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Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to high-
dimensional spatiotemporal systems including fluid turbulence is supported by nonchaotic, exactly recurring
time-periodic solutions of the governing equations. These unstable periodic orbits capture key features of the
turbulent dynamics and sufficiently large sets of orbits promise a framework to predict the statistics of the chaotic
flow. Computing periodic orbits for high-dimensional spatiotemporally chaotic systems remains challenging as
known methods either show poor convergence properties because they are based on time-marching of a chaotic
system causing exponential error amplification, or they require constructing Jacobian matrices which is pro-
hibitively expensive. We propose a new matrix-free method that is unaffected by exponential error amplification,
is globally convergent, and can be applied to high-dimensional systems. The adjoint-based variational method
constructs an initial value problem in the space of closed loops such that periodic orbits are attracting fixed
points for the loop dynamics. We introduce the method for general autonomous systems. An implementation
for the one-dimensional Kuramoto-Sivashinsky equation demonstrates the robust convergence of periodic orbits
underlying spatiotemporal chaos. Convergence does not require accurate initial guesses and is independent of
the period of the respective orbit.
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I. INTRODUCTION

Ideas from low-dimensional chaotic dynamical systems
have recently led to new insights into high-dimensional spa-
tiotemporally chaotic systems including fluid turbulence. The
idea for a dynamical description of turbulence has a long
history [1–3] and stems from the observation that turbulent
flows often show recognizable transient coherent patterns that
recur over time and space [4]. Only since the mid-2000s,
however, has concrete progress allowed dynamical systems
to be truly established as a new paradigm to study tur-
bulence [5–7]. This progress is based on the discovery of
unstable nonchaotic steady and time-periodic solutions of
the fully nonlinear Navier-Stokes equations which leads to
a description of turbulence as a walk through a connected
forest of these dynamically connected invariant (“exact”) so-
lutions in the infinite-dimensional state space of the flow
equations [8–11].

Of special importance are time-periodic exactly recurring
flows. These so-called unstable periodic orbits capture the
evolving dynamics of the flow [12] and form the elementary
building blocks of the chaotic dynamics. Periodic orbits have
been recognized as being key for understanding chaos since
the 1880s [13–15]. Provided results from low-dimensional
hyperbolic dissipative systems carry over to high-dimensional
spatiotemporally chaotic systems, periodic orbits lie dense
in the chaotic set supporting turbulence. The turbulent tra-
jectory thus almost always shadows a periodic orbit. As a
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consequence, periodic orbit theory allows us to express er-
godic ensemble averages of the turbulent flow as weighted
sums over periodic orbits. In these “cycle expansions,” the
statistical weight of an individual orbit is controlled by its sta-
bility features [16–21]. Sufficiently complete sets of periodic
orbits for three-dimensional fluid flows may thus eventually
allow to quantitatively describe statistical properties of turbu-
lence in terms of exact invariant solutions of the underlying
flow equations [22]. Even if a full description of turbulence
in terms of periodic orbits remains beyond our reach, indi-
vidual periodic orbits are of significant importance as they
capture key physical processes underlying the turbulent dy-
namics and may inform control strategies [23]. Consequently,
robust tools for computing periodic orbits of high-dimensional
spatiotemporally chaotic systems including three-dimensional
fluid flows are needed.

High-dimensional spatiotemporal systems, including spec-
trally discretized three-dimensional fluid flow problems, are
often characterized by more than N = 106 highly coupled
degrees of freedom. Computing periodic orbits of such
high-dimensional strongly coupled systems remains compu-
tationally challenging. The commonly used shooting method
considers an initial value problem yielding trajectories satis-
fying the evolution equations and varies the initial condition
until the solution closes on itself. To find the initial condition
u0 and the period T , Newton iteration is used to numerically
solve the nonlinear equation g(u0, T ) = f T (u0) − u0, where
f T is the evolution of the state u0 over time T . To solve this
system of nonlinear coupled equations, a standard Newton
method would require constructing the full Jacobian ma-
trix with O(N2) elements. This is practically impossible for
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high-dimensional strongly coupled systems with large N . Key
for computing periodic orbits of high-dimensional systems
are thus matrix-free Newton methods that do not construct
the Jacobian matrix but only require successive evaluations
of the function g, implying time stepping of the evolution
equations. Commonly used algorithms are Krylov subspace
methods [24,25] including the Newton-GMRES hook-step
method by Viswanath [9,26,27] as well as slight variations
with alternative trust-region optimizations [28,29].

The matrix-free Newton approach is well suited for com-
puting fixed points, where the “period” T can be chosen
arbitrarily, but the Newton approach poses fundamental chal-
lenges for periodic orbits. The defining property of a chaotic
system is an exponential-in-time separation of trajectories
which leads to a sensitive dependence on initial conditions.
Very small changes in the initial condition u0 are thus expo-
nentially amplified by the required time integration. Finding
zeros of g thus becomes an ill-conditioned problem. Conse-
quently, an extremely good initial guess is required for the
Newton method to converge. Generating sufficiently accu-
rate initial guesses is very challenging and often impossible.
Owing to the finite numerical precision of double-precision
arithmetic long and unstable orbits are even entirely im-
possible to converge. Examples demonstrating the difficulty
in finding periodic orbits of high-dimensional systems us-
ing shooting methods include the seminal work by Chandler
and Kerswell [22], who computed approximately 100 orbits
for a two-dimensional model flow and describe the time-
consuming and tedious manual work to find initial guesses
and trying to converge them. Likewise, van Veen et al. [30]
recently computed a single periodic orbit for box turbulence
with only moderate resolution of 643 grid points. The authors
reach a moderately small residual of 1.8 × 10−4 and thus
many orders of magnitude larger than machine precision only
after “several months of computing on modern GPU cards,
due to the poor conditioning of the linear problems associated
with Newton’s method.” Consequently, more robust methods
with larger radii of convergence than those of shooting meth-
ods are needed to compute periodic orbits of high-dimensional
spatiotemporally chaotic systems.

For low-dimensional systems more robust methods for
finding periodic orbits have been devised. In two- and four-
dimensional systems periodic orbits have been constructed
using alternatives to shooting methods including variational
approaches with Fourier representation in time [31] and meth-
ods based on topological degree theory [32,33], which have
not been extended to higher-dimensional problems. In the
context of nonlinear partial differential equations (PDEs) with
one spatial dimension, Lan and Cvitanović [34] followed a
different strategy to overcome challenges due to the exponen-
tial error amplification associated with the shooting method:
Instead of starting from trajectories satisfying the evolution
equations and varying the initial condition until the solution
closes on itself, they suggested a variational method that
reverses the approach: It starts from a closed loop in state
space that does not satisfy the evolution equations and then
adapts the loop until it solves the equations and a periodic
orbit is found. To adapt the closed loop, the problem is recast
as a minimization problem in the space of all closed loops.
The loop is driven toward a periodic orbit by minimizing a

cost function that measures the deviation of the loop from
an integral curve of the vector field induced by the govern-
ing equations. No time-marching along the orbit is required
and the loop is adapted locally. Consequently, the variational
method does not suffer from exponential error amplification
and has a large radius of convergence. The robustness of
the method has been demonstrated in the one-dimensional
Kuramoto-Sivashinsky system [35] for which Lasagna [23]
recently found more than 20 000 periodic orbits using N = 32
Fourier modes to discretize the problem.

