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Lijuan Guo,1 Lei Chen,1 Dumitru Mihalache ,2 and Jingsong He 3,*

1College of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, People’s Republic of China
2Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering,

077125 Bucharest-Magurele, Romania
3Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People’s Republic of China

(Received 15 July 2021; revised 6 December 2021; accepted 6 January 2022; published 31 January 2022)

In this paper, we first modify the binary Darboux transformation to derive three types of soliton interaction
solutions of the Davey-Stewartson I equation, namely the higher-order lumps, the localized rogue wave on a
solitonic background, and the line rogue wave on a solitonic background. The uniform expressions of these
solutions contain an arbitrary complex constant, which plays a key role in obtaining diverse interaction scenarios.
The second-order dark-lump solution contains two hollows that undergo anomalous scattering after a head-on
collision, and the minimum values of the two hollows evolve in time and reach the same asymptotic constant
value 0 as t → ±∞. The localized rogue wave on a solitonic background describes the occurrence of a waveform
from the solitonic background, quickly evolving to a doubly localized wave, and finally retreating to the solitonic
background. The line rogue wave on the solitonic background does not create an extreme wave at any instant of
time, unlike the one on a constant background, which has a large amplitude at the intermediate time of evolution.
For large t , the solitonic background has multiple parallel solitons possessing the same asymptotic velocities and
heights. The obtained results improve our understanding of the generation mechanisms of rogue waves.
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I. INTRODUCTION

In mathematical physics, the Davey-Stewartson I (DS I)
equation

iut + uxx + uyy − 2κ|u|2u + Su = 0,
(1)

Sxx − Syy = 4κ (|u|2)xx,

where κ = ±1, u denotes the complex amplitude of a surface
wave packet under gravity and surface tension, and S in this
case is the velocity potential, was proposed first by Davey
and Stewartson [1]. The DS I equation is the shallow water
limit of the Benney-Roskes equation [2]. It arises in many
physical applications, such as fluid dynamics [3–5], nonlinear
optics [6], Bose-Einstein condensates [7], and plasma physics
[8]. The DS I equation is a natural extension of the (2+1)-
dimensional nonlinear Schrödinger equation, and it has been
widely studied in recent years.

The N-soliton solutions of the DS I equation have been
given by various authors [9–11]. In Ref. [10], Satsuma and
Ablowitz also analyzed lump solutions through the “long
wave” limit technique. The dromion-type solutions of the DS
I equation were studied in various papers [12–16]. Also, Tajiri
et al. investigated the interactions between periodic solitons
and other types of solitons [17] and the existence of long-
range interaction between two quasiline solitons through a
periodic soliton [18]. More recently, special rational solutions
were found by Ohta et al. [19] via the Hirota bilinear method,
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namely line rogue waves, which arise from the constant back-
ground with a line profile and disappear into the constant
background again, which can be regarded as the limit of the
spatial periodical solution [20]. He et al. [21] further studied
hybrid solutions to the DS I equation. The multiple lump
solutions, which correspond to distinct spectral parameters at
a simple pole, are characterized by trivial interaction scenar-
ios, i.e., they maintain their shapes and velocities unchanged
after collision. Ablowitz et al. [22–25], Stepanyants et al.
[26,27], and Estévez et al. [28–30] also analyzed higher-
order lumps by using the inverse scattering transformation
method. Manãs et al. used the Wronskian method to study
higher-order lumps of DS II [31]. These higher-order lumps
are associated with the higher-order pole at the same spectral
parameter, and the interaction between such waveforms is
nontrivial, in contrast to that associated with multiple lump
solutions.

As is well known, the Darboux transformation (DT) is a
very efficient tool to construct many kinds of exact solutions
to soliton equations [32–39]. The binary DT (BDT) of the
DS I equation has been constructed by Matveev [40] and
Gu et al. [41], where they used 2 × 2 matrix solutions to
analyze the one-fold Darboux transformation [see Eq. (6.1.22)
in Ref. [40] and Eq. (2.71) in Ref. [41]]. But in order to obtain
fundamental rational solutions such as the first-order lump and
line rogue wave solutions, it is necessary to modify the BDT.
In other words, the one-fold BDT should start with column
vector solutions [see Eq. (A3) in Appendix A] instead of 2 × 2
matrix ones.

The term “rogue wave” refers to the transient gigantic
ocean wave of extreme amplitude that appears from nowhere
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and disappears without a trace [42]. Rogue waves have been
responsible for a large number of maritime disasters [43].
Mathematically, the first-order rogue wave rational solution
was first obtained for the (1 + 1)-dimensional nonlinear
Schrödinger equation by Peregrine [44]. Rogue waves in
(1 + 1)-dimensional integrable systems have been
widely investigated both theoretically and experimentally
[18,32,36,39,45–56]. The investigations of rogue wave
models in higher dimensions, and the study of generating
mechanisms of various kinds of rogue waves in different
physical contexts, are necessary and important; see, for
example, Refs. [57–61]. Recently, some rogue wave solutions
have been obtained in (2 + 1)-dimensional integrable
systems, such as the B-type Kadomtsev-Petviashvili
equation [62], the asymmetrical Nizhnik-Novikov-Veselov
equation [37,63], the multicomponent (2 + 1)-dimensional
long-wave–short-wave resonance interaction system [64],
and the DS II equation [65]. Therefore, it is natural
to question whether for the DS I equation there exist
localized rogue waves (or line rogue waves) on a solitonic
background.

Therefore, in this paper, we limit our attention to solving
the following problems:

(i) We modify the BDT to derive additional exact solutions
of the DS I equation. The one-fold BDT should start with
column vector solutions instead of 2 × 2 matrix ones of the
Lax pair (compare Eqs. (A3) in Appendix A with Eq. (6.1.22)
in Ref. [40] [or Eq. (2.71) in Ref. [41]]). Through n iterations,
the n-fold BDT is constructed.

(ii) By using the above BDT, three types of soliton inter-
action solutions of the DS I equation are obtained, namely
a higher-order lump, a localized rogue wave on a solitonic
background, and a line rogue wave on a solitonic background.
The dynamical properties of these soliton interaction solutions
are analyzed and discussed in detail.

