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Predictable topological sensitivity of Turing patterns on graphs
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Reaction-diffusion systems implemented as dynamical processes on networks have recently renewed the
interest in their self-organized collective patterns known as Turing patterns. We investigate the influence of
network topology on the emerging patterns and their diversity, defined as the variety of stationary states
observed with random initial conditions and the same dynamics. We show that a seemingly minor change, the
removal or rewiring of a single link, can prompt dramatic changes in pattern diversity. The determinants of such
critical occurrences are explored through an extensive and systematic set of numerical experiments. We identify
situations where the topological sensitivity of the attractor landscape can be predicted without a full simulation of
the dynamical equations, from the spectrum of the graph Laplacian and the linearized dynamics. Unexpectedly,
the main determinant appears to be the degeneracy of the eigenvalues or the growth rate and not the number of
unstable modes.
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I. INTRODUCTION

Turing’s idea [1] of pattern formation through the inter-
action of chemical species via nonlinear reaction-diffusion
equations had an enormous impact on the biology of mor-
phogenesis [2,3]. It stood as an emblematic example of
a dissipative structure in physics and chemistry [4–6] and
offered a mathematical laboratory for the investigation of
spatially extended instabilities [7]. It continues to serve as
a prototypical example in studies of pattern formation on
networks [8].

Indeed, in many interesting cases, diffusion acts along links
in a network rather than in a continuous space [9]. Mathe-
matically, this implies swapping the Laplace operator for the
graph Laplacian L in the diffusion terms of the evolution equa-
tions (see Methods Sec. II). Defining vectors u = (u1...uN )
and v = (v1...vN ) for the activator and inhibitor species, the
generic Turing reaction-diffusion model on a network of N
nodes is thus written

dui

dt
= f (ui, vi ) + ε(Lu)i, (1)

dvi

dt
= g(ui, vi ) + σε(Lv)i i = 1..N, (2)
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where ε is the diffusion coefficient of the activator and σε

that of the inhibitor. We assume that the system has a uniform
equilibrium solution (ū, v̄). A pattern will be defined as a
nonuniform stationary state, reached after some transients.

Turing understood pattern formation as linear instability
of the uniform equilibrium solution, i.e., when a parameter
crosses an instability threshold an eigenvector of the Lapla-
cian operator exhibits exponential growth which eventually
saturates due to nonlinear interactions. In Ref. [8] the authors
have shown that this mechanism still applies for reaction-
diffusion dynamics on networks, where the eigenvectors are
now those of the graph Laplacian L.

Since the beginning of the detailed study of complex net-
works within statistical physics in the late 1990s and early
2000s [10–12], a clear roadmap has emerged: from a topolog-
ical characterization to the study of dynamical processes on
network and, in this way, the search for universal relationships
between network structure and network function. These inves-
tigations have revolutionized our understanding of complex
systems [13–16] and have established themselves as a novel
branch of interdisciplinary research.

Among the results in the statistical physics of complex
networks the most striking ones are concerned with the emer-
gence of self-organized, collective patterns in dynamics on
graphs—with Turing patterns [8] as a prominent example, but
also synchronization patterns [17] (see also Ref. [18] for a
study of resonance patterns in oscillatory networks), growth
patterns and clusters [19,20], waves in networks [21,22], and
many more.
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FIG. 1. Topological sensitivity of Turing pattern diversity on the macaque cortical area network. (a) Representation of the macaque cortical
area network (see Methods Sec. II). (b) Example of a pattern arising for the Gierer-Meinhardt dynamical model from the sixth eigenvector of
the Laplacian matrix of the graph, shown underneath. (c) We arrange the nodes in an arbitrary but fixed way on a circle. The links between the
nodes are shown in blue in the center. Each concentric ring represents a binarized Turing pattern originating from a randomly chosen initial
condition, in total 500 runs (see Methods Sec. II). The surrounding purple ring shows their average. Panel (d) shows the same pattern wheel
representation after removal of a single link [highlighted in red in panels (a) and (c) (upper left quadrant; see the dashed ellipse)].

Theoretical studies reveal how such patterns are enhanced
by certain architectural features of the network [22–24]
and transdisciplinary investigations help understand the im-
plications of such patterns for network-like infrastructures
[25–31].

Starting from Ref. [8], several subsequent studies focused
on the impact of network features on Turing pattern formation:
In Ref. [32] the authors discussed how oriented networks
explain subcritical patterns while Ref. [33] studied the impact
of degree fluctuations in the network. Extensions to pattern
formation for FitzHugh-Nagumo dynamics on networks [34],
to predator-prey models [35], and to epidemic growth [36]
have been presented.

Our study is motivated by an observation for the Gierer-
Meinhardt pattern formation model (see Methods Sec. II) on
the macaque cortical area network. In this network, nodes are
anatomically defined cortical areas of the macaque brain and
links represent experimentally verified connections among
these areas (we only use connections reported as “strong”
in Ref. [37]). Simulating Turing patterns on this network

architecture we find that for a fixed set of dynamical parame-
ters and a given graph, but random initial conditions, a large
number of different patterns emerges. For other parameter
values or different graphs, the dynamics converge to a single
pattern. Moreover, one can change the pattern forming process
from the former to the latter by small changes in the graph
topology. Figure 1 summarizes this observation.