Unfortunately, the robust variational method of Lan and
Cvitanović cannot be scaled to high-dimensional problems
such as fluid turbulence. The method is not matrix free but
requires the explicit construction of Jacobian matrices and
their inversion. Moreover, accurate computations of tangents
to the loop by finite differences require the loop to be repre-
sented by a sufficiently large number of instantaneous fields
closely spaced in temporal direction along the loop. The size
of the Jacobian matrix to be inverted scales with the number
of instantaneous fields M and the spatial degrees of free-
dom N as O(M2N2). This scaling reflects the prohibitively
large memory requirements for high-dimensional systems.
The only attempt to apply the method to a higher-dimensional
system we are aware of is Fazendairo et al. [36,37] who
study forced box turbulence in a triple-periodic box using
Lattice-Boltzmann computations. They provide evidence for
the convergence of two periodic orbits but reaching a mod-
estly small residual of O(10−5) on a relatively small 643

spatial lattice requires tens of thousands of CPU cores. As
stated by Fazendeiro et al., even finding the shortest orbits
of three-dimensional (3D) flows using the method by Lan and
Cvitanović requires petascale computing resources. Despite
its robustness, the variational method by Lan and Cvitanović
is thus too computationally expensive to be realistically used
for high-dimensional spatiotemporally chaotic systems.

Here we propose a novel matrix-free method that provides
the same favorable convergence properties of the variational
method by Lan and Cvitanović [34,35] but can be applied
to high-dimensional systems. The method combines a vari-
ational approach similar to Lan and Cvitanović with an
adjoint-based minimization technique inspired by recent work
of Farazmand [38] on computing steady-state solutions. Com-
bining the variational approach with adjoints allows us to
construct an initial value problem in the space of closed loops
such that unstable periodic orbits become attracting fixed
points of the dynamics in loop space. Converging to a periodic
orbit thus only requires evolving an initial guess under the
dynamics in loop space. We develop the matrix-free adjoint-
based variational method for general autonomous dynamical
systems. As a proof-of-concept, the introduced method is
applied to the one-dimensional Kuramoto-Sivashinsky equa-
tion (KSE) [39,40]. The KSE is a model system showing
spatiotemporal chaos that has commonly been used as a sand-
box model to develop algorithms that are eventually applied
to three-dimensional fluid flows. We demonstrate the robust
convergence of multiple periodic orbits of varying complexity
and periods. The implementation utilizes a spectral Fourier
discretization in the temporal direction to significantly reduce
the prohibitively large memory requirements of the method by
Lan and Cvitanović.
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The structure of the paper is as follows: First, the proposed
method for computing periodic orbits is introduced for a gen-
eral autonomous system. Section II describes the setup of the
variational problem and Sec. III discusses the adjoint-based
minimization technique. In Sec. IV, we apply the adjoint-
based variational method to the KSE and demonstrate the
convergence of periodic orbits in this spatiotemporally chaotic
system. Section V summarizes the manuscript and discusses
future applications to three-dimensional fluid turbulence.

II. VARIATIONAL METHOD FOR FINDING PERIODIC
ORBITS

We consider a general dynamical system for an n-
dimensional real field �u defined over a spatial domain � ⊂ Rd

and varying in time t ,

�u : � × R → Rn, (�x, t ) �→ �u(�x, t ).

The evolution of the field �u is first order in time and governed
by an autonomous PDE of the form

∂ �u
∂t

= N (�u). (1)

The nonlinear differential operator N enforces boundary con-
ditions at ∂�, the boundaries of the spatial domain �. A
periodic orbit is a temporally periodic solution of the govern-
ing equation,

f T (�u) − �u = �0, (2)

where f T (�u) = �u + ∫ t+T
t Ndt ′ indicates the nonlinear evolu-

tion over the period T .
The shooting method considers solutions of the initial

value problem and varies the initial condition �u0(�x) until the
solution closes on itself and becomes periodic. Equation (2) is
thus treated as an algebraic equation for the initial condition
and the period. An alternative approach is to consider already
time-periodic fields and vary those until they satisfy the gov-
erning equations. Instead of identifying an initial condition as
in a shooting method, we consider the entire orbit as a solu-
tion of a boundary value problem in the (d + 1)-dimensional
space-time domain. To ensure periodicity of the solution in
time, the boundary conditions in space are augmented by
periodic boundary conditions in time. The field �u(�x, t ) is thus
defined on � × [0, T )periodic.

The length of the domain in time T is unknown and needs
to be determined as part of the solution. To convert the prob-
lem to a boundary value problem on a fixed domain, we
rescale time t �→ s := t/T , where s denotes the normalized
time coordinate. The rescaled field

�̃u(�x, s) := �u(�x, s · T ),

is defined on a fixed domain

�̃u : � × [0, 1)periodic → Rn, (�x, s) �→ �̃u(�x, s).

A periodic orbit is characterized by the space-time field
�̃u(�x, s) and the period T satisfying

− 1

T

∂ �̃u
∂s

+ N ( �̃u) = �0. (3)

Boundary conditions in space remain unchanged with respect
to the dynamical system (1) and are complemented by pe-
riodic boundary conditions in the temporal direction s. To
simplify the notation, the overhead tilde is omitted in the
remainder of the article.

A periodic orbit is defined by the combination of a field
�u(�x, s) and a period T that together satisfy the boundary value
problem (3). Geometrically the periodic orbit is a closed tra-
jectory in state space. To characterize general closed curves in
state space, we define a loop l(�x, s) as a tuple of a field �u(�x, s)
and a period T . A loop does not necessarily satisfy the PDE
of the boundary value problem (3) but shares all boundary
conditions in space and time with periodic orbits. We denote
the space of all loops by

P =
{

l(�x, s) =
[
�u(�x, s)

T

] ∣∣∣∣
× �u : � × [0, 1)periodic → Rn, T ∈ R+

�u satisfies BC at ∂� and is periodic in s

}
. (4)

Periodic orbits are specific elements of the loop space P that
satisfy the PDE (3). A general loop only satisfies the boundary
conditions but not the PDE.

The idea of the variational method is to consider an initial
loop l0(�x, s) ∈ P and to evolve the loop until it satisfies the
boundary value problem (3). The loop thereby converges to
a periodic orbit. To evolve a loop toward a periodic orbit we
minimize the cost function J measuring the deviation of a loop
from a solution of the boundary value problem,

J : P → R+, l �→ J (l) :=
∫ 1

0

∫
�

�r · �rd�xds, (5)

where �r is the residual of Eq. (3):

�r = − 1

T

∂ �u
∂s

+ N (�u). (6)

The cost function J penalizes a nonzero residual �r. For a
periodic orbit J is zero otherwise it takes positive values.
Thus, absolute minima of J correspond to periodic orbits. The
problem of finding periodic orbits has thereby been converted
into an optimization over loop space P . Instead of fixing the
temporal phase of loops by a phase condition, we intentionally
define J such that it is invariant under a reparametrization
s �→ s′ = (s + σ ) mod 1 corresponding to a phase shift by σ

in the temporal periodic direction. Consequently, every pe-
riodic orbit is represented by an entire family of equivalent
phase-shifted representations. Because the variational method
does not have to adapt the temporal phase of a loop to satisfy
a phase condition, we expect the arbitrariness in the temporal
phase to allow the variational method to converge to periodic
orbits more robustly.