The paper is organized as follows. In Sec. II, we first
modify BDT by beginning with column vector solutions
instead of 2 × 2 matrix ones of the Lax pair in one-fold
BDT, and we provide a uniform expression of n-fold BDT.
In Sec. III, by using the above BDT, the first type of soli-
ton interaction solutions of the DS I equation are obtained,
namely higher-order lumps, which are expressed by ratio-
nal function forms, and they exhibit a nontrivial interaction.
In Sec. IV, the second type of soliton interaction solu-
tions in terms of semirational function forms are derived,
namely the lumps and doubly localized rogue waves on the
background containing certain line solitons. In Sec. V, the
third type of soliton interaction solutions are constructed,
namely the line rogue waves on a solitonic background,
and their dynamics are studied. The conclusion and a dis-
cussion of the obtained results are presented in the final
section.

II. BINARY DARBOUX TRANSFORMATION

As mentioned above, the DS I equation is the compatibility
condition of the following linear Lax pair:

�y = J�x + U�, �t = 2iJ�xx + 2iU�x + V � (2)

with

J =
(

1 0

0 −1

)
, U =

(
0 u

v 0

)
,

V =
(

(w + iQ)/2 i(ux + uy)

i(vx − vy) (w − iQ)/2

)
, (3)

where � = (ψ, φ)T (T denotes transpose hereafter), u, v =
κu∗ (κ = ±1) are complex functions (the asterisk ∗ repre-
sents complex conjugation), and Q = −2κ|u|2 + S is a real
function. Here x, y, t are three independent variables. Next,
we outline the necessary steps for the construction of new
solutions via BDT. We consider the adjoint system

�y = �xJ − �U, �t = −2i�xxJ + 2i�xU + �W, (4)

where J,U are given by Eq. (3) and

W =
(−(w + iQ)/2 i(ux − uy)

iκ (u∗
x + u∗

y ) −(w − iQ)/2

)
.

The DS I equation (1) is also the compatibility condition
�yt = �ty. One can find that when � solves the Lax pair
equations (2), then � = �† (the superscript † represents the
conjugate transpose hereafter) is the solution of the adjoint lin-
ear system (4). In what follows, we only focus on the κ = −1
case. Before proceeding, some Lemmas and Theorems are
given to demonstrate the n-fold DT of the DS I equation in
Appendix A.

III. THE HIGHER-ORDER LUMPS ON A
CONSTANT BACKGROUND

Before constructing various solutions of the DS I equation,
a family of solutions of the Lax pair are derived; for more
details, see Appendix B. In this section, we shall use the
BDT method to study higher-order rational lump solutions
of the DS I equation, which exhibit anomalous interaction
processes, i.e., the lumps undergo a large scattering angle
after a head-on collision. The minimum values of these lumps
evolve in time and approach the same asymptotic constant
value 0 corresponding to that of the simple first-order lump
as t → ±∞.

A. The first-order lump

For simplicity, in what follows we set a > 0, λ = α + iβ,
and Re λ = α = 0 without loss of generality of the solutions
for the DS I equation.

With the choice of the following set of parameters in
Eq. (B5):

λ1 = −iβ(0 < β < a), n = 1, k1 = 1, C11 = 0,

and considering the moving reference coordinate frame,

x̃ = x − 2
√

a2 − β2(a2 − 2β2)

a2 − β2
t, ỹ = y (5)

(in what follows, we will omit the sign “ ∼ ”), then the first-
order lump solution is given by

u[1]
lump = a + 4β2

a

N1 − iβN2

D1
, (6)
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FIG. 1. The dynamical behavior of the intensity |u[1]
lump| of the

first-order lump solution (6) with a = 1: (a) bright-lump solution:
β =

√
7/2
2 , (b) four-petal-lump solution: β =

√
2

2 , (c) dark-lump solu-
tion: β = 1

2 .

where

N1 = (β2 − a2)

(
βx + 1

2

)2

− β2

(
−βy + 1

2

)2

+ a2

4
,

N2 = [(a2 − β2)x2 − βx + β2y2 − βy]
√

a2 − β2,

D1 = 2(a2 − β2)

(
βx − 1

2

)2

+ 2β2

(
βy − 1

2

)2

+ a2

2
.

Through simple calculations, the solution has the following
properties:

(i) When
√

3a
2 � β � a, the solution behaves as a bright-

lump, as illustrated in Fig. 1(a).
(ii) When a

2 < β <
√

3a
2 , the solution behaves as a four-

petal lump, as displayed in Fig. 1(b).
(iii) When β � a

2 , the solution is a dark-lump, as shown in
Fig. 1(c).

Remark 1. We always assume that Im λ = −β < 0 so that
these integrals in Eq. (B5) converge.

Remark 2. To analyze the asymptotic properties of the
higher-order dark lumps, we use the fact that the minimum
value of the first-order dark lump is a2−4β2

a at ( 1
2β

, 1
2β

).

B. The second-order lump obtained by one-fold BDT

As mentioned above, we have obtained three types of lump
solutions of the DS I equation. In this part of the article, we
take a dark-lump (0 < β � a

2 ) solution as an example to fur-
ther discuss the corresponding second-order solution, which is
obtained by using one-fold BDT with the second-order Taylor
coefficient [considering at the moving reference coordinate
frame (5)].

With the selection of the following set of parameters in
Eq. (B5):

λ1 = −iβ, 0 < β � a

2
, n = 1, k1 = 2, C11 = 0,

(7)

then the one-fold BDT yields a second-order dark-lump so-
lution u[2]

lump. Because of the cumbersome expression, we just
give the used eigenfunction to analyze the dynamics of the
solution:

ψ [2] = − 1

(a2 − β2)2

(
F [2]

r + F [2]
I

)
exp(θ2),

φ[2] = − 3i

a(a2 − β2)
3
2

(
G[2]

r + G[2]
I

)
exp(θ2), (8)

FIG. 2. The top panel: the time evolution process of the second-
order dark-lump solution in Sec. III B with parameters a = 1, β =
1
2 at (a) t = −30, (b) t = 0, and (c) t = 30. The bottom panel: the
asymptotic dynamical behaviors: (d) t = −30, the red straight line
y = 1

2β
, and the purple points are the positions of the minima of the

two lumps; (e) t = 30, the red straight line x = − β

2β(a2−β2 )
, and the

purple points are the positions of the minima of the two lumps; (f)
the paths of the two pulses for the incoming (t = −∞) and outgoing
(t = +∞) dynamics, with the scattering angle � indicated.