We study quantitatively how small changes in the graph
topology can create such drastic changes in the attractor
landscape. Numerical investigations were performed for a
minimal network model and for random regular graphs.
We identify basic spectral determinants of pattern diversity.
Mainly, highly diverse pattern formation is observed in de-
generate situations, created by almost symmetrical network
structures or by nearly identical growth rates of neigh-
boring eigenvectors of the graph Laplacian. We propose
a general scheme for predicting the topological sensitivity
of Turing pattern diversity, based on the movement on the
dispersion curve of Laplacian eigenvalues under network
perturbations.
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II. METHODS

A. Network models

For the macaque cortical area network (Fig. 1) each node
represents a cortical area built from the publicly available
database Core-Nets ([38]; see also Refs. [38,39]) following
a scheme described in Ref. [37]. The Turing patterns obtained
on this graph are compared to those obtained after removal
of a link between the primary somatosensory cortex (area 2)
and the ventral proisocortical area ProM [highlighted in red in
Fig. 1(a)]. Note that we use this network only as an illustrative
example of the phenomenon of topological sensitivity of Tur-
ing patterns. A detailed analysis of pattern formation on this
network architecture would require a more careful variation
of kinetic parameters, as well as a stronger emphasis on the
relevance of such results for neuroscience.

The ring graph has nearest-neighbor connections and 111
nodes. We attach one end of a shortcut at node i0 = 1 and
the other end to nodes is = 2...N successively. Random reg-
ular graphs with degree k = 4 are generated for 30 nodes in
Fig. 4. Supplemental Material Fig. S6 [41] shows a random
Erdős-Rényi network with 30 nodes and 100 links. The graph
Laplacian is defined as L = A − D, where A is the N × N ad-
jacency matrix A, and D is the diagonal matrix whose entries
are the degree ki of node i. Since our networks are undirected,
L is a symmetric matrix. L always has a zero eigenvalue and
is negative-semidefinite (that is �i � 0) [40]. Eigenvalues are
labeled in decreasing order �N � �1 � �0 = 0. This defini-
tion is consistent with numerical discretization of the Laplace
operator, describing diffusion in a continuum but not with
standard graph theory where the opposite sign convention is
generally adopted.

B. Pattern formation

The Gierer-Meinhardt model [2] is a generic Turing model
for an activator species u and a inhibitor species v:

∂u

∂t
= a − bu + u2

v
+ εLu,

∂v

∂t
= u2 − v + σεLv.

(3)

The reaction part of the dynamics involves two positive pa-
rameters a and b which determine the homogeneous steady
state (ū, v̄) = [(a + 1)/b, (a + 1)2/b2]. The parameter ε is the
diffusion coefficient of the activator and σε is the diffusion
coefficient of the inhibitor.

The dispersion relation λ(�) describes the functional de-
pendence of the growth rate λ on the eigenvalues � of
the graph Laplacian. We linearize Eq. (3) around the ho-
mogeneous steady state and write the solution as a linear
combination of the eigenvectors of the graph Laplacian. The
growth rate for the Laplacian eigenvector V� associated with
the eigenvalue � is [8]

λ(�) = (1/2)
[

fu + gv + (1 + σ )ε�

+
√

4 fvgu + ( fu − gv + (1 − σ )ε�)2
]
, (4)

where fu = (∂ f /∂u)(ū, v̄) is the partial derivative of f (u, v)
at the equilibrium point (ū, v̄). The expression for the contin-
uum where the eigenmodes are sinusoids with wave-vector q
is recovered by replacing � with −q2.

We consider a steady-state bifurcation and assume that
λ(�) is real, and use σ as a bifurcation parameter. Thus,
a bifurcation occurs when the dispersion relation moves
from negative to positive values, indicating a transition from
damped modes to exponentially growing modes. For the
Gierer-Meinhardt system Eq. (3), this occurs for

σc = a + 1

b(a − 1)2

(
a + 3 + 2

√
2
√

a + 1
)
. (5)

The dispersion curve is the plot of the growth rate λ as a
function of ln(−�) (recall that Laplacian eigenvalues � are
all negative), as displayed, e.g., in Fig. 3. The structure of the
network is reflected in the discrete sampling of the horizontal
axis by the Laplacian eigenvalues.

C. Numerical simulations

For a given network and a given set of dynamical parame-
ters ε, σ , a, and b a numerical experiment entails 500 runs in
Mathematica using randomly chosen initial conditions. Since
transients appear to decay in less than 500 time steps, the
duration of a run was typically 2000 time steps.

The following parameter selection scheme, which we call
growth-rate degeneracy (GRD), was used in the simulation:
Parameters are chosen such that two successive eigenvec-
tors have approximately the same positive growth rate. This
is achieved by selecting parameters in such a way that the
maximum of the dispersion relation at σc is exactly mid-
way between the two corresponding eigenvalues of the graph
Laplacian. To create a positive growth rate, σ is then increased
slightly by an amount �σ = 0.02 beyond the instability
threshold (see Fig. 4).

D. Pattern evaluation

The pattern wheel representation of multiple simulations
of Turing patterns allows for a visual assessment of pattern
diversity for the same graph and the same kinetic parameters.
Each pattern, characterized through the asymptotic value of
the dynamical variable ui for each node i is binarized using
the average over all nodes as a threshold, retaining only the
information whether the activator concentration is high or
low. The pattern with the highest correlation to an unstable
mode serves as the reference pattern. Each simulated pattern
is multiplied by −1, if this increases the visual agreement to
the reference pattern (accounting for the fact that a reflected
pattern is still generated by the same eigenvector). These
aligned and binarized patterns are plotted around a circular
embedding of the graph under consideration. Averages over
these binarized patterns for each node are then displayed as
an outside ring (outer purple ring in the figures).