Geometrically, minimizing the cost function corresponds
to deforming a closed curve, a loop, in the system’s state
space, the space spanned by all instantaneous fields �u(�x)
satisfying the boundary conditions, until the loop becomes
an integral curve of the vector field N (�u) induced by the
dynamical system. The loop thereby becomes a solution of
the PDE and represents a periodic orbit. This is schematically
shown in Fig. 1. At each point �u along the loop, the vector field
defines the flow direction N (�u) while ∂ �u/∂t = T −1∂ �u/∂s is
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(a)

(b)

FIG. 1. Schematic of the variational method for finding periodic
orbits. (a) An arbitrary closed loop (blue line) parametrized by s ∈
[0, 1) does not satisfy the governing equations as its loop tangent
∂ �u/∂t = T −1∂ �u/∂s is misaligned relative to the vector field N (�u)
induced by the dynamical system. (b) Minimizing a cost function J
measuring the misalignment between the vector field and the loop
tangent deforms the loop. When the global minimum of the cost
function with J = 0 is reached the tangent vectors everywhere match
the flow, ∂ �u/∂t = N (�u). The loop becomes an integral curve of the
vector field and a periodic orbit is identified.

the tangent vector along the loop [see Fig. 1(a)]. The cost
function J measures the misalignment between the vector field
and the loop’s tangent vectors integrated along the entire loop.
Consequently, minimizing J toward its absolute minimum
J = 0 deforms the loop until the tangent vectors everywhere
match the flow and the loop becomes an integral curve of the
vector field, as exemplified in Fig. 1(b). The loop is locally
deformed to align with the vector field and no time-marching
causing exponential instabilities is required.

III. ADJOINT-BASED METHOD FOR MINIMIZING
THE COST FUNCTION J

We recast the problem of finding periodic orbits as a min-
imization problem in the space of all loops. Absolute minima
of the cost function J with value J = 0 correspond to peri-
odic orbits. To minimize J without constructing Jacobians we
develop an adjoint-based approach inspired by the recently
introduced method by Farazmand [38] who computes equilib-
ria of a two-dimensional flow. We construct an initial value
problem in loop space P whose dynamics monotonically
decreases the cost function J until a minimum of J is reached.

To derive an appropriate variational dynamics in loop
space, we define the space of generalized loops:

Pg =
{

q(�x, s) =
[

�q1(�x, s)
q2

] ∣∣∣∣
× �q1 : � × [0, 1)periodic → Rn, q2 ∈ R

�q1 is periodic in s

}
. (7)

Elements q ∈ Pg do not necessarily satisfy the spatial bound-
ary condition of periodic orbits at ∂� and are thus termed
generalized loops. Obviously, the space of loops P is a subset
of the space of generalized loops P ⊂ Pg. For a loop, the
components of the generalized loop have specific meaning,
�q1 = �u and q2 = T . Throughout this paper, generalized loops
are denoted by bold letters. The space of generalized loops
Pg carries a real-valued inner product

〈, 〉 : Pg × Pg → R,

〈q, q′〉 =
〈 [

�q1

q2

]
,

[ �q′
1

q′
2

] 〉

=
∫ 1

0

∫
�

�q1 · �q′
1d�xds + q2q′

2, (8)

and an L2 norm,

||q|| =
√

〈q, q〉 =
√∫ 1

0

∫
�

�q1 · �q1d�xds + q2
2. (9)

The objective is to construct a dynamical system in the
space of loops P such that along its solutions the cost
function J monotonically decreases and periodic orbits be-
come attracting fixed points of the dynamical system. We
parametrize the evolution of loops in P by a fictitious time
τ : l(τ ) = [�u(�x, s; τ ); T (τ )] and define an evolution equation,

∂l
∂τ

= G(l), (10)

with operator G chosen such that

∂J

∂τ
� 0 ∀ τ. (11)

To construct the operator G, we follow analogous argu-
ments to those in Ref. [38]. Note, however, that in Ref. [38] a
dynamical system is derived that acts on the space of instan-
taneous fields to find equilibria while here we determine an
operator G that evolves loops as defined in (4). The rate of
change of J along solutions of Eq. (10) is (see Appendix A
for details)

∂J

∂τ
= 2〈L (l; G), R〉, (12)

where R ∈ Pg is a generalized loop

R(l) =
[
�r
0

]
, (13)

with �r(l) the residual field (6). L (l; G) is the directional
derivative of the residual R in the direction G, evaluated for
the current loop l:

L (l; G) = lim
ε→0

R(l + εG) − R(l)
ε

. (14)
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Using the adjoint of the directional derivative, we express
Eq. (12) as

∂J

∂τ
= 2〈G,L †(l; R)〉, (15)

where L † is the adjoint operator of L with

〈L (q; q′), q′′〉 = 〈q′,L †(q; q′′)〉, (16)

for all generalized loops q, q′, and q′′. This form allows us
to enforce the monotonic decrease of the cost function J by
explicitly choosing the operator G:

G = −L †(l; R). (17)

With this choice for G, the cost function evolves as

∂J

∂τ
= 2〈−L †(l; R),L †(l; R)〉 = −2||L †(l; R)||2 � 0.

(18)
Thus, along solutions of ∂l/∂τ = G(l) = −L †(l; R) the cost
function J is guaranteed to monotonically decrease.

To find a periodic orbit using the adjoint approach, an
initial loop is advanced under the dynamical system in loop
space, until a minimum of the cost function, corresponding
to an attracting fixed point with ∂τ l = 0, is reached. If an
absolute minimum, J = 0, is reached, then the loop satisfies
the boundary value problem (3) and represents a periodic
orbit. The phase of the minimizing loop is not chosen by the
adjoint-based variational method but depends on the initial
condition.

IV. APPLICATION TO KURAMOTO-SIVASHINSKY
EQUATION

We demonstrate the adjoint-based variational method for
the one-dimensional KSE [39,40]. This nonlinear partial dif-
ferential equation for a one-dimensional field u(x, t ) on a 1D
periodic interval x ∈ [0, L) = � reads

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ν

∂4u

∂x4
; x ∈ [0, L)periodic, t ∈ R,

(19)
with a constant “superviscosity” ν > 0. The KSE has the
general form of Eq. (1) with n = d = 1. We denote the scalar
spatial coordinate by x. Rescaling the field u by the inverse of
L indicates that the only control parameter is L = L/

√
ν the

ratio of the domain length and the square root of the constant
ν. Consequently, fixing the domain length L and varying ν is
equivalent to fixing ν and treating L as a control parameter.
Both scalings are used in the literature. Here we fix ν = 1 and
consider L as the control parameter. The equivariance group
of the KSE contains continuous shifts in x and the discrete
center symmetry,

x → −x ; u → −u. (20)

We discuss periodic orbits both in the full unconstrained space
and in the subspace of fields invariant under the discrete center
symmetry.

The trivial solution of the KSE, u = const, is linearly
unstable for L > 2π

√
ν [41]. A series of bifurcations leads

to increasingly complex dynamics when L is increased.
We consider the parameter value L = 39 where the KSE

shows spatiotemporally chaotic dynamics reminiscent of
turbulence [42].

A. Formulation of the adjoint-based method for the KSE

For the 1D KSE a loop consists of a one-dimensional field
u(x, s) defined over [0, L) × [0, 1) and the period T . The
residual of the boundary value problem for a periodic orbit (6),
expressed as generalized loop R [see Eq. (13)], is

R(l) =
[

r(l)
0

]
=

[
− 1

T

∂u

∂s
− u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

0

]
, (21)

where vector notation has been suppressed because the dimen-
sion of the field is n = 1.