where

θ2 = βx +
√

a2 − β2iy − 2β3t√
a2 − β2

,

F [2]
r = − (a2 − β2)[(a2 − β2)x2 − β2y2]

2

− β
√

a2 − β2(3a2 − 2β2)t,

F [2]
I =

√
a2 − β2

[
(a2 − β2)βxy + 1

2
a2y

]
,

G[2]
r = (a2 − β2)2x2

6
+ [β2(a2 − β2)y + β(β2 − a2)]x

3

+ β2(β2 − a2)y2

6
+ β(3a2 − 2β2)y

6

+ (3a2 − 2β2)
√

a2 − β2βt

3
− a2

6
,

G[2]
I =

[
−1

6
(x − y)2β3 + (y − x)β2

3
+ (x2 − 2xy)a2β

6

+ a2(2x − y)

6

]√
a2 − β2 − β2(2β2 − 3a2)t

3
.

Figure 2 (see the top panel) illustrates that this solution con-
sists of two localized dark lumps along one straight line
parallel to the x-axis that are well separated as t � 0; these
two lumps become attracted to each other and overlap when
t ∼ 0, and then they separate as t � 0 but along the other
straight line parallel to the y-axis. To investigate the two-dark-
lump interaction, the hollow locations and heights need to be
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FIG. 3. (a) The minimum values of two lumps with parameters
a = 1, β = 1

2 before interaction; (b) the minimum values of two
lumps with parameters a = 1, β = 1

2 after interaction.

determined. The exact coordinates from the local minimum
value of the second-order lump is too complicated to obtain,
so we use an asymptotic analysis method to give approximate
estimates. When the leading terms of the denominator of the
second-order lump vanish, the approximate coordinates of two
hollows are given as follows as t → −∞:

x = ±
√

−2
√

a2 − β2β(3a2 − 2β2)t

a2 − β2
+ 1

2β
, y = 1

2β
,

(9)
and when t → +∞ are approximately located at

x = − β

2(a2 − β2)
,

y = ±
√

2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

+ 1

2β
. (10)

Based on the restriction 0 < β � a
2 in Eq. (7), the in-

equalities a2 − β2 > 0, 3a2 − 2β2 > 0 also hold. According
to Eqs. (9) and (10), the two lumps move along two
straight lines (i.e., y = 1

2β
and x = − β

2(a2−β2 ) ) with velocities

v−(O(±1/
√−t ), 0) and v+(0, O(±1/

√
t )); concretely the

+∞ line is obtained from the −∞ line by the reflection on the
x axis with an angle � = π/2. They first accelerate to collide
and then decelerate to move away from each other. Figure 2
(see the bottom plane) illustrates the asymptotic behaviors.
It can be seen explicitly from that figure that the scattering
angle is π/2. The approximate hollow locations are in good
agreement with the exact ones, as shown by the density plot.
The approximate hollow heights are also calculated by in-
serting these approximate coordinates (9) and (10) into the
expression of the second-order lump solution. The minimum
values of the two lumps evolve in time and finally approach 0
corresponding to that of the first-order dark lump (see Remark
2) as t → ±∞, as seen in Fig. 3. Physically, we arrive at the
conclusion that the two lumps undergo a nonelastic collision,
i.e., though their amplitudes do not change, both the velocities
and phases change a lot after interaction. This phenomenon
also happens in other (2 + 1)-dimensional integrable systems,
such as the KP I equation [22] and the DS II equation [25].

C. The second-order lump solution obtained by two-fold BDT

In this part of the article, we consider the other second-
order lump that is obtained by using two-fold BDT and

FIG. 4. The long-time asymptotic behavior of the second-order
dark-lump solution obtained by the two-fold DT in Sec. III C,
with parameters a = 1, β = 1

2 : (a) t = −30, the red straight line

x = 3a2−4β2

2β(a2−β2 )
, and the purple points are the positions of the two

minima of the two lumps; (b) t = 30, the red straight line y = 1
2β

,
and the purple points are the positions of the two minima of the two
lumps; (c) the path of the two pulses for the incoming (t = −∞) and
outgoing (t = +∞) dynamics, with the scattering angle � indicated.

choosing the first- and second-order Taylor coefficients as
eigenfunctions. By contrast to the one in the above subsection,
the solution shows an opposite dynamical evolution process.

For comparison with the second-order one in Sec. III B, we
still analyze the dark-type lump case. With the selection of the
following set of parameters in Eq. (B5):

λ2 = λ1 = −iβ, 0 < β � a

2
, n = 2,

k1 = 1, k2 = 2, C11 = C12 = C21 = C22 = 0 (11)

and at the moving reference coordinate frame (5), the other

second-order lump solution ũ[2]
lump of the DS I equation is ob-

tained. The explicit expression for ũ[2]
lump is complicated, hence

we omit it here. Similarly, when the domain leading terms
of the denominator in this solution vanish, the asymptotic
coordinates of the two minima of two lumps are located at

x = 3a2 − 4β2

2β(a2 − β2)
,

y = ±
√

−2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

+ 1
2β

t → −∞,

(12)

and

x = ±
√

2
√

a2 − β2β(3a2 − 2β2)t

a2 − β2

+ 2a2 − 3β2

2β(a2 − β2)
, t → +∞,

y = 1

2β
,

where
√

2
√

a2 − β2β(3a2 − 2β2)t is well-defined under the
constraint 0 < β � a

2 . Similarly, the two lumps first experi-
ence a head-on collision along one straight line parallel to
the y-axis, and then they are quickly away from each other
along the other straight line parallel to the x-axis, as shown in
Fig. 4. Comparing these results with those shown in Fig. 2, it is
clearly seen that we get the time-reversed dynamical evolution
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of the second-order lump obtained by the one-fold DT. One
can obtain similar hollow height results to those given above;
we do not repeat them here in detail. We point out that this
interesting behavior does not occur in (1 + 1)-dimensional
integrable systems.

Remark 3. The above investigated physical phenomena and
the associated evolution dynamics also occur in the case of
two other lump-type solutions: the four-petal and bright-lump
solutions.