A pattern similarity index is developed to quantitatively
assess the diversity of patterns: Let

u(k) = {
u(k)

i (t → ∞)
}

i=1,...,N

denote the pattern observed in the kth simulation run of a
network of N nodes, with u(k)

i (t → ∞) the asymptotic value
of the dynamical variable at node i for run k. We then construct
a pattern similarity graph, in which a node is a pattern u(k)

and a link between two patterns is generated, if the similarity
between these patterns exceeds a threshold θ , leading to the
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(b)

(c)

(d)

(a) (b)

FIG. 2. Topological sensitivity of Turing pattern diversity on the ring graph with one shortcut. (a) Pattern wheel representation for a ring
graph of N = 111 nodes with a shortcut from node 1 to node 58. A global attraction to a single pattern independent of the initial condition is
observed. (b) Same as panel (a), but for a shortcut from node 1 to node 68; now each observed pattern depends on the specific initial condition.
(c) Evolution of eigenvalues for the ring graph with one shortcut as a function of the shortcut position (i.e., the endpoint of the shortcut, the
starting point being kept fixed). Note that only eigenvalues which are unstable for some shortcut position are shown. (d) Top panel: Pattern
similarity index (see Methods Sec. II) as a function of the shortcut position. Bottom panel: Pattern predictability distributions (see Methods
Sec. II), depicting the correlation between patterns and unstable eigenvectors. The two shortcut positions for (a) and (b) are highlighted as
dashed lines. The distribution of pattern predictability is shown as a sequence of box plots (white lines in the middle of the red bars indicating
the median; size of the bar are the 25% and 75% quantiles; error bars (“whiskers”) are the range of values covered with the exception of
outliers, which are shown as additional light-red points).

edge set E ,

E = {(u(k), u(l ) )||corr(u(k), u(l ) )| > θ},
where corr(u(k), u(l ) ) is the Pearson correlation coefficient of
two patterns u(k) and u(l ),

corr(u(k), u(l ) ) =
N∑

i=1

(
u(k)

i − ū(k)
)(

u(l )
i − ū(l )

)
σ (u(k) )σ (u(l ) )

.

Here ū(k) and σ (u(k) ) denote the average and the standard
deviation of pattern u(k) over the components i, respectively.
Specifically, an edge is drawn between two patterns if the
absolute value of their Pearson correlation coefficient ex-
ceeds θ = 0.9. The pattern similarity index 
 is then defined
as the connectivity of this pattern similarity graph, namely

 = 2|E |/[N (N − 1)].

The correlation analysis in Fig. 2(d) is based on the
Pearson correlation coefficient Ci between a pattern and the
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FIG. 3. The dispersion curve for the parameter selection scheme
GRDON. The top panel illustrates the quantities involved in the
predictability criteria. The variable on the horizontal axis is the
eigenvalue of the network Laplacian displayed in a logarithmic scale,
ln(−�). Blue dots indicate the growth rates for the original network,
and red dots are the ones after link deletion. The dashed curve is
the dispersion relation for �σ = 0. Positive values of �σ shift the
dispersion relation upwards, yielding the dispersion relation used for
evaluating pattern diversity (shown as a full line). Note that λs and
λ∗

s are meant as distances from zero and hence are positive.

ith eigenvector where the index i spans the set of unstable
eigenvectors. The maximum correlation strength maxi |Ci|
determines whether a pattern is weakly or strongly corre-
lated with a single eigenvector. Histograms of the correlation
strength over 500 patterns generated from random initial con-
ditions reveal two classes: histograms with a marked peak
at 1, or broad ones. We interpret a histogram with a broad
shape as coming from a pattern that is generated by multiple
modes whereas histograms with a peak near one represent
patterns generated by a single eigenvector. Similarly, the max-
imum absolute value of the correlation coefficient between a
pattern and a set of unstable modes characterizes how well
a given pattern agrees with a single unstable mode, thus
offering insight in the predictability of this pattern by eigen-
vectors. Across a whole set of patterns (same parameters,
random initial conditions) the set of these maximal absolute
values of correlation coefficients—the distribution of pattern
predictabilities—is a suitable quantifier of pattern diversity.

The pattern diversity array shown in Fig. 4 allows to pre-
dict, for a given network, combinations of eigenvectors and
links, where pattern diversity is particularly sensitive to the ad-
dition or removal of a link. The pattern diversity array—with
links of the network enumerated on the horizontal axis and
eigenvectors of the network (on which the parameter tuning
scheme is centered) enumerated on the vertical axis—offers

a color-coded representation of our prediction of changes in
pattern diversity for each combination of an eigenvector and
a link, for the GRD parameter selection scheme described
above. Colors coding is summarized in Fig. 4.

III. A MINIMAL MODEL: THE RING GRAPH
WITH ONE SHORTCUT

We first investigate the topological sensitivity of Turing
pattern formation in a minimal network model, composed of
a ring graph with one movable shortcut. Turing pattern di-
versity changes under small topological variations are shown
in Fig. 2 for a ring with a single shortcut. A similar model
has been introduced in Ref. [42] to study the influence of
the topology of the underlying graph on pattern formation by
a cellular automaton. The two pattern wheel representations,
Figs. 2(a) and 2(b), representing different shortcut positions,
show very different pattern diversity. As this model is very
simple, we can analyze it like a spatially extended system.
Symmetric bifurcation theory [43] states that eigenvalues of
the ring graph Laplacian are degenerate with multiplicity 2
and the eigenvectors are sinusoids. Adding a single shortcut
to the ring breaks the symmetry of the graph and thus the
degeneracy of the eigenvalues. Supplemental Material Fig. S1
[41] provides an overview of spectra and eigenvectors for the
ring graph and a ring graph with one shortcut.

