that
A A4
A A 8118220
811822 = —/— 1 _11 23 ~ 2 (F24)
[8118220% — (T — 8127 )(z — 821 7)]
such that either
811 =%8»=0 (F25)
or
(2118220 — @ — 2120)(z — gu D)) = 0. (F26)

Equation (F25) is the trivial solution, and Eq. (F26) is the
nontrivial solution.

In Sec. F2a, we have shown that the trivial solution
Eq. (F31) is stable for all z for which

[Re(z) 1 [Im@z) ]* 1
—, F27
o2+ | +_02—r_ - ®27
while the nontrivial solution holds for
[Re(z) 1> [Im@ > _ 1
< —. F28
o2+ | +_02—r_ o? 28)

In what follows, we first compute the spectral distribution
for the trivial solution and then we compute it for the nontriv-
ial solution.

Trivial solution: For the trivial solution, Eq. (F22) reduces
to the two equations

1
&1 =—, (F29)
Z— 8T
. 1
812 =—"—"7T"> (F30)
Z— 8127

which admit two complex solutions

R 7+ —41

= F31
221 7 (F31)
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For |z| > 24/|t], this is an analytical function in z, and there-
fore

—8&n1 =0. (F32)

dz
Since for all z for which Eq. (F27) holds, it also holds that
|z| > 24/||, we obtain that

Re(z) ]2 |: Im(z)

o241 o?2—1

. S|
p(z)=0 if [ } > —. (F33)
o

Nontrivial solution: For the nontrivial solution Eq. (F26)
we obtain

N 211 &n 1 ( —8n0% —z+38ut
=12 S =4+—( _°" R F34
g (821 gzz) o2 <—z + 8t —gno? ) E34)
and therefore

+8210% = 7+ g, (F35)

(F36)

From these equations we obtain a closed equation for g5,

+81p0% = —z+ 1.

2

R o°  _ T
821 =:Fo’4—1'22_04—1’21’ (F37)
and accordingly
Craa 1 o?
p() = ;580 = P S (F38)

if we select the positive solution.

APPENDIX G: GIANT COMPONENTS
IN RANDOM GRAPHS

We revisit percolation theory for nondirected random
graphs [71] and directed random graphs [106], and then apply
percolation theory to the random graph ensembles with degree
distributions givenm by Eq. (73). For a nondirected graph,
Ddeg 18 the degree distribution, while for a directed graph we
obtain the joint distribution of indegrees and outdegrees from
Eq. (F8).

1. Largest connected component in nondirected graphs

Let G = (V, E) be a graph with V a set of vertices and E a
set of nondirected edges. We say that a subgraph G’ = (V’, E”)
of G is connected if for each pair of verticesi € V' and j € V'
there exists a path of edges that belong to E’ that connect i
to j. The largest connected component is the largest subgraph
G’ of G that is connected, i.e., both the order |V’| and the size
|E’| of the subgraph or maximal.

The relative order of the largest connected component is
defined by

V'l

f(G) = N (G1)

We consider now nondirected, random graphs with a pre-
scribed degree distribution pgee (k). We denote the generating
function of pges (k) by

Mx) =) x* pacg (), (G2)
k=0

and we will also use the generating function

[ee]

M(x) _ Z_xk kpdecg(k) _ axj‘i(x)’ (G3)
k=0

where c is the mean degree of pgeg (k).

In the limit N — oo, the relative order f(G) converges
with probability one to a deterministic value f, which is given
by [71],

L—f=M®y), (G4)
where y is the smallest nonnegative solution of
¥ =M©). (G5)
Solving Egs. (G4) and (G5) one finds that
oo
£>0 if ) pacg()k(k —2) > 0 (G6)
k=0
and that
o0
f=0 if Zpdeg(k)k(k —-2)<0. (G7)
k=0

Hence, the condition

> Paeg (k)k(k —2) =0 (G8)
k=0

determines the percolation transition in undirected, random
graphs.

2. Largest strongly connected component in directed graphs

Let G = (V, E) be a directed graph with V' a set of vertices
and E a set of nondirected edges. We say that a subgraph G’ =
(V', E") of G is strongly connected if for each pair of vertices
i €V’ and j € V' there exists a path starting in node j and
ending in node i that follows the edges in E’, and there exists
also a reverse path that starts in node i and ends in node j. The
largest strongly connected component is the largest subgraph
G’ that is strongly connected.

We define the relative order of the largest strongly con-
nected component as

V'l
85c(G) = N (G9)

Let us consider directed, random graphs with a prescribed

degree distribution pyeg (Kin, kout) Of indegrees and outdegrees.