Remark 4. The nth-order lump can be obtained by the
n-fold BDT with n eigenfunctions that are chosen by the
kth (k = 1, 2, . . . , n)-order Taylor coefficients or the one-fold
BDT with one eigenfunction that is chosen by the nth-order
Taylor coefficient. The former lump is the time-backward
evolution of the latter one.

IV. LOCALIZED ROGUE WAVES ON A
SOLITONIC BACKGROUND

In the above section, we mainly discussed the higher-order
rational lump solutions of the DS I equation under the as-
sumption Ci j = 0. From now on, when this constraint is not
imposed, semirational solutions of the DS I equation contain-
ing lumps or localized rogue waves on a solitonic background
are obtained. Their dynamical properties are also studied and
discussed.

A. The dynamics of interaction between one
lump and one line soliton

With the selection of the following set of parameters in
Eq. (B5):

λ1 = −iβ(0 < β < a), n = 1, k1 = 1, C11 	= 0,

this solution contains one lump and one line soliton and is
obtained by the one-fold BDT,

u[1]
lumps = a + 4aβ3iN1

D1
(13)

with

N1 = [−S3x2 − β2Sy2 + Sβx + Sβy

+ i(S2βx2 + β3y2 + S2x − β2y)]e
2β(Sx−2β2t )

S ,

D1 = (S2 + β2)

[
2S2

(
βx − 1

2

)2

+ 2β2

(
βy − 1

2

)2

+ a2

2

]
e

2β(Sx−2β2t )
S + 2S2a2β3C11,

S =
√

a2 − β2.

The solution is regular when βC11 > 0. Here, we concentrate
on the case of 0 < β � a

2 ,C11 = 1
β

. The waveform consists
of a lump solution localized on a line solitonic background.
When t → −∞, one lump interacts with a line soliton. As
time progresses, the lump is gradually annihilated by the line
soliton, and just the line soliton remains visible when t →
+∞, as is illustrated in Fig. 5.

By asymptotic analysis, the coordinate of the lump is fixed
at (x = 1

2β
, y = 1

2β
), and by computing the partial derivative

FIG. 5. The dynamical evolution of the fusion of a dark lump
and a dark-line soliton with parameters a = 1, C11 = 1

β
, β = 1

2 . The

purple points denote the positions of the lump (x = 1
2β

, y = 1
2β

), and
the red dotted lines are given by the asymptotic curve Eq. (14) at
different times. (a) t = −50, (b) t = −6, (c) t = 0, and (d) t = 30.

of this solution (13), the direction of the line soliton is ap-
proximately given by the curve{

(x, y) ∈ R2 :
4β3t√
a2 − β2

= 2βx + ln[(S2x2 + β2y2)] − ln(S2βC11), x, y → ∞
}
.

(14)

The direction is defined by the imaginary part of the spectral
parameter λIm = −β, while the logarithmic curvature of the
line soliton is induced by its interaction with the lump. In
the asymptotic limit |x| → ∞, Eq. (13) can be reduced to the
form

u[1]
∞ = a − 2aβ(β + iS)eβx− 2β3t

S

a2
(
eβx− 2β3t

S + C11βe
2β3t

S −βx
) (15)

with C11β > 0 and S =
√

a2 − β2. The field u[1]
∞ is the exact

solution of the DS I equation and corresponds to a dark-line
soliton along the direction βx − 2β3t

S = const. From Fig. 5, we
see that the asymptotic path given by Eq. (14) (red dotted line)
shows good agreement with the analytical result illustrated by
the density plot.

B. The first-order localized rogue wave on the background
containing two dark-line solitons

With the choice of the following set of parameters in
Eq. (B5):

λ2 = λ1 = −iβ(0 < β < a), n = 2, k1 = 0,

k2 = 1, C11 = C22 = C 	= 0, C12 = C21 = 0,
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the first-order localized rogue wave on the background con-
taining two line solitons is given by

u[1]
rw = a − βNrw

aDrw
, (16)

where

Nrw = S[2Sβ + i(S2 − β2)]e2βx− 4β3t
S

+ Cβ3[S2βx2 + β3y2 + S2x − β2y + S2β

+ i(S3x2 + Sβ2y − Sβx − Sβy + S3)],

Drw =Cβ

[
S2

(
βx − 1

2

)2

+ β2

(
βy − 1

2

)2

+ a2

4
+ S2β2

]
+ a2

4
e2βx− 4β3t

S + C2S2β4e−2βx+ 4β3t
S ,

S =
√

a2 − β2.

When t → ±∞, the solution only contains two parallel equal-
amplitude line solitons. In the intermediate stage (t ∼ 0), a
remarkably localized wave lives for a short period of time and
can reach the minimal value at a certain time. In this sense,
we also term the localized wave as a dark-rogue wave. At the
same time, the coordinates of the dark rogue wave are given
by

x0 = 1

2β
, y0 = 1

2β
, (17)

and the dark-rogue wave approaches a minimum value 0.47 at
an approximate time

t0 = S
[
1 − ln

( 4Cβ3S2

a2

)]
4β3

. (18)

Note that since the dark-rogue wave interacts with two line
solitons, its minimum value is larger than the one (zero) of
the first-order lump (see Remark 2). Meanwhile the two line
solitons are given by the asymptotic curves

4β3t

S
= 2βx + ln(S2x2 + β2y2) − ln(CS2β ),

(x, y) ∈ R2.

4β3t

S
= 2βx − ln(S2x2 + β2y2) − ln

(
4Cβ3

a2

)
, (19)

These directions of the two line solitons are defined by λIm =
−β, while the logarithmic curvatures are induced by their
interaction with the first-order lump. Equation (19) shows
that the two line solitons are parallel and maintain velocities
and shapes before and after collision. On the other hand, the
two solitons do not overlap each other for the whole time,
but in the intermediate stage of the evolution, since they
exchange their intensities during collision, the localized dark
rogue wave only lives for a short period of time. Because the
localized rogue wave is emitted by the line soliton 1, it extracts
energy from the line soliton, which results in a slight decrease
of the intensity of the line soliton 1. The fusion of the local-
ized rogue wave into the line soliton 2 increases its intensity.
These two line solitons uniformly move along the positive
direction of the x-axis for large space r =

√
x2 + y2. Hence

FIG. 6. The profiles along t of |u[1]
soliton| (red solid line) and |u[2]

soliton|
(green solid line) with parameters a = 1, β = 1

2 at y = 100.

we can consider the intensities of the two line solitons at
y = 100. Along their centers (19), the solitons approximately
attain the minimum value

√
a2 − β2 as t → ±∞, which is

the minimum value of the exact dark-line soliton with the
parameter C = 1

β
of the DS I equation [see also Eq. (15)].