As a consequence of the shortcut-induced symmetry break-
ing, one of the degenerate eigenvalues is independent of the
shortcut leading to the same sinusoidal pattern as for the ring
graph. The other eigenvalue changes.

Figure 2(c) shows that the other eigenvalue moves, return-
ing periodically to the degenerate situation, as the shortcut is
moved around the ring graph.

Since changing the graph does not change the dispersion
relation λ(�) (i.e., the expression of the growth rate λ of an
eigenmode as a function of the eigenvalue �, see Methods
Sec. II), the interval on the dispersion relation that leads to
growing patterns is unaffected. Thus, we can set the dynam-
ical parameters in such a way, that some eigenvectors of the
Laplacian lead to growing pattern for all shortcut positions
while other eigenvectors correspond to eigenvalues moving in
and out of this interval, as indicated by blue (growing pattern)
and red dots (stable homogeneous solution). Supplemental
Material Fig. S2 [41] illustrates the movement of eigenvalues
as a function of the shortcut position [Fig. 2(c)] via snapshots
of the dispersion relation (see also Supplemental Material
Movie 1 [41]). All of these findings can be analytically shown
using an extension of the interlacing theorem [44,45] and
linear operator theory for spatially extended systems (see the
Appendix).

The impact of the changes in the spectrum of the graph
Laplacian on pattern diversity is measured in Fig. 2(d). The
top panel presents the similarity measure of the set of pat-
terns observed for 500 random initial conditions as a function
of the shortcut position. An alternative visualization is pre-
sented in the bottom panel, summarizing as a box-plot the
correlation between the unstable eigenvectors and the patterns
obtained by numerically solving the Turing dynamical sys-
tem starting from randomly chosen initial conditions. Further
analysis (see the Appendix) shows that the shortcut position
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FIG. 4. Predicting the impact of topological changes on pattern diversity. (a) Pattern wheel representation (see Methods Sec. II) for 500
simulated patterns starting from random initial conditions under the growth rate degeneracy (GRD) scheme of kinetic parameter selection (see
Methods Sec. II) for the original random regular graph and eigenvector 16. (b) Same as panel (a), but after removal of the link from node
4 to node 22. (c) Pattern diversity array (see Methods Sec. II) depicting the expected change in Turing pattern diversity as a function of the
deleted link index (horizontal axis) and the eigenvector label, eigenvectors being numbered at decreasing eigenvalues (vertical axis, recall that
eigenvalues are negative). The parameter constellation investigated in panels (a) and (b) is highlighted in yellow. (d) Criteria defining the color
code used in the pattern diversity array in panel (c) and the corresponding prediction.

in Fig. 2(b) corresponds to almost exactly one wavelength of
the pattern (within limits of the discretization due to the finite
number of nodes) and hence does not break the rotational
symmetry of the ring graph (more detail in Supplemental
Material Figs. S3 and S4 [41]). As a result there is a free
phase leading to a low pattern similarity and low pattern pre-
dictability. For shortcut position (a) the spectrum has a large
gap between the central mode on the dispersion relation (the
eigenvalue with the largest growth rate) and the neighboring
unstable modes. In fact, although the top three eigenvalues

are unstable and very close, since their growth rates are very
weak, the central mode is very far from being degenerate and
thus dominates the pattern formation (see also Supplemental
Material Figs. S4(A) and S4(B) [41]). As a result, pattern
similarity between patterns is high and the resulting pattern
is almost deterministically predictable. Note that in this case
four eigenvectors of the graph Laplacian are unstable whereas
in shortcut position (b) only three are unstable suggesting
that the driver of pattern diversity is not the number of un-
stable modes but the gap between the dominant mode and
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the neighboring modes. As a result, topological sensitivity
of pattern diversity depends on the changes in the eigenvalue
spectrum with eigenvalue degeneracy at maximal growth rate
being most susceptible to topological changes. Supplemental
Material Figs. S3 and S4 [41] show additional quantitative
details. Specifically, Supplemental Material Fig. S3(D) [41]
shows high pattern diversity without an eigenvalue degener-
acy. Instead the growth rate of two neighboring eigenvectors
are very similar. This suggests that there may be a sec-
ond mechanism involved in the generation and destruction
of a high diversity of pattern which we call growth-rate
degeneracy.

IV. PATTERN DIVERSITY ON RANDOM GRAPHS

Next, we explore the topological sensitivity of Turing pat-
tern formation and the role of growth-rate degeneracy for
random regular graphs. In random regular graphs, all nodes
have the same degree but are otherwise randomly connected.

Emergence of a Turing pattern on a random regular graph
follows the paradigm established for the minimal model: For
a single unstable mode of a dispersion relation, starting from
random initial conditions the asymptotic pattern agrees well
with the unstable eigenvector.

No analytic results can be formulated for random regular
graphs. However, we developed predictive criteria for pattern
diversity and for topological sensitivity based on the spectrum
of the Laplacian. They have been validated in a large numer-
ical experiment. Figure 3 shows the experimental setup: We
adjust the dynamical parameters such that the growth rate for
an eigenvector ek is the same as for the adjacent eigenvector
ek+1. Since the dispersion relation is locally quadratic, this
is achieved by putting its maximum exactly in the middle
between two neighboring eigenvalues of the Laplacian. We
call this the GRDON parameter selection scheme (GRD in
the original network, ON). The GRDPN parameter selection
scheme generates the reverse changes: we select dynamical
parameters such that the maximum of the dispersion relation
is between two eigenvalues of the perturbed network, PN, i.e.,
after the deletion of a link in the original graph.