Then it holds that [65,106]
(G10)

Ssc = Sin 1 Sout + St — Swe,

where iy, Sout» St, and sy, are the fraction of nodes that belong
to the incomponent, outcomponent, tendrils, and the weakly
connected component, respectively. It holds that

00 )
Sin = 1 — Z aki" Z pdeg(kim kout),

kin=0 kou=0

0 0
Sou =1 — Z blon Z pdeg(kinv kout)s

kou! =0 km =0

(G11)

(G12)
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FIG. 18. (a) Relative order f of the largest connected component of random graphs with the prescribed degree distribution given by
Eq. (73), just as in Fig. 10. Lines correspond to theoretical results for infinitely large N obtained from solving Egs. (G4) and (G5), while the
markers are simulation results for finite N and ¢ = 2; we have included simulations in order to verify the peculiar discontinuity of f ata = 1.
(b) Relative order s of the largest strongly connected component of random, directed graphs with a joint degree distribution pgeg (Kin, kout)
given by Eq. (F8), just as in Fig. 10. Lines are theoretical values for infinitely large N obtained from solving Egs. (G10)-(G15).

and
o0

o0
St — Swe = Z Z pdeg(kin, kout) alinplow — 1, (G13)
kin:O kcu(:O

where a and b solve the equations

o0 oo
k u ki ) k u
a= Zakin Z otpdegE n ot) (G14)
km:O koul:0 ¢
and
o0 o0
k; kin, kou
b= Z bk"“‘ Z npdeg(~1n 0 l)’ (GIS)
koul:() kin:0 ¢
where ¢ is the mean outdegree defined in Eq. (F7).
Solving Egs. (G4) and (G5), we obtain that [65,106]
. Z;o:o Z}fo —0 Pdeg (kin, kout Ykinkout
S > 0 if = ot — > 1
¢
(G16)
and
. Z/(:-Ozo Z/c{)o‘:() pdeg(kin’ kout Ykinkout
S =0 if o — < 1.
¢
(G17)
Hence, the condition
o.o_ > — kin’ k kink
ka_O Zkﬂu[_o p(ieg( out) out -1 (Gl 8)

c

determines the percolation transition of the strongly con-
nected component in directed, random graphs.

3. Random graphs with degree distribution given by Eq. (73)
a. Nondirected

Random graphs with the prescribed degree distribution
given by Eq. (73) percolate when

(G19)

In the special case of a = 0, corresponding to the Erdés-Rényi
ensemble with the Poisson degree distribution, the percolation

a=c—1.

transition takes place at ¢ = 1. In Fig. 18(a) we plot for the
relative order f of the largest connected component as a
function of the variance var(k) of the degree distribution for
random graphs with a prescribed degree distribution given by
Eq. (73). We obtain that for infinitely large graphs f decreases
monotonically as a function of var(k), even for ¢ = 2.

b. Directed

We consider a random, directed graph with a prescribed de-
gree distribution pgeg (kin, kou) Obtained by plugging Eq. (73)
in Eq. (F8). Such a random graph can be constructed by
adding unidirectional links on a nondirected graph with de-
gree distribution pges(k), as we discussed in Sec. II A. Using
Egs. (F9) and (F10), we find that critical condition (G18) reads

1 [o.¢]
> > k(k — 1)paeg(k) = 1. (G20)
k=0

If pgeg(k) is given by Eq. (73), then the strongly connected
component of the graph percolates when

a=c—2.

(G21)

In the special case of an Erds-Rényi ensemble (a = 0) with
Poisson degree distribution the strongly connected component
percolates at ¢ = 2. In Fig. 18(b) we plot the relative order s
as a function of var (k) for directed graphs pgeg (kin, kout) given
by Eq. (F8). We find that s, increases as a function of var(k)
for ¢ = 3 and decreases as a function of var(k) for ¢ = 4.

APPENDIX H: EIGENVALUES OF THE ADJACENCY
MATRICES OF TREE GRAPHS WITH PREDATOR-PREY
INTERACTIONS

Consider a square matrix A of dimensions n x n that has
the following two properties:

(1) The graph represented by A, in the sense that there
exists a nondirected edge between two nodes i and j when
either A;; # 0 or Aj; # 0, is a tree.
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(2) It is antagonistic, i.e., A Ax; < O for all pairs j, k €
{1,2,...,N} with j # k.

We call such matrices the adjacency matrices of antago-
nistic, tree graphs. We make the following claim: if A; is an
eigenvalue of A, then Re[A;] = 0. In other words, all eigen-
values of the adjacency matrices of antagonistic, tree graphs
lie on the imaginary axis.

First, we have verified this numerically for a large number
of examples by numerically diagonalizing antagonistic tree
matrices. Second, we present mathematical evidence in favor
of this claim. We will show that for antagonistic tree matrices
it holds that

N
sgn (Z A§‘> = (-1 (H1)
j=1
and

N

> oA =0 (H2)

J=1

for all values £ € N. The most direct explanation of these
two relations is that Re[A;] =0 for all eigenvalues A;.
Equation (H1) is then a direct consequence of i*¢ = (—1)*

and Eq. (H2) is a direct consequence of the fact that if A;
is an eigenvalue, then also its complex conjugate A} is an
eigenvalue.

Let us derive Eqgs. (H1) and (H2). First, it holds that

N
Tr[A'] =) 2L (H3)
j=1

This is a direct consequence of the fact that the diagonal ele-
ments of the Jordan canonical form of A¢ are the eigenvalues
k?. Second, it holds that

Tr[Ae] = Z AilizAizi3 .- 'Aieil s (H4)
(i1,02,.., 00 )EP(A)

where the sum runs over the set P, of all closed paths of length
£ in the graph. Since the graph is a tree, it holds that

Tr[AZ*!] = 0 (H5)

for all natural numbers £. On the other hand, since the graph
is an antagonstic tree, it holds that

sign(Tr[A%]) = (=" (H6)

Combining Eq. (H3) and Eq. (H6), we obtain Eqs. (H1) and
(H2).
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