The dynamical system in loop space for which the cost
function monotonically decreases and periodic orbits become
attracting fixed points is based on the adjoint operator of the
directional derivative of R. Partial integration directly yields
the adjoint operator for the KSE problem (see Appendix B),

L †(l; R) =

⎡
⎢⎢⎣

1

T

∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

⎤
⎥⎥⎦. (22)

Consequently, the dynamical system in loop space ∂l/∂τ =
−L †(l; R) [see Eq. (17)] minimizing the cost function J is

∂l
∂τ

=

⎡
⎢⎣

∂u

∂τ
∂T

∂τ

⎤
⎥⎦ =

⎡
⎢⎢⎣

− 1

T

∂r

∂s
− u

∂r

∂x
+ ∂2r

∂x2
+ ∂4r

∂x4

−
∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

⎤
⎥⎥⎦. (23)

The first component of Eq. (23) prescribes the deformation
of the field u(x, s), while the second component updates the
period T .

The dynamical system in loop space formulated for the
KSE, Eq. (23), is equivariant with respect to the discrete
symmetry:

	 : (x, s) → (−x, s) ;

[
u
T

]
→

[−u
T

]
. (24)

If an initial loop is invariant under the action of 	, then the
evolution in τ will preserve the symmetry. Since the transfor-
mation of the instantaneous field x → −x; u(·, s) → −u(·, s)
for all s ∈ [0, 1) corresponds to the center symmetry (20) of
the KSE equation, the dynamical system in loop space also
preserves the center symmetry of the KSE. An initial loop
with field component within the center-symmetric subspace
of KSE is invariant under 	, which is preserved under τ

evolution. Consequently, the adjoint-based variational method
preserves the discrete center symmetry of the KSE.

B. Numerical implementation

Expressing the field component of the dynamical sys-
tem (23) in terms of u using Eq. (21) yields

∂u

∂τ
= G1,L + G1,NL, (25)
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where the linear and nonlinear terms have the form

G1,L = 1

T 2

∂2u

∂s2
− ∂8u

∂x8
− 2

∂6u

∂x6
− ∂4u

∂x4

G1,NL = −5
∂4u

∂x4

∂u

∂x
− 10

∂3u

∂x3

∂2u

∂x2
− 3

∂2u

∂x2

∂u

∂x
+ u2 ∂2u

∂x2

+ u

(
∂u

∂x

)2

+ 2u

T

∂2u

∂x∂s
+ 1

T

∂u

∂x

∂u

∂s
.

The field u(x, s) is defined on a doubly periodic space-time
domain. We thus numerically solve the evolution equation
with a pseudospectral method [43] using a Fourier discretiza-
tion in both space and time. The spectral representation with
M modes in space and N modes along the temporal direction
is,

u(xm, sn) =
M
2 −1∑

j=− M
2

N
2 −1∑

k=− N
2

û j,k exp

{
2π i

(
m j

M
+ nk

N

)}
. (26)

In physical space, the field is represented by grid values at the
Gauss-Lobatto collocation points {u(xm, sn)} with (xm, sn) =
(mL/M, n/N ) and index ranges 0 � m � M − 1 and 0 � n �
N − 1. In spectral space, the set of discrete Fourier coeffi-
cients {û j,k} with −M/2 � j � M/2 − 1 and −N/2 � k �
N/2 − 1 represents the field. In spectral space, the evolution
equation (25) for each Fourier coefficient of the field takes the
form

∂ û j,k

∂τ
=

[
−

(
2πk

T

)2

−
(

2π j

L

)8

+2

(
2π j

L

)6

−
(

2π j

L

)4]
û j,k + (Ĝ1,NL) j,k, (27)

where the discrete Fourier transform is indicated by a hat. To
evaluate the nonlinear term Ĝ1,NL derivatives are calculated in
spectral space and transformed to physical space, where prod-
ucts are pointwise operations. Transforming the result back to
spectral space yields the required terms. In both the spatial
and temporal direction dealiasing following the 2/3 rule [43]
is applied. To advance the evolution equation (25) in the
fictitious time τ we implement a semi-implicit time-stepping
method. An implicit-explicit Euler method treats the linear
terms implicitly and the nonlinear terms Ĝ1,NL are discretized
explicitly.

The second component of the evolution equation (23)
evolves the period of the loop T . We use an explicit Euler
method for time stepping. The integral defining the right-hand
side is evaluated analogous to the pseudospectral treatment of
the nonlinear terms in the evolution equation of the field. The
integrand is evaluated in physical space followed by transfor-
mation to spectral space, where the integral is given by the
(0,0) Fourier mode multiplied by L.

Since the purpose of defining the initial value problem in
loop space is to identify attractors corresponding to solutions
of the boundary value problem for periodic orbits, stability
and simplicity of the implementation are more important than
accuracy when choosing a time-stepping scheme. The simple
Euler method is only first-order accurate in τ but remains
stable for the chosen fixed time step 
τ = 0.15.

C. Initial guesses and convergence to periodic orbits

The adjoint-based variational method advances some ini-
tial loop under the dynamical system that minimizes the cost
function J . If a minimum with J = 0 is reached, then the
loop satisfies the boundary value problem for a periodic orbit.
Initial guesses for the procedure are extracted from chaotic
solutions of the KSE (19) u(x, t ). The common approach
for generating guesses used in conjunction with Newton-
GMRES-based shooting methods extracts close recurrences
measured in terms of the L2 distance from minima of the
recurrence map c(t, T ) = ||u(·, t + T ) − u(·, t )|| [16]. Here
the L2 norm is given by

||u||(t ) =
√∫ L

0
u(x, t )2dx. (28)

Exploiting the large radius of convergence of the variational
method, we here choose a much simpler and computationally
significantly cheaper method. Initial guesses are extracted
from close recurrences in a one-dimensional projection of
the solution. Specifically, we consider subsequent maxima in
the time series of ||u||(t ) where ||u||(t + T ) ≈ ||u||(t ). The
segment of the solution between those subsequent maxima
yields the field component of the initial loop. To ensure a
smooth closed loop with field component satisfying periodic
boundary conditions in the temporal direction, the solution
segment is Fourier transformed in time and high-frequency
components are filtered out [34]. The double-periodic field
u0(x, s) complemented by the period defines an initial guess
l0 = [u0(x, s); T ].

The initial guess l0 is evolved under the dynamical system
in loop space (10). Along the evolution the cost function J is
guaranteed to monotonically decrease and reach a minimum.
Consequently, the adjoint-based variational method is glob-
ally convergent. However, it is not guaranteed that an absolute
minimum with J = 0 is reached but the dynamics may asymp-
tote toward a local minimum with J > 0. If a global minimum
is reached, then a periodic orbit satisfying the boundary value
problem (3) is found. We consider a periodic orbit converged,
when

√
J < 10−12 is achieved. The periodic orbit corresponds

to an attracting fixed point of the dynamical system in loop
space so that we expect exponential convergence at a rate
controlled by the leading eigenvalue of the loop dynamics
linearized around the attracting fixed point.