The GRDON parameter selection scheme is designed
to search for cases, where link removal decreases pat-
tern diversity (as we start from a situation—growth-rate
degeneracy—predicted to favor pattern diversity). To system-
atically search for situations, where link removal can increase
pattern diversity, we need to start from a nondegenerate setup
and arrive at an approximate growth-rate degeneracy. The
purpose of the GRDPN scheme is to systematically search
for such situations, as by construction upon link removal we
arrive at an approximate growth-rate degeneracy.

Figure 3 shows the region of the dispersion relation near
zero growth rate with all unstable modes and adjacent stable
modes. The relevant measures for prediction of topological
sensitivity are: (i) the growth rate of the unstable modes for
the original network, λu and after link deletion, λ∗

u and (ii)
the weakest growth rate of the stable modes for the original
network, λs and after link deletion, λ∗

s .
The relative size of these parameters and the number of

unstable modes before (denoted s) and after (denoted s∗) drop-
ping a link suggests to classify the pattern into six different

types of pattern sensitivity, color coded in Fig. 4 with the
formal criteria listed as Boolean expressions. There are three
criteria for high sensitivity of pattern diversity to topological
perturbations: (1) the perturbation should destroy or establish
(approximate) growth-rate degeneracy of the unstable modes;
(2) no weakly stable modes close to the instability thresh-
old; (3) the growth rates of the (approximately degenerate)
unstable modes should not be too small. The topological
perturbations producing the strongest signals thus trigger a
transition from two unstable modes with degenerate growth
rates to a single unstable mode, while avoiding all interfering
factors (stable modes close to the instability threshold, too
small growth rates of unstable modes). In Fig. 3 the applicable
classification for this specific dispersion relation is shown,
predicting slightly less pattern diversity (color coded as light
blue). Note that our prediction scheme summarized in Fig. 3
and applied, e.g., in Fig. 4 is a heuristic derived from studying
the influencing factors of pattern diversity for a large set of
numerical examples. The factor 1/2 in the requirement of a
small enough distance of λ∗

u to the maximum of the dispersion
relation has been chosen arbitrarily and a broader study of
influencing factors might lead to a refined heuristic.

Figure 4 illustrates the relevance of the classification
scheme for a full analysis of Turing pattern diversity changes
under link removal for a random regular graph of degree 4,
with 28 nodes and 60 links. Figures 4(a) and 4(b) show the
change in pattern diversity for a specific pattern characterized
by an unstable eigenvector, upon removal of a single link in a
regular random graph. They are similar to the ones we showed
in Figs. 1 and 2 for the macaque cortical area network and for
the ring graphs with one shortcut. While Figs. 4(a) and 4(b)
show a specific case, Figs. 4(c) and 4(d) analyze the sensitivity
of all possible patterns to the removal of any single link. Both
the GRDON and GRDPN parameter selection schemes are
run for each eigenvector ek separately. In this way we ex-
plore systematically the whole variety of situations displaying
growth-rate degeneracy.

Summarizing Fig. 4 we note that for this choice of the
dispersion relation shift (via the additive constant �σ to the
diffusion constant ratio σ , see Methods; see Supplemental
Material Table S1 [41]) eigenvectors with low index are not
influenced by the link removal. Low eigenvector indices cor-
respond by definition to eigenvalues of small absolute size
and we observe sensitivity to link removal in this regime only
for higher values of �σ . As discussed, strong changes in pat-
tern diversity are triggered by a transition from two unstable
modes with degenerate growth rates to a single unstable mode.
We observe that for this parameter set and for random regular
graphs, small eigenvalues of the graph Laplacian do not move
much under link removal, making it unlikely that the associ-
ated patterns change stability. While we find this to be true
for most of our parameter sets, we have not explored this in
general for random regular graphs. However, note that this is
also true (and intuitive) for the ring graphs: small eigenvalues
correspond to long wavelength patterns. The distance between
neighboring eigenvalues is much larger for long wavelengths
than for short ones, making them more robust against pertur-
bations.

We furthermore observe that the eigenvector determines
whether the link removal leads to an increase, a decrease or no
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change in the pattern diversity. Specifically, eigenvectors that
display growth-rate degeneracy lead to changes of the pattern
diversity.

V. DISCUSSION

Turing patterns in a continuum have been studied in great
detail for many years, specifically their dependence on the
parameters of the pattern-generating reaction diffusion sys-
tem. Turing patterns on graphs offer a completely new way
to influence the pattern formation by changing the underlying
graph, e.g., adding or subtracting a small number of links.
One important feature of Turing pattern formation on graphs
evidenced in our study is the rarity of the emergence of a
unique pattern. Even close to the instability threshold one
often encounters a large number of simultaneously emerging
stable patterns. They manifest themselves as a result of ran-
dom sampling of initial conditions, a situation we call pattern
diversity. Our study is a first step towards a full understanding
of the mechanisms that generate such high diversity of pat-
terns and its changes as the underlying graph undergoes small
changes in its topology.