More precisely, inserting y = 100 into u[1]
rw (16) and combining

Eq. (19), the minimum values of the two line solitons with
a = 1, β = 1

2 are time-dependent but approach the same con-
stant value corresponding to that of the first-order dark-line

soliton (|u[1]
soliton|min, |u[2]

soliton|min) → (
√

3
2

+
,

√
3

2

−
) as t → −∞,

and (|u[1]
soliton|min, |u[2]

soliton|min) → (
√

3
2

−
,

√
3

2

+
) as t → +∞; see

Fig. 6. So the two line solitons keep their amplitudes un-
changed after collision. For this localized wave, when |t | >

|t0|, the x-coordinate of the wave is affected due to interacting
with line solitons. More specifically, the x-coordinate is ob-
tained by solving the first equation of Eqs. (19) with y = 1

2β

for t > |t0|. With the choice of parameters a = 1, β = 1
2 ,C =

2, its minimum value is time-dependent and approaches a
constant 0.866 as t → +∞, as illustrated in Fig. 7(a). On
the other hand, when t < −|t0|, the x-coordinate is derived by
solving the second equation of Eqs. (19) with y = 1

2β
. Sim-

ilarly, with the selection of parameters a = 1, β = 1
2 ,C = 2,

its minimum value evolves in time and approaches a constant
0.866 as t → −∞, as illustrated in Fig. 7(b). It should be
noted that the asymptotic minimum value of the localized
wave is just the minimum value of two line solitons, which
further confirms that the dark-rogue wave is nearly annihilated
by two line solitons as |t | → ∞. Figure 8 shows the whole dy-
namical process. It is clearly seen that the asymptotic curves

FIG. 7. The minimum value of |urw| along t (−2000 < t <

−10, 10 < t < 2000) with parameters a = 1, β = 1
2 ,C = 2 at y = 1.
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FIG. 8. The dynamical evolution process of the first-order local-
ized rogue wave on the background containing two line solitons (16)
with parameters C = 1

β
, a = 1, β = 1

2 . The red dotted curves denote
the directions of the two line solitons (19), and the purple points
present the positions of the localized wave. (a) t = −100, (b) t =
−10, (c) t = √

3, (d) t = 10, and (e) t = 100.

given by Eq. (19) (red dotted curves) are in good agreement
with the exact analytical solution illustrated by the density
plots for large values of space and time coordinates.

C. The second-order localized rogue wave on the background
containing three dark-line solitons

With the choice of the following set of parameters in
Eq. (B5):

λ3 = λ2 = λ1 = −iβ

(
0 < β � a

2

)
, n = 3,

k1 = 0, k2 = 1, k3 = 2, C11 = C22 = C33 	= 0,

and other Ci j = 0(i 	= j), a second-order dark-rogue wave on
the background containing three line solitons of the DS I
equation is obtained. The solution and its asymptotic dynam-
ics can be analyzed in the same manner as in the first-order
localized dark-rogue wave case. Therefore, we omit most of
the details and illustrate its dynamics via the density plot in
Fig. 9, which shows that three line solitons move along the
positive direction of the x-axis, interact with three holes, and
annihilate them until just three line solitons are visible. When
|t | → ∞, the approximate curves of these three line solitons
are located at

4β3t

S
= 2βx + 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

− ln(4S4),

4β3t

S
= 2βx − 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

+ 2 ln(4S4),

4β3t

S
= 2βx, S =

√
a2 − β2, (x, y) ∈ R2. (20)

In the intermediate time, three dark lumps appear from
the solitonic background, further evolve to a second-order

FIG. 9. The dynamical evolution process of the second-order
rogue wave on the background containing three line solitons with
parameters C11 = C22 = C33 = 1

β
, a = 1, β = 1

2 in Sec. IV C. The
red dotted curves denote the directions of the three solitons, and the
purple points present the positions of the localized rogue wave and
three localized lumps. (a) t = −100, (b) t = −9, (c) t = 0, (d) t = 9,
and (e) t = 100.

localized dark-rogue wave, and decay again to the solitonic
background. To be specific, we shall give the approximate
traveling paths of localized waves below. When t = 0, the
second-order localized dark-rogue wave is located at ( 1

2β
, 1

2β
).

When t < 0, the approximate coordinates of the three lumps
satisfy the following equations, respectively:

A : y = 1

2β
, x = 2β2t

S
− 1

β
,

B : y =
√

−2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

− 1

β
,

2βx = 4β3t

S
+ 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

− 2 ln(4S4),

C : y = −
√

−2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

− 1

β
,

2βx = 4β3t

S
+ 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

− 2 ln(4S4), (x, y) ∈ R2, (21)

where −2
√

a2 − β2β(3a2 − 2β2)t > 0 under these con-
straints 0 < β � a

2 and t < 0.
When t > 0, the approximate coordinates of the three

lumps satisfy the following equations, respectively:

A : y = 1

2β
, x = 2β2t

S
+ 1

β
,

B : y =
√

2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

+ 1

β
,

2βx = 4β3t

S
− 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

+ ln(4S4),
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C : y = −
√

2
√

a2 − β2β(3a2 − 2β2)t√
a2 − β2β

− 1

β
,

2βx = 4β3t

S
− 2 ln[S2x2 + β2y2 + 2β(3S2 + β2)t]

+ ln(4S4), (x, y) ∈ R2, (22)

where 2
√

a2 − β2β(3a2 − 2β2)t > 0 under these constraints
0 < β � a

2 and t > 0. The dynamical behavior is illustrated
in Fig. 9. We see that the asymptotic results (the red dotted
curves and the purple points) are in good agreement with the
exact analytical ones illustrated by the density plots.