D. Results and discussion

We demonstrate the adjoint-based variational method to
construct periodic orbits of the KSE for the parameter value
L = 39. At this value, the dynamics is chaotic and a large
number of unstable periodic orbits are known to exists [23].
Periodic orbits of the KSE are found by evolving initial
loops under the dynamical system in loop space (23). The
pseudospectral method uses 64 × 64 Fourier modes in spa-
tial and temporal directions to discretize the field u(x, s). In
spatial direction, we double the number of modes compared
to Ref. [23] where the chaotic attractor of the KSE at the
same parameter value L = 39 is shown to remain structurally
intact with only 32 modes. At the increased spatial resolution
of 64 modes, converged periodic orbits are checked to be
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independent of the number of spatial modes. In the tempo-
ral direction, the length of periodic orbits is not known a
priori. Instead of adapting the resolution to the period T of
the specific orbit, we chose a fixed resolution of 64 modes.
Short periodic orbits of the temporally discretized system are
found to be independent of the number of temporal modes
and thus accurately represent periodic orbits of the continuous
system. Due to increasing temporal complexity of periodic
orbits with larger T , fully converged periodic orbits of the
temporally discretized system represent periodic orbits of the
continuous PDE less accurately. However, even for the longest
orbits, increasing the temporal resolution showed that solu-
tions of the discretized system faithfully capture the structure
of PDE solutions. We consequently focus on the accuracy of
convergence to periodic orbits of the temporally discretized
system with 64 temporal modes, while noting that extra res-
olution checks are needed to determine how accurately the
longer converged orbits of the discretized system represent
solutions of temporally continuous PDE. A fixed time step of

τ = 0.15 leads to stable time stepping.

Periodic orbits of the KSE are attracting solutions of an
initial value problem in the space of loops P that monoton-
ically decreases the cost function J , as shown in Fig. 2. In
the top panel, the square root of the cost function,

√
J , as a

function of the fictitious time τ is shown. After τ ≈ 1.5 × 106

the convergence criterion
√

J � 10−12 is reached. Since the
cost function J is the average of

∫
�

r2dx over s, the square
root of J scales with the L2 norm (28) of the residual field
r and should be used as the convergence criterion. Along
the evolution of the loop with τ the cost function J mono-
tonically decreases. After an initial fast decrease,

√
J decays

exponentially with τ . Geometrically, the dynamical system in
loop space (23) continuously deforms the initial loop until the
loop satisfies the KSE and thereby becomes a periodic orbit.
The deformation is visualized in the bottom panel of Fig. 2,
where the evolution of the loop shown in a two-dimensional
projection of the state space. A very substantial deformation
of the loop is associated with the fast decrease of J within the
initial 10% of the integration time.

In addition to the two-dimensional field defined over the
fixed space-time domain [0, L) × [0, 1), the corresponding
period T is required to define a loop. Evolving a loop toward
a periodic orbit implies finding the period T , which rescales
the temporal length of the space-time domain s → t = T s and
thereby determines the length of extension of the domain in
the direction of time t . Figure 3 shows the convergence of T
to the period of the periodic orbit together with the space-time
contours of the corresponding initial loop u0(x, t = T s) and
the converged periodic orbit u(x, t = T s). As for the geometry
of the loop (Fig. 2) substantial changes in the period T under
the adjoint-based variational dynamics are mostly observed
within the initial 10% of the integration of the dynamical
system in loop space (23). Already at τ = 2 × 105, T is very
close to the period of the periodic orbit T = 59.59. We omit
data beyond τ = 4 × 105 from Fig. 3 since changes would not
be visible.

The fast initial decrease of the cost function J followed by a
slow exponential decay toward zero suggests that the loop ap-
proaches the periodic orbit along the leading eigendirection of
the loop dynamics linearized around the attracting fixed point.

FIG. 2. Convergence of the adjoint-based variational method for
finding periodic orbits of the KSE: The initial value problem in
loop space evolves loops such that the cost function J decreases
monotonically along the fictitious time τ (top). The exponential
decay of J toward zero indicates convergence toward a periodic orbit
satisfying J = 0. Geometrically, the variational dynamics deforms a
closed loop until it becomes an integral curve of the flow and thus
a periodic orbit of the KSE. This is shown in the bottom panel,
where the evolution of the loop is visualized in a two-dimensional
projection of state space. Blue solid lines indicate the evolving loop
at times indicated in the top panel. The dashed gray line is the
converged periodic orbit. The state space projections P1(s) and P2(s)
are defined by the imaginary parts of the first and second spatial
Fourier coefficients of the field u(x).

This is evidenced in Fig. 4 where the trajectory of the loop
evolving toward the attracting fixed point in loop space and
the leading eigendirection are visualized in a two-dimensional
projection. The residual

√
J along the trajectory at selected

points are indicated on the figure. Most of the computational
efforts are spent on following the exponential decay until the
cost function has reached sufficiently low values, although
this part of the dynamics is, at least approximately, linear.
Consequently, the convergence of the method can be accel-
erated by explicitly exploiting the linearized dynamics in the
vicinity of the attracting fixed point. A straightforward method
reducing the computational costs by approximately 50% is
discussed in Appendix C. More sophisticated optimizations
can be implemented and will be helpful when applying the
adjoint-based variational method to three-dimensional fluid
flows.

One major advantage of the adjoint-based variational
method is that the successful convergence toward a periodic
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FIG. 3. A periodic orbit is characterized by the combination of
the field u(x, s) on a fixed double-periodic space-time domain and the
time period T that rescales the temporal direction s → t = T s. The
variational dynamics adapts T until the period of the periodic orbit is
determined (top). Finding the period T corresponds to determining
the length of the domain in time t . This is evidenced by space-time
contours of the solution u(x, t = T s) for the initial condition (b) and
the converged periodic orbit (c). The period of the initial loop and
the periodic orbit are T = 40 and T = 59.59, respectively.

orbit is independent of the period of the respective orbit.
This is in contrast to shooting methods, where the exponen-
tial amplification of errors during time-marching along the
orbit can hinder computing long orbits. We demonstrate the

FIG. 4. Convergence of the adjoint-based variational method to
the periodic orbit shown in Figs. 2 and 3 visualized by a two-
dimensional projection of the loop space. The trajectory of the loop
(blue line) evolves toward the attracting fixed point corresponding to
the periodic orbit (green circle). The approach follows the leading
eigendirection (orange line) of the loop dynamics linearized around
the fixed point (see inset). Consequently, the residual

√
J exponen-

tially decrease with fictitious time τ , as shown in Fig. 2 (top). The
two-dimensional projection is spanned by the imaginary parts of the
Fourier modes (0,1) and (1,0) of the spatiotemporal field u(x, s).
Selected residual values

√
J along the trajectory are indicated.