Our focus is on patterns determined by the unstable modes
of the linear system, i.e., supercritical bifurcations. In partic-
ular, we do not consider the case of subcritical bifurcation
where we are unable to relate pattern diversity to any topo-
logical features of the graph. In the supercritical case we
can separate the influence of the reaction system from the
influence of the underlying graph. The former is reflected in
the dispersion relation determined by the parameters of the re-
action system while the latter is a reflection of the eigenvalue
spectrum of the graph Laplacian.

Our approach to disentangle the influence of the reaction
parameters from the influence of the graph is based on the fact
that the dispersion relation is locally quadratic (as in Fig. 3),
and its width and location can only be changed by the reaction
parameters. The part of the dispersion relation that lies above
the zero growth rate determines the potential eigenvalues and
associated eigenvectors that determine the emerging patterns.
The number of eigenvalues and their spacing in this interval
is a characteristic of the underlying graph. In that way the dis-
persion relation acts like a magnifying glass on the eigenvalue
spectrum of the graph Laplacian.

Our analysis shows that the spacing of Laplacian eigen-
values and their movement on the dispersion curve under
small topological changes of the graph translates into robust-
ness or sensitivity of pattern diversity. In particular, small
gaps between the unstable (or nearly unstable) eigenvalues
surrounded by larger gaps can lead to high pattern diversity,
whereas sequences of large gaps tend to favor a unique pat-
tern.

These results are independent of the specific choice of
the dynamical model or its parameters, as they only rely on
the placement and the corresponding discrete sampling of the
dispersion relation by the eigenvalues of the graph Laplacian.
This discrete sampling is the determinant of pattern diversity.

One extreme case is the case of multiplicity of eigenvalues,
e.g., due to symmetries, like in the case of a ring graph. Here
the gap between two neighboring eigenvalues is zero leading
to a continuum of patterns. Reaction parameters have no in-

fluence on this feature, but small changes of the underlying
graph generically create a nonzero gap between the formerly
degenerate eigenvalues and subsequently reduce the diversity
of the emerging patterns.

We extend the idea of small spectral gaps to the degeneracy
of growth rates, i.e., situations where two adjacent eigenval-
ues of the graph Laplacian are not necessarily close in the
spectrum but have the same growth rate. To systematically
investigate these situations, we tune the reaction parameters
such that the two adjacent eigenvalues are symmetrically
distributed with respect to the maximum of the dispersion
relation. A large number of numerical experiments for differ-
ent types of graphs (small-world graphs [10], i.e., ring graphs
with different numbers of shortcuts, ER graphs [46], random
regular graphs and BA graphs [11]) show that pattern diversity
changes significantly when small changes in the graph gener-
ate or destroy such approximate growth-rate degeneracy.

VI. CONCLUSION

Our study relates pattern forming capacities and spectral
properties of networks. The variation in pattern diversity re-
sulting from a change in network topology can be predicted
by computing the change of the part of the eigenvalue spec-
trum of the graph Laplacian that is sampled by the unstable
region of the dispersion curve. This link between the spectral
properties of a graph and aspects pertaining to the robustness,
predictability and controllability of self-organized patterns
opens an avenue towards a better understanding of systemic
vulnerabilities in network-like infrastructures relying on col-
lective patterns.
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APPENDIX: RING GRAPH WITH SHORTCUTS

We discuss two ways to generate topological sensitivity of
pattern formation—one related to degenerate eigenvalues of
the Laplacian created by symmetries, the other to degener-
ate growth rates, generated by two different but neighboring
eigenvalues that are arranged in such a way that their growth
rates are the same. To study the former, we consider a ring
graph with a single shortcut as a minimal model. It offers the
first step from spatially extended reaction-diffusion systems
(here on a ring, as in the seminal work of Turing) to their
counterpart on networks.
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To simplify exposition we focus on a scalar reaction diffu-
sion equation of the form

∂u

∂t
= f (u) + Lu,

where L is the Laplacian of the ring graph of N nodes and
nearest-neighbor links given by

Li, j =
⎧⎨
⎩

1 for j = i − 1,

1 for j = i + 1,

−2 for j = i,

where i and j are integers modulo N . The eigenvalues of L are
�q = −2[1 − cos(kq)] where kq = 2πq/N for integer q. They
are degenerate, each with multiplicity 2, and the associated
eigenvectors are

Xq(i) = cos(kqi), i = 0...N − 1 and (A1)

Yq(i) = sin(kqi). (A2)

Notice that any linear combination of these two eigenvectors
(which is still an eigenvector with eigenvalue �q) can be
written in the amplitude-phase form ũk (i) = A cos[(kqi) + φ],
corresponding to the fact that any embedding of the graph
on a circle is invariant under the symmetry group of the cir-
cle. Following equivariant bifurcation theory [43] the generic
steady-state bifurcation can be described by a bifurcation on a
two-dimensional center manifold which leads to an invariant
circle of fixed points. If the bifurcation is supercritical, then
the circle of fixed points is normally stable and has a zero
eigenvalue in the tangential direction to the circle. Hence, for
uniformly randomly distributed initial conditions we expect
uniform distributions of fixed points on the circle, represent-
ing patterns with a uniform distribution of phase shifts. We
thus proved that the Gierer-Meinhardt model on the ring graph
has a uniformly distributed ensemble of patterns around the
circle. The average over patterns obtained with random ini-
tial conditions is therefore uniform, provided the number of
patterns is large enough to avoid finite-sampling effects.