V. THE LINE ROGUE WAVES ON A
SOLITONIC BACKGROUND

In this section, we discuss the fact that the line rogue wave
solutions interact with line solitons of the DS I equation. The
first- and second-order line rogue waves have been studied by

Ohta and Yang in Ref. [19] by using the bilinear method. In
what follows, to demonstrate the efficiency of the method used
in the current work, apart from reporting novel results, we also
review here some known results.

A. The interaction between the first-order line
rogue wave and one dark-line soliton

Choosing the following set of parameters in Eq. (B5):

λ1 = −iβ(β > a > 0), n = 1, k1 = 1, C11 = 0,

similarly to the first-order lump solution (6), a first-order
fundamental line rogue wave of the DS I equation is obtained.
The explicit expression and its dynamical evolution process
are given in Appendix C. This solution is similar to the fun-
damental line rogue wave (3.1) in Ref. [19], hence we do not
give the details.

Consequently, we focus on the case of C11 	= 0. Then, a
semirational solution containing a line rogue wave and a dark-
line soliton is obtained:

u[1] = a

⎧⎨⎩1 − 2
[(

sx + βy − 1
2

)2 + 4(s2 + β2)t2 − 1
4 − 2i(s2 + β2)t

](
sx + βy − 1

2

)2 + 4(s2 + β2)t2 + 1
4 + C11s2a2

s−β
e2βx+2sy

⎫⎬⎭ (23)

with s =
√

β2 − a2. Interacting with a line soliton, half of the
first-order line rogue wave will be annihilated; see panel (b) in
Fig. 10, corresponding to t = 0. When t → ±∞, the half-line
rogue wave totally disappears and only the line soliton re-
mains. By using asymptotic analysis, we find that the direction
of the line soliton is given by the curve{

(x, y) ∈ R2 : 2βx + 2sy

= − ln

[(
sx + βy − 1

2

)2

+ 4(s2 + β2)2t2 + 1

4

]
+ ln

(
C11s2a2

β − s

)}
(24)

with s =
√

β2 − a2. This direction is defined by λIm = −β

and the amplitude a, while the logarithmic curvature of the
dark-line soliton is induced by its interaction with the line
rogue wave. The complete time evolution is shown in Fig. 10.

FIG. 10. The dynamical evolution of the interaction between a
line rogue wave and a dark-line soliton with parameters a = 1, β =√

2, C11 = √
2 − 1. The red dotted line represents the line soliton,

and the black dotted line denotes the direction of the line rogue wave.
(a) t = −3, (b) t = 0, and (c) t = 3.

The approximate results obtained for the directions of propa-
gation are consistent with the exact analytical ones illustrated
by the density plots. Here the red dotted line given by Eq. (24)
represents the direction of propagation of the line soliton, and
the black dotted line (βy + sx − 1

2 = 0) denotes the direction
of propagation of the dark-line rogue wave.

Remark 5. All solutions with parameters λ = −iβ (β > 0)
satisfy the property |u(x, y, t )| = |u(x, y,−t )|, hence in what
follows we only show the dynamical evolution plots for nega-
tive time values.

B. The first-order line rogue wave on the background
containing two dark-line solitons

With the choice of the following set of parameters in
Eq. (B5):

λ2 = λ1 = −iβ(β � a > 0), n = 2, k1 = 0,

k2 = 1, C11 = C22 = C 	= 0, C12 = C21 = 0,

a first-order line rogue wave on the background contain-
ing two dark-line solitons is obtained. Unlike the first-order
line rogue wave (C1) (see Appendix C), the solution does
not show a short-lived large amplitude wave behaving as a
straight line profile when t = 0, but finally it also decays as
|t | → ∞ to two parallel dark-line solitons, constituting the
solitonic background; see Fig. 11. Similar to the first-order
localized dark-rogue wave on the background containing two
line solitons discussed in Sec. IV, when the leading terms
in the determinant of the solution vanish as t → ±∞, the
traveling paths of the two dark-line solitons are approximately
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FIG. 11. The dynamical evolution of the first-order line rogue
wave interacting with two dark-line solitons with parameters a =
1, β = √

2, C = √
2 − 1: (a) t = −100, (b) t = −1, and (c) t = 0.

given by

(x, y) ∈ R2 : βx + sy + 1

2
ln

[(
sx + βy − 1

2

)2

+ 4(s2 + β2)2t2 + 1

4

]
− ln

[
Cs2a2

β − s

]
= 0,

βx + sy − 1

2
ln

[
(sx + βy − 1

2
)2

+ 4(s2 + β2)2t2 + 1

4

]
+ ln

[
Cs2a2

2(β − s)

]
= 0. (25)

Equation (25) shows that the two line solitons approach two
parallel straight lines for larger r =

√
x2 + y2, and when

|t | � 0 the distance between the two line solitons is growing.
For large space and time, the two line solitons possess the
same amplitudes and velocities. Along their centers (25), and
considering y = 100, the minimum values of the two line
solitons (denoted u[1]

soliton and u[2]
soliton, respectively) evolve in

time and approach zero as t → ±∞. We have pointed out in
Remark 5 that these kinds of rational and semirational line
rogue waves are all even functions with respect to variable
t . We hence just show the minimum amplitudes of the two
line solitons for large negative time, as seen in Fig. 12. Also,
we see from Fig. 13 that the approximate trajectories given
by Eq. (25) are in good agreement with the exact analytical
results illustrated by the density plots.

FIG. 12. The minimum value of |u[1]
soliton| (red solid line) and

|u[2]
soliton| (green solid line) along t with parameters a = 1, β = 1

2 at
y = 100.

FIG. 13. The dynamical evolution of the first-order line rogue
wave interacting with two dark line solitons with parameters a =
1, β = √

2, C = √
2 − 1: (a) t = −100, (b) t = −1, and (c) t = 0.