FIG. 5. Periodic orbits of increasing length and complexity
converged by the adjoint-based variational method. The two-
dimensional projection of state space as in Fig. 2 indicates, the initial
loops (dashed orange lines) as well as the converged periodic orbits
(solid blue lines). The period of the converged orbits are given in each
panel. The gray line in the background of each panel is the trajectory
of a long chaotic solution in the center symmetry subspace of the
KSE (20). All initial loops are chosen from the center-symmetric
subspace. The dynamical system in loop space preserves the discrete
symmetry of the initial loops 	 so that all converged periodic or-
bits are also center symmetric although the symmetry has not been
imposed by the method.

convergence of orbits of increasing period and complexity
in Fig. 5. Six converged periodic orbits with periods ranging
from T = 25.37 to T = 147.42 are shown in terms of state-
space projections, together with initial loops extracted from a
chaotic time series of the KSE. The apparent large difference
between initial loop and converged orbit demonstrates that the
adjoint-based variational method offers a very large radius
of convergence and convergence therefore does not depend
on an initial condition in the close vicinity of the converged
orbit. The evolution of loops under the dynamical system in
loop space converges to minima of the cost function J for any
initial condition. While globally convergent, the variational
method is not guaranteed to converge to absolute minima of J
with J = 0, corresponding to periodic orbits, but the dynamics
may approach a local minimum with J > 0. For initial loops
extracted from recurrences in a one-dimensional projection of
state space, as discussed in Sec. IV C, we observe approxi-
mately 70% of all initial conditions to converge to periodic
orbits with J = 0. An example of a loop approaching a local
minimum of J is shown in Appendix D.

Following Lasagna [23], initial loops for the six orbits
discussed in Fig. 5 are extracted from a chaotic trajectory
of the KSE in the subspace of center-symmetric fields. All
initial conditions for the initial value problem in loop space
are therefore center symmetric. The dynamical system in
loop space (23) preserves the symmetry 	 of loops (24) that
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FIG. 6. Space-time contours of the converged periodic orbits
from Fig. 5 with time periods of (a) T = 25.37, (b) T = 53.13,
(c) T = 76.61, (d) T = 106.98, (e) T = 123.37, and (f) T = 147.42.
Unlike shooting methods, where exponential error amplification dur-
ing time-integration along the orbit renders long orbits inaccessible,
the adjoint-based variational method deforms orbits locally and thus
converges independent of the orbit period.

corresponds to the center symmetry of instantaneous fields in
the KSE system (20). Consequently, all converged periodic
orbits also lie in the center symmetry subspace, as confirmed
by Fig. 6, where space-time contours of the six periodic orbits
are shown. Note that the method does not explicitly enforce
the discrete symmetry but preserves the symmetry of the ini-
tial condition.

E. Comparing with pre-existing methods

Both the novel adjoint-based and Lan and Cvitanović’s
existing Newton-based variational methods relax the strin-
gent requirement of the shooting method for the accuracy
of initial guesses. However, both variational methods differ
significantly in terms of computational costs and memory
requirements. While the adjoint-based variational method
is matrix free, the construction of large Jacobian matri-
ces in the Newton-based method renders application of this
method to high-dimensional systems practically impossible.
In this section, we thus first compare the adjoint-based vari-
ational method and the shooting method in terms of their
radii of convergence. Then, the matrix-free adjoint-based
variational method is compared to the Newton-based varia-
tional approach in terms of computational costs and memory
requirements.

1. Implementation of existing methods

We implement both the shooting method and the Newton-
based variational method for finding periodic orbits of the
KSE. The implementation of the Newton-based variational
method is analogous to that reported in Refs. [34,35]. Techni-
cally we implement the method described in Ref. [23] directly
in MATLAB.

The shooting method combines a time integrator for
the KSE with a Newton-solver for the nonlinear equation
0 = g(u0, T ) = f T (u0) − u0. For time integrations we im-
plement a pseudospectral scheme using Fourier modes in
space. A first-order semi-implicit Euler’s scheme advances
fields in time. The time step is chosen to be close to 0.01
to ensure numerical stability of the integration. With the
choice 
t = T/T/0.01�, with ·� indicating the integer part
of a number, the integration time T is guaranteed to be
an integer multiple of 
t . The time integrator allows us
to evaluate g(u0, T ). Its zeros defining periodic orbits are
found using the trust-region-dogleg algorithm [44,45] pro-
vided in MATLAB. When initialized by a guess sufficiently
close to a periodic orbit, the method typically requires less
than 20 iterations for convergence. If the method does not
converge in 100 iterations, then we consider the attempt
failed.

2. Convergence range compared to the shooting method

The adjoint-based variational method overcomes the ex-
ponential error amplification associated with the shooting
method and is thus expected to have a significantly larger ra-
dius of convergence. Formally quantifying convergence radii
is challenging in general. In addition, here there is no common
metric to measure radii with respect to because the mathemat-
ical objects characterizing guesses differ fundamentally—an
initial condition for the shooting method versus a loop object
for the adjoint-based variational method.

To confirm the expected superior convergence range of the
suggested variational method, we thus carry out a numerical
experiment. We start from an initial condition that converges
to a periodic orbit by using the adjoint-based variational
method, extract intermediate loops along the convergence
path, and test how close to the converged periodic orbit the
intermediate state needs to be for the shooting method to also
converge. We specifically consider the convergence path of
the nonsymmetric periodic orbit, discussed previously and
shown in Figs. 2–4. For different values of he cost func-
tion J , we generate initial guesses for he shooting method
from instantaneous sections of the loop augmented with the
period T . Since the choice of the section is arbitrary, we
extract eight different temporal sections equally spaced in
time along the loop and feed all of them to the shooting
method.

As expected, for larger values of J the shooting method
fails to converge. Only when the cost function is suffi-
ciently small,

√
J < 10−4, and thus the loop is sufficiently

close to the periodic orbit, the shooting method initiated
with one of the eight temporal sections of the loop con-
verges to the periodic orbit. Note that for

√
J < 10−4, the

dynamics of the adjoint-based variational method is already
following the leading eigendirection of the periodic orbit,
as evidenced by the exponential decrease of the cost func-
tion. Moreover, projections shown in Fig. 4 indicate how
close to the converged periodic orbit the guess already needs
to be for the shooting method to converge. This clearly
indicates the vastly larger radius of convergence of the
adjoint-based variational method compared to the shooting
method.
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TABLE I. Scaling of computational costs and memory re-
quirements of the proposed adjoint-based variational method in
comparison to the existing Newton-based method [34,35]. The mea-
sured time per iteration on a 2.7-GHz Dual-Core Intel Core i5 refers
to the KSE example with N = 64 spatial degrees of freedom. In the
temporal direction, the Newton-based method requires a resolution
of M = 256 to reach the same accuracy as the adjoint-based one for
M = 64.

Method Newton based Adjoint based

G(l) computation — O[MN log(MN )]
Jacobian construction O[MN2 log(N )] —
Linear system solution O[(MN )3/2] —
Time per iteration [ms] 4392 2
Memory requirements O(MN2) O(MN )

3. Computational costs and memory requirements compared
to the Newton-based variational approach

While both variational methods adapt loops until they sat-
isfy the evolution equation, they fundamentally differ in how
the loop is updated, which implies vastly different computa-
tional costs. The proposed adjoint-based variational method
is matrix free and evolves loops directly by the dynamical
system in loop space ∂l/∂τ = G(l). On the contrary, the exist-
ing Newton-based variational method, first, constructs the full
Jacobian matrix of an entire loop and then evolves the loop by
solving the system of linear equations for the update vector of
the Newton iteration (see Ref. [34] for details).

The scalings of the computational costs for both meth-
ods, with N the number of degrees of freedom in spatial
and M in temporal direction are summarized in Table I. The
computational cost of the adjoint-based variational method
is dominated by two-dimensional fast Fourier transforms re-
quiring O[MN log(MN )] computations in each iteration. The
Newton-based method first constructs a Jacobian matrix of
dimension MN-by-MN , which is sparse containing M blocks
of N-by-N matrices, four diagonal bands and one additional
horizontal and vertical band each. The cost of constructing
the Jacobian matrix scales like O[MN2 log(N )]. Solving the
sparse system of linear equations for the update vector takes
O[(MN )3/2] operations so that depending on the size of the
system in spatial and temporal direction, either the construc-
tion of the Jacobian or the solution of the linear system
dominate the computational costs. For large N characteristic
of 3D fluid flow problems, the adjoint-based method is ex-
pected to reduce the computational costs per iteration by a
factor of O(N ).