1. Laplacian eigenvalues for the ring graph with one shortcut

As discussed in the previous section, due to the symmetry
of the ring graph, the eigenvalues �q of its Laplacian have
multiplicity two. The interlacing theorem [44,45] applied to
the addition of edges of a graph can be formulated in the
following way:

Theorem. Let G be a graph with n vertices and let G∗ be
obtained from G by adding an edge joining distinct vertices of
G and let L(G∗), L(G) be the corresponding Laplacians. Then

�i−1(L(G∗) � �i(G) � �i(G
∗),

for all i = 1, ..., n. Thus, since the addition of an edge breaks
the symmetry of the ring, the eigenvalues are nondegenerate
and the eigenvalues of L(G) interlace with the eigenvalues
of L(G∗). Since our variable on the horizontal axis for the
dispersion curve is ln(−�), the eigenvalues of the ring graph
with one shortcut move to the right on the dispersion curve,
relative to the eigenvalues of the ring graph.

Supplemental Material Fig. S1 [41] shows the spectrum
and a typical eigenvector for the ring graph (panels A and C)
and the ring graph with one shortcut (panels B and D), while

Supplemental Material Fig. S2 and Movie 1 [41] show pre-
cisely how changing the shortcut position changes the number
and eigenvalues of the unstable eigenvectors.

For the ring graph, the degenerate eigenvalues correspond
to eigenvectors that are generated by even and odd sinusoidal
functions with a free phase parameter. Thus, for each short-
cut, we can shift the phase parameter in such a way that
one of the eigenvectors is even and the other is odd with
respect to a reflection at the middle of the shortcut. Thus, a
theorem from graph theory called the edge principle [47,48]
can be used, which states that if X is eigenvector of the
graph Laplacian with eigenvalue � satisfying X(i0) = X(is),
then the Laplacian of a graph with the shortcut (i0, is) has
also X as an eigenvector with eigenvalue �. Thus, for each
pair of degenerate eigenvectors for the ring graph, the even
eigenvector will be also an eigenvector with the same eigen-
value for the ring graph with a shortcut, i.e., a sinusoid with
an appropriate phase shift as seen in Supplemental Material
Fig. S1(D) (dashed line). As the eigenvector is the same, so is
the eigenvalue. Hence, for each pair of degenerate eigenvalues
of the Laplacian of the ring graph, one eigenvalue will be an
eigenvalue for the ring graph with a shortcut and, following
the interlacing theorem, the second one will move to the right
but never cross the next eigenvalue of the ring graph.

2. Pattern diversity for the ring graph with one shortcut

We can recover these graph theoretic results and generate
new insight by performing the analysis for eigenvectors of
the Laplacian on the ring graph associated with the eigen-
value �q and the wavelength l = N/q and a shortcut from
node i0 to node is. The physical intuition for the edge principle
discussed in the previous section is the following: A ring
graph has sinusoidal eigenvectors. Any link that connects two
nodes exactly one wavelength apart will have no impact on
the eigenvectors. This can easily be seen when we write out
the the expression for the eigenvalue of the Laplacian for the
node i0:∑

j

L0 ju j = u(i−1) − u(i0) + u(i1) − u(i0) + u(is) − u(i0).

(A3)

When u(i0) = u(is) this expression becomes the same as in
the ring graph, i.e., the shortcut has no influence. It is easy to
see that the same is true for the time evolution of u(is). Hence,
for any eigenvector with a wavelength that approximately fits
into the spacing of the ring graph, there exist shortcuts that
have no influence and therefore any linear combination of the
two eigenvectors of the ring graph will still be invariant under
any phase shift leading to a uniformly distributed ensemble
of patterns around the circle and thus to maximal pattern
diversity.

A generic shortcut cuts the ring into pieces which, as ev-
idenced by the geometry has a reflection symmetry relative
to a reflection on a line that is perpendicular to the shortcut
through its midpoint. By representation theory of the Z (2)
symmetry we will have an eigenfunction that is invariant
under the reflection, i.e., even and another one that has a −1
representation, i.e., is an odd function. This is most easily
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illustrated for the eigenfunction with wavelength l = N , i.e.,
the cosine function cos(2π i/N ): If the shortcut connects node
i to node N − i, then we have that

cos
(

2π
N − i

N

)
= cos

(
2π

(
1 − 1

N

))
= cos

(
2π

i

N

)
,

i.e., the value of the activator is the same at the endpoints of
the shortcut and thus the eigenfunction is even. Thus, for every
shortcut, there is a reflection-symmetric pattern that is selected
by the shortcut as the even eigenfunction from the continuum
of eigenfunctions in the amplitude-phase form of the ring
graph. The associated eigenvalue is therefore the same as for
the ring graph and, for N even (or N large), the amplitude of
the node midway between the shortcut nodes is a maximum
or minimum.

The corresponding second eigenfunction of the ring graph
will be antisymmetric and thus will have that u(i0) = −u(is).
Inserting this into Eq. (A3) shows that this function is not
an eigenfunction of the ring graph with a shortcut. Thus, the
eigenvalue for the antisymmetric eigenfunction of the ring
graph with a shortcut will move and, for N even (or N large),
the amplitude of the node midway between the shortcut nodes
is zero (or approximately zero).