C. The second-order line rogue wave on the background
containing three dark-line solitons

With the choice of the following set of parameters in
Eq. (B5):

λ3 = λ2 = λ1 = −iβ, β � a > 0, n = 3, k1 = 0,

k2 = 1, k3 = 2, C11 = C22 = C33 = C 	= 0,

and other Ci j = 0(i 	= j), a second-order line rogue wave
located at a three dark-line soliton background is obtained.
Because of its cumbersome expression, here we just analyze
its dynamical behavior. In contrast to the second-order line
rogue wave shown in Fig. 4 of Ref. [19], when |t | → ∞
the wave decays to the background containing three equal
height and parallel dark line solitons. But, in the intermediate
stage, due to the presence of three dark-line solitons, a large-
amplitude parabola-shaped rogue wave does not occur. What
is more, the approximate paths of the three dark-line solitons
are given by the curves

βx + sy − ln

[(
sx + βy − 1

2

)2

+ 4(s2 + β2)2t2 + 1

4

]
+ ln

(
1

2
s4a2

)
= 0,

βx + sy + ln

(
1

2
s4a2

)
= 0,

βx + sy + ln

[(
sx + βy − 1

2

)2

+ 4(s2 + β2)2t2 + 1

4

]
+ ln

(
1

2
s4a2

)
= 0, (x, y) ∈ R2. (26)

The corresponding dynamical evolution is shown in Fig. 14.
The approximate expressions for the paths of the three dark-
line solitons are consistent with the exact analytical ones
illustrated by the density plots.

FIG. 14. The dynamical evolution of the second-order line rogue
wave on a three-dark-line solitonic background with parameters a =
1, β = √

2, C = √
2 − 1: (a) t = −100, (b) t = −1, and (c) t = 0.

The red dotted lines denote the three approximate curves (26).
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VI. CONCLUSION AND DISCUSSION

In this paper, the modified binary Darboux transformation
has been used to construct a rich variety of exact solutions
of the DS I equation, namely higher-order lumps, k-order lo-
calized rogue waves on a k + 1 line solitons background, and
k-order line rogue waves on a k + 1 line solitons background.
The higher-order lumps exhibit a nontrivial interaction, that is
to say, the lumps first travel along one straight line, accelerate,
and experience a head-on collision, after which they are scat-
tered and rotated at a certain scattering angle, and then they
move away from each other along the other direction, which
is orthogonal to their initial trajectory. Their minimum values
evolve in time and approach a constant 0 as t → ±∞. A train
of solitons possessing equal eigenvalues could evolve to a
hugely localized wave; we termed these solutions as localized
rogue wave on certain a line soliton background. What is
more, the asymptotic trajectories and intensities of lumps and
solitons have been estimated, and the obtained approximate
results are in good agreement with the exact analytical ones.
The minimum values of lumps approach the minimum values
of line solitons as t → ±∞, which confirms that these local-
ized waves are indeed annihilated by these line solitons for
a long time. On the other hand, for the line rogue wave on
a certain line soliton background, because of the interaction
with dark-line solitons, no large-amplitude waves appear at
any instant of time.

The obtained results extend our understanding of the diver-
sity and generation mechanisms of rogue waves. In addition,
the method developed in this work could also be used in
other (2 + 1)-dimensional integrable models, such as the (2 +
1)-dimensional asymmetric Nizhnik-Novikov-Veselov sys-
tem [37], the Kadomtsev-Petviashvili equation, and other
nonlinear evolution equations that are widely used to describe
the dynamical evolution of diverse physical systems.
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APPENDIX A: n-FOLD BDT

Lemma 1. Suppose �1 and � are two special column
vector solutions of the Lax pair equations (2) corresponding
to spectral parameters λ1 and λ, respectively. Then we can
have the following 1-closed differential form:

ω(�†
1 , �) = �

†
1� dx + �

†
1 J� dy + 2i(�†

1U�

+ �
†
1 J�x − �

†
1xJ�)dt . (A1)

In addition, we have

�(�†
1 , �) =

∫ x

−∞
�

†
1�dx′ + C, (A2)

where C is a complex constant.

Following the ideas of Refs. [66–69], we obtain that the
one-fold BDT for the DS I equation (1) is

� → �[1] = � − �1�(�†
1 , �)

�(�†
1 , �1)

,

U → U [1] = U + [J, �1�(�†
1 , �1)−1�

†
1 ]. (A3)

Remark 6. Comparing Eq. (6.1.22) in Ref. [40] and
Eq. (2.71) in Ref. [41], in the present work, the one-fold BDT
(A3) is constructed by the column vector solution instead of
the 2 × 2 matrix of the Lax pair.

The following conclusion verifies the validity of the above
transformation (A3).

Theorem 1. Suppose � solves the Lax pair equations (2),
and �1 is a special solution corresponding to the spectral
parameter λ1. Then

�[1]y = J�[1]x + U [1]�[1],

�[1]t = 2iJ�[1]xx + 2iU [1]�[1]x + V [1]�[1]. (A4)

Proof. For the first equation of (A4), by Lemma 1, it fol-
lows that

�[1]x = �x − �1x�
−1(�†

1 , �1)�(�†
1 , �)

+ �1�
−1(�†

1 , �1)�†
1�1�

−1(�†
1 , �1)�(�†

1 , �)

− �1�
−1(�†

1 , �1)�†
1�,

�[1]y = �y − �1y�
−1(�†

1 , �1)�(�†
1 , �)

+ �1�
−1(�†

1 , �1)�y(�†
1 , �1)�−1

× (�†
1 , �1)�−1(�†

1 , �)

− �1�
−1(�†

1 , �1)�y(�†
1 , �)

= J�x + U� − (J�1x + U�1)�−1(�†
1 , �1)�(�†

1 , �)

+ �1�
−1(�†

1 , �1)�†
1 J�1�

−1(�†
1 , �1)�(�†

1 , �)

− �1�
−1(�†

1 , �1)�†
1 J�

= J[�x − �1x�
−1(�†

1 , �1)�(�†
1 , �)

+ �1�
−1(�†

1 , �1)�†
1�1�

−1(�†
1 , �1)�(�†

1 , �)

− �1�
−1(�†

1 , �1)�†
1�]

− J�1�
−1(�†

1 , �1)�†
1�1�

−1(�†
1 , �1)�(�†

1 , �)

+ �1�
−1(�†

1 , �1)�†
1 J�1�

−1(�†
1 , �1)�(�†

1 , �)

+ J�1�
−1(�†

1 , �1)�†
1� − �1�

−1(�†
1 , �1)�†

1 J�

+ U [� − �1�
−1(�†

1 , �1)�(�†
1 , �)]

= J�[1]x + [J, �1�
−1(�†

1 , �1)�†
1 ][�

− �1�
−1(�†

1 , �1)�(�†
1 , �)]

+ U [� − �1�
−1(�†

1 , �1)�(�†
1 , �)]