In addition to the scalings as a function of degrees of free-
dom, the lower accuracy of finite-difference approximations
of the loop tangent in the Newton-based method compared
to the spectral representation in the adjoint-based method
also implies that equivalent accuracy requires an increased
number of temporal sections for discretizing the loop in the
Newton-based method. For the periodic orbit discussed in
Fig. 2 M = 256 temporal sections in the Newton-based vari-
ational method are required to reach the same accuracy as
M = 64 temporal modes in the adjoint-based method. Here
we characterize the accuracy by relative changes of the period

T when doubling the temporal resolution M. For the equiva-
lent resolution, one iteration of the adjoint-based variational
method takes only 2 ms, while each iteration of the Newton-
based method takes 4392 ms on a 2.7 GHz Dual-Core Intel
Core i5. Note, however, that while the computational cost
per iteration of the adjoint-based variational method even for
the KSE are more than three orders of magnitude smaller
than the costs of the Newton-based method, the adjoint-
based method converges only exponentially and thus slower
than the quadratically converging Newton-based method.
Consequently, the adjoint-based variational method requires
more iterations to achieve converge. While the adjoint-based
method can be accelerated by exploiting the approximately
linear loop dynamics around periodic orbits (see Appendix C
for an example) the main advantage is not its speed but
the vastly reduced memory requirements that allow to tackle
larger problems.

Memory requirement are estimated for both the adjoint-
based variational method and the Newton-based variational
method and reported in Table I. The memory requirement
of the Newton-based method is dominated by the number
of nonzero elements in the sparse Jacobian matrix, scaling
like O(MN2). In contrast to the Newton-based method, the
adjoint-based method is matrix free and only stores spa-
tiotemporal fields with MN elements. Thus, the memory
requirement of the adjoint-based method scales with O(MN ),
which is O(N ) less than that of the Newton-based method. For
the convergence of the discussed KSE test case, the Newton-
based method requires more than 2 orders of magnitude more
memory than the adjoint-based method. Due to the enormous
memory requirements and computational costs, extending the
Newton-based variational method to high-dimensional sys-
tems such as fluid flows, where N is often more than 106,
is practically impossible. On the contrary, owing to the man-
ageable memory requirements and computational costs per
iteration, the adjoint-based method can be applied to high-
dimensional systems.

V. SUMMARY AND CONCLUSION

Unstable periodic orbits have been recognized as building
blocks of the dynamics in driven dissipative spatiotempo-
rally chaotic systems including fluid turbulence. Periodic
orbits capture key features of the dynamics and reveal phys-
ical processes sustaining the turbulent flow. Constructing
a sufficiently large set of periodic orbits moreover carries
the hope to eventually yield a predictive rational theory of
turbulence, where “properties of the turbulent flow can be
mathematically deduced from the fundamental equations of
hydrodynamics,” as expressed by Hopf in 1948 [3]. De-
spite the importance of unstable periodic orbits, computing
these exact solutions for high-dimensional spatiotemporally
chaotic systems remains challenging. Known methods either
show poor convergence properties because they are based
on time-marching a chaotic system causing exponential error
amplification; or they require constructing Jacobian matrices
which is prohibitively expensive for high-dimensional prob-
lems. We therefore introduce a new matrix-free method for
computing periodic orbits that is unaffected by exponential
error amplification, shows robust convergence properties, and
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can be applied to high-dimensional spatiotemporally chaotic
systems. As a proof-of-concept we implement the method for
the one-dimensional KSE and demonstrate the convergence of
periodic orbits underlying spatiotemporal chaos.

The adjoint-based variational method constructs a dynam-
ical system that evolves entire loops such that the value of
a cost function measuring deviations of the loop from a so-
lution of the governing equations monotonically decreases.
Periodic orbits correspond to attracting fixed points of the
variational dynamics. Due to the variational approach, the
method provides a large radius of convergence so that periodic
orbits can be found from inaccurate initial guesses. For the
KSE we demonstrate the robust convergence properties by
successfully computing periodic orbits from inaccurate initial
guesses. These guesses are extracted from the projection of
the free chaotic dynamics on a single scalar quantity, instead
from close recurrences based on the L2 distance between
spatial fields [16]. Reliable convergence to machine precision
is observed independent of the period of the orbit.

The large convergence radius of the adjoint-based vari-
ational method relaxes accuracy requirements for initial
guesses when those are extracted from the chaotic dynam-
ics. Since initial guesses are characterized by an entire loop,
one may use fast-to-compute models approximating the full
dynamics to construct initial guesses for periodic orbits of
the full dynamics. Such an approach would not be reason-
able for classical shooting methods where initial guesses are
characterized by an instantaneous initial condition and the
difference between model and full dynamics would be ampli-
fied exponentially by the time-marching. Suitable models that
may help provide initial guesses for constructing large sets
of periodic orbits for a given chaotic system include under-
resolved simulations, spatially filtered equations such as LES
in fluids applications [46] and classical POD/DMD-based
models [47]. In addition, recent breakthroughs in machine
learning allow to create data-driven low-dimensional mod-
els of the chaotic dynamics that replicate spatiotemporal
chaos in one- and two-dimensional systems with remarkable
accuracy [48–50].

The feasibility of the proposed method has been demon-
strated for a one-dimensional chaotic PDE but the method
applies to general autonomous systems and we plan to
implement it for the full three-dimensional Navier-Stokes
equations. Specifically, we aim for an implementation within
our own open-source software Channelflow [51]. In the con-
text of this software not only the identification of periodic
orbits but also their numerical continuation will benefit from
the adjoint-based variational approach. When transferring
the adjoint-based variational approach to three-dimensional
fluid turbulence, we envision further optimizations of the
method. First, we will exploit that during its approach to
the attracting fixed point representing the periodic orbit, the
evolution is well approximated by the linearization of the
dynamics around the attracting fixed point. This allows us to
accelerate the time-marching in loop space and thereby the
exponential convergence, as exemplified for the KSE. Sec-
ond, one may complement the adjoint dynamics with Newton
descent to identify the attracting fixed point in loop space,
following the analogous hybrid approach for identifying equi-
librium solutions [38]. Alternatively, we will combine the

adjoint-based variational method with a Newton-GMRES-
based shooting method. Such a hybrid method offers the
large radius of convergence of the adjoint-based variational
method in combination with the fast quadratic convergence
of Newton’s method. To allow for converging long and un-
stable periodic orbits, a multishooting variant of the standard
Newton-GMRES hook-step method [52] will be used.
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APPENDIX A: RATE OF CHANGE OF THE COST
FUNCTION J

The rate of change of the cost function J with respect
to the fictitious time τ is given in Eq. (12). Here we derive
this expression including the specific form of R. With the
definition of the cost function J (5)

J (l) =
∫ 1

0

∫
�

�r(l) · �r(l)d�xds,

FIG. 7. Accelerated convergence of the adjoint-based variational
method. Convergence history for the periodic orbit discussed in
Figs. 2 and 3, for the standard method (orange dashed line) and the
modified method involving linear extrapolations along the solution
trajectory in the loop space. The linear extrapolations are based on
a linear approximation of the loop dynamics around the attracting
fixed point in loop space corresponding to the periodic orbit. The
square root of the cost function is shown as a function of the number
of fictitious time steps n. The first extrapolation is performed when√

J = 10−3. Between two consecutive extrapolations, the dynamical
system in loop space is integrated until the value

√
J is halved. In

this example case, extrapolations reduce the total number of fictitious
time steps by more than 50%.
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the rate of change of J with respect to the fictitious time τ is

∂J

∂τ
= 2

∫ 1

0

∫
�

(∇l�r · G) · �rd�xds,

where ∂l/∂τ = G from definition (10) has been used. Using
the definition of the inner product in the space of generalized
loops (8), we can express the rate of change as

∂J

∂τ
= 2

〈 [∇l�r · G
0

]
,

[
�r
0

] 〉
.

Here we choose the second component of both generalized
loops to be zero. With this choice, the rate of change of J is
given by

∂J

∂τ
= 2〈L (l; G), R〉,

where L (l; G) indicates the directional derivative of R =
[�r; 0] along G, defined in (14).

APPENDIX B: ADJOINT OPERATOR FOR KSE

We explicitly derive the form of the adjoint operator for the
KSE problem given in Eq. (22). In this Appendix, subscripts
1 and 2 denote the field component and the scalar component
of generalized loops, respectively. The directional derivative
of KSE along G is

L (l; G) =
[

G2

T 2

∂u

∂s
− 1

T

∂G1

∂s
− ∂ (uG1)

∂x
− ∂2G1

∂x2
− ∂4G1

∂x4

0

]
.

To compute the adjoint operator, we expand the inner product
of the directional derivative of the residual and the residual
itself:

〈L (l; G), R〉 =
∫ 1

0

∫ L

0
L1R1dxds + L2R2

=
∫ 1

0

∫ L

0
L1R1dxds + 0

=
∫ 1

0

∫ L

0

(
G2

T 2

∂u

∂s
− 1

T

∂G1

∂s
− ∂ (uG1)

∂x
− ∂2G1

∂x2
− ∂4G1

∂x4

)
R1dxds

=
∫ 1

0

∫ L

0

G2

T 2

∂u

∂s
R1dxds +

∫ 1

0

∫ L

0

(
− 1

T

∂G1

∂s
− ∂ (uG1)

∂x
− ∂2G1

∂x2
− ∂4G1

∂x4

)
R1dxds. (B1)

This inner product must be equal to

〈
G,L †(l; R)

〉 =
∫ 1

0

∫ L

0
L †

1 G1dxds + L †
2 G2, (B2)

where the adjoint operator is indicated by a dagger. Direct
comparison of equations (B1) and (B2) results in∫ 1

0

∫ L

0
L †

1 G1dxds =
∫ 1

0

∫ L

0

[
− 1

T

∂G1

∂s
− ∂ (uG1)

∂x

−∂2G1

∂x2
− ∂4G1

∂x4

]
R1dxds, (B3a)

L †
2 G2 =

(∫ 1

0

∫ L

0

1

T 2

∂u

∂s
R1dxds

)
G2. (B3b)

The form of L †
2 is directly given by (B3b):

L †
2 (q; R) =

∫ 1

0

∫ L

0

1

T 2

∂u

∂s
R1dxds.

Using integration by parts and the periodicity of the domain
in space and time, Eq. (B3a) becomes

∫ 1

0

∫ L

0
L †

1 G1dxds

=
∫ 1

0

∫ L

0

(
1

T

∂R1

∂s
+ u

∂R1

∂x
− ∂2R1

∂x2
− ∂4R1

∂x4

)
G1dxds.

Consequently,

L †
1 (l; R) = 1

T

∂R1

∂s
+ u

∂R1

∂x
− ∂2R1

∂x2
− ∂4R1

∂x4
,

where R1 = r. The adjoint operator acting on loops therefore
has the form

L †(l; R) =

⎡
⎢⎢⎣

1

T

∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

⎤
⎥⎥⎦.

Note that, owing to the periodic boundary conditions in both
spatial and temporal directions, here, the boundary terms that
appear during integration by parts cancel. In general, however,
boundary terms do not vanish so that the derivation of adjoint
operators for other boundary conditions may be less straight-
forward.

APPENDIX C: ACCELERATION OF THE CONVERGENCE
BY LINEARIZED APPROXIMATION

We demonstrate a straightforward method for accelerating
the convergence of the adjoint-based variational method. We
iterate between time stepping of the dynamical system in
loop space (23) and a linear extrapolation along the evolution
trajectory of the loops. This extrapolation is based on the as-
sumption that the evolution follows the leading eigendirection
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FIG. 8. Minimizing J by the adjoint-based variational method. (a) Evolution of
√

J with τ for two different initial loops. The blue line
shows the convergence for the loop that approaches a periodic orbit with J = 0 while the red line shows the convergence for a loop that
approaches a local minimum of J with a nonzero value J > 0. The corresponding initial (dashed lines) and converged loops (solid lines) in
the two-dimensional projection of the state space as in Fig. 2 are visualized for the converged loop with J > 0 (b) and the periodic orbit with
J → 0 (c).

of the linearization about the attracting loop. Extrapolations
yield the initial conditions of the subsequent advancing of
the loop in τ . This procedure is repeated until the periodic
orbit is converged. Figure 7 compares the convergence of the
periodic orbit shown in Figs. 2 and 3 by continuous integration
of the dynamical system in loop space (23) and the accelerated
method iterating between time stepping of the full dynamics
and extrapolations, both from the same initial condition. Ver-
tical drops of the cost function shown in the graph correspond
to the extrapolations. In this example the accelerated method

reduces the required total number of numerical steps of inte-
gration by more than 50%.

APPENDIX D: CONVERGENCE TO LOCAL AND GLOBAL
MINIMA OF J

In Fig. 8 we show an example of time stepping of the dy-
namical system in loop space where the final loop corresponds
to local minimum of J with a nonzero value. Consequently, no
periodic orbit is found.
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[21] P. Cvitanović, R. Artuso, G. Mainieri, G. Tanner, and G. Vattay,
Chaos: Classical and Quantum (chaosbook.org, Niels Bohr
Institute, Copenhagen, 2016).

[22] G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions
embedded in a turbulent two-dimensional Kolmogorov flow,
J. Fluid Mech. 722, 554 (2013).

[23] D. Lasagna, Sensitivity analysis of chaotic systems using un-
stable periodic orbits, SIAM J. Appl. Dyn. Syst. 17, 547
(2018).

[24] C. T. Kelley, Solving Nonlinear Equations with Newton’s
Method (Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2003).

[25] J. Sanchez, M. Net, B. García-Archilla, and C. Simo, Newton–
Krylov continuation of periodic orbits for Navier–Stokes flows,
J. Comput. Phys. 201, 13 (2004).

[26] D. Viswanath, Recurrent motions within plane Couette turbu-
lence, J. Fluid Mech. 580, 339 (2007).

[27] D. Viswanath, The critical layer in pipe flow at high Reynolds
number, Philos. Trans. R. Soc. Lond. A 367, 561 (2009).

[28] J. E. Dennis and R. B. Schnabel, Numerical Methods for Un-
constrained