As we fix i0 and move the endpoint is of the shortcut
from one node to the next, we therefore observe a splitting
of the degenerate eigenvalues of the ring graph illustrated in
Supplemental Material Fig. S1 [41]. Degenerate eigenvalues
correspond to a continuum of patterns, while split eigenvalues
show a small, finite number of patterns. This fully explains
the diversity of the pattern formation in the ring graph with
one shortcut. Supplemental Material Fig. S3 [41] on the left
panels shows the position of the eigenvalues on the disper-
sion relation as the shortcut moves and on the right panels
shows the corresponding histograms of maximal correlations
between the observed patterns in a set of 500 random initial
conditions and the set of unstable eigenvectors. As the eigen-
values become degenerate (panels C and E), the growth rate
for the associated eigenfunctions are very close. Hence, we
expect that the final pattern is a linear combination of the
two orthogonal eigenfunctions with about equal contributions.
Measuring the correlation of that final pattern with one of the
two eigenfunctions will lead to a projection of length 1/

√
2,

as one can see in panels D and F.
Numerical calculations of the antisymmetric eigenvector

shows, that the eigenvector corresponding to the moving
eigenvalue evidently consists of two parts, each with the same
wavelength but different amplitudes and phases. This suggests
an Ansatz for an eigenfunction that is sinusoidal, with the
same wavelength everywhere and where amplitude and phase
of the two parts of the eigenfunctions have to be adjusted to
satisfy continuity conditions and the eigenvalue is given by
the relationship between the wavelength and the eigenvalue of
the undisturbed ring graph

� = �q = −2[1 − cos(kq)]. (A4)

Thus, the following calculation creates the eigenvalues as a
function of the shortcuts like in Fig. 2(c). We assume without
loss of generality that one end of the shortcut starts at node
n = 1 and the shortcut ends at node y. The symmetry axis
related to the Z(2) symmetry goes through the points i∗ =

node index

ei
ge
nv
al
ue

FIG. 5. Movement of the eigenvalue of the network Laplacian for
a ring graph as a function of the endpoint of the shortcut. The starting
point of the shortcut is always oscillator 1. The two eigenvalues at the
top and bottom are the ones that do not depend on the shortcut.

(1 + y)/2 and j∗ = (y + N + 1)/2 which are nodes of the
ring, if i∗ and j∗ are integer and otherwise are just coordinates
on the ring. Since we are looking for the odd eigenfunction,
we have u(1) = −u(y). In general for finite number of os-
cillators our assumption implies that the eigenfunctions are
of the form a sin[k(i − i∗)] on i = 1...y and sin[k(i − j∗)] on
i = y...N . We have w.l.o.g. set the amplitude for the second
part of the eigenfunction to one and leave the amplitude for
the first part to be determined.

The eigenvalue of the network Laplacian for the nodes that
are involved with the shortcut at node i = 1 and i = y can be
written as

u(0) − u(1) + u(2) − u(1) + u(y) − u(1) = �u(1),

u(y − 1) − u(y) + u(y + 1) − u(y) + u(1) − u(y) = �u(y),

which simplifies to

u(0) − 4u(1) + u(2) = �u(1). (A5)

Assuming sinusoidal eigenfunctions we can evaluate them
at these nodes to get:

u(1) = a sin [kq(1 − i∗)] = −a sin

[
kq

(
y − 1

2

)]
,

u(2) = a sin [kq(2 − i∗)] = −a sin

[
kq

(
y − 3

2

)]
,

u(y) = a sin [kq(y − i∗)] = a sin

[
kq

(
y − 1

2

)]
,

u(0) = u(N ) = sin [k(N − j∗)] = sin

[
kq

(
N − y − 1

2

)]
.
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Inserting these into Eq. (A5) gives

sin

[
kq

(
y + 1 − N

2

)]
+ a sin

[
kq

(
y − 3

2

)]

= (� + 4)a sin

[
kq

(
y − 1

2

)]
(A6)

for the three unknowns a, k,�. Finally, there is a continuity
condition, which is that at node i = 1 and at node i = y the
two sinusoidal parts of the eigenvector have to have the same
value. Hence,

u(y) = −a sin

[
kq

(
y − 1

2

)]

= sin

[
kq

(
N + 1 − y

2

)]
. (A7)

We can thus solve Eqs. (A4), (A6), and (A7) for a, kq,�

numerically. Note that these equations have N/2 solutions for
kq, corresponding to the number of eigenvalues for the even
eigenmodes of the ring graph. To find a particular one, we
have to restrict the numerical search to the interval between
two eigenvalues of the ring graph without a shortcut. Figure 5
shows the movement of an eigenvalue of the network Lapla-
cian as a function of the shortcut position.

We can also understand the primary bifurcations of this
2N-dimensional dynamical system based on the symmetries

of the eigenfunctions: when we add a shortcut, we break
the Dn rotational symmetry of the ring graph. However, for
just one shortcut there is still a reflection symmetry at the
midpoint of the shortcut. Thus, we get an eigenfunction that
is even with respect to that symmetry and one that is odd,
corresponding to the two cases discussed above. The eigen-
function that is odd corresponds to a (−1)-representation of
the Z (2) symmetry leading to pitchfork bifurcations [43].
The Z (2) symmetry places no restrictions on the bifurcations
for the even eigenfunction. However, since this eigenfunction
inherits the sinusoidal structure of the ring graph, it generates
a (−1)-representation under a translation along the ring graph
by half a wavelength. Hence, the primary bifurcation for both
modes will be pitchfork bifurcations and thus no subcritical
modes will appear in a ring graph with just one shortcut. This
will change as the number of shortcuts increases [49].

3. Pattern diversity analysis for the ring
graph with two shortcuts

We observed the same set of phenomena when we add a
second shortcut and move its end while the first shortcut is
kept fixed. Supplemental Material Fig. S5 [41] displays the
predictability scheme (analog of Fig. 4) for the ring graph with
two shortcuts. Note that case A is again close to a degeneracy
and therefore exhibits high pattern diversity.
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