= J�[1]x + {U + [J, �1�
−1(�†

1 , �1)�†
1 ]}

× [� − �1�
−1(�†

1 , �1)�(�†
1 , �)]

= J�[1]x + U [1]�[1].
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It is straightforward to verify the expression for U [1] by using
the symmetry relation. Thus, the first equation of (A4) has
been proved. Similarly, one can verify the second equation of
(A4). This completes the proof. �

Based on Lemma 1 and Theorem 1, the first-fold BDT be-
tween old and new solutions for the DS I equation is explicitly
given by

u[1] = u + 2ψ1φ
∗
1

�(�†
1 , �1)

, (A5)

where �1 = (ψ1, φ1)T is a column vector solution to the Lax
pair equations associated with the old potential solution u,
meanwhile

�(�†
1 , �1) =

∫ x

−∞
(|ψ1|2 + |φ1|2)dx′ + C11,

with C11 being an arbitrary complex constant. We will next
find that this constant plays a crucial role in constructing
various solutions to the DS I equation.

Theorem 2. Suppose we have n distinct solutions �is(i =
1, 2, . . . , n) for the Lax pair Eqs. (2). Then the n-fold BDT
gives the transformation between the fields as

U [n] = U + [J,�M−1�†], (A6)

where

� = [�1, �2, . . . , �n],

M =

⎡⎢⎢⎢⎢⎢⎣
�(�†

1 , �1) �(�†
1 , �2) · · · �(�†

1 , �n)

�(�†
2 , �1) �(�†

2 , �2) · · · �(�†
2 , �n)

...
...

. . .
...

�(�†
n , �1) �(�†

n , �2) · · · �(�†
n , �n)

⎤⎥⎥⎥⎥⎥⎦,

�(�†
i , � j ) =

∫ x

−∞
�

†
i � jdx + Ci j, 1 � i, j � n,

and Ci j are arbitrary complex constants.

APPENDIX B: A FAMILY OF EIGENFUNCTION
SOLUTIONS OF THE LAX PAIR EQUATIONS

Before constructing solutions of the DS I equation, we first
give a family of solutions of the Lax pair. We begin with the
plane-wave seeding solution,

u = −v∗ = a exp[i(bx + cy + dt )],

Q = b2 + c2 + d, w = 0, (B1)

where parameters a, b, c, d are real constants, and we assume
that the solution of the Lax pair (2) has the following form:

ψ = a1 exp[i(b1x + c1y + d1t )],

φ = a2 exp[i(b2x + c2y + d2t )], (B2)

where parameters ak, bk, ck, dk (k = 1, 2) are complex con-
stants. Inserting (B1) and (B2) into the Lax pair, the following

relationships between parameters are obtained:

b2 = b1 − b, c2 = c1 − c, d2 = d1 − d,

a2 = −a1b1i − a1c1i

a
, c1 = b + c

2
±

√
�

2
,

� = 4a2 + b2 − 4bb1 + 2bc + 4b2
1 − 4cb1 + c2,

d1 = b2 + c2 + d

2
− bb1 + bc1 + cb1 − 2b1c1 − cc1.

In what follows, without the loss of the diversity of solutions,
for simplicity we set b = 0, c = 0, d = 0, a1 = 1. Then the
fundamental eigenfunction (we refer to the usual exponential
function as a fundamental eigenfunction satisfying the Lax
pair associated with the eigenvalue b1) becomes

ψ = exp
[
i
(
b1x ±

√
a2 + b2

1y ∓ 2b1

√
a2 + b2

1t
)]

,

φ =
i
(±√

a2 + b2
1 − b1

)
a

× exp
[
i
(
b1x ±

√
a2 + b2

1y ∓ 2b1

√
a2 + b2

1t
)]

. (B3)

By performing the above eigenfunction � = (ψ, φ)T , the
Taylor series expansion is as follows:

�(b1 = λ + ε) = �[0] + �[1]ε + �[2]ε2 + · · · + �[n−1]εn−1

+ �[n]εn + O(εn+1), (B4)

where λ is a complex parameter, �[k] = 1
k!

∂k�

∂bk
1
|b1=λ(k =

1, 2, . . . , n), and ε > 0 is an infinitesimal constant. Then these
Taylor coefficients �[k] all satisfy the Lax pair (2) with the
same initial seeding solution (B1).

Therefore, the expression of the new solution in Theorem
2 can be generalized as follows.

Theorem 3. Suppose we have n distinct solutions �is (i =
1, 2, . . . , n) for the Lax pair (2), and we expand them as in
(B4). Then the n-fold BDT gives the transformation between
the fields as

U [n] = U + [J,�M−1�†], (B5)

where

� = [
�

[k1]
1 , �

[k2]
2 , . . . , �[kn]

n

]
,

FIG. 15. The dynamical evolution of the first-order line rogue
wave with parameters a = 1, β = √

2, C = √
2 − 1: (a) t = −3,

(b) t = 0, and (c) t = 3.
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M =

⎡⎢⎢⎢⎢⎢⎣
�(�[k1]†

1 , �
[k1]
1 ) �(�[k1]†

1 , �
[k2]
2 ) · · · �(�[k1]†

1 , �[kn]
n )

�
(
�

[k2]†
2 , �

[k1]
1

)
�

(
�

[k2]†
2 , �

[k2]
2

) · · · �
(
�

[k2]†
2 , �[kn]

n

)
...

...
. . .

...

�
(
�[kn]†

n , �
[k1]
1

)
�

(
�[kn]†

n , �
[k2]
2

) · · · �
(
�[kn]†

n , �[kn]
n

)

⎤⎥⎥⎥⎥⎥⎦,

�
(
�

[ki]†
i , �

[k j ]
j

) =
∫ x

−∞
�

[ki]†
i �

[k j ]
j dx′ + Ci j,

and Ci j are arbitrary constants.

APPENDIX C: THE FIRST-ORDER LINE ROGUE WAVE

The first-order line rogue wave is given by

u[1]
lrw = a

[
−1 + 1 + 4it (s2 + β2)(

sx + βy + 1
2

)2 + 4(β2 + s2)2t2 + 1
4

]
(C1)

with s =
√

β2 − a2. Its typical dynamical evolution is shown in Fig. 15.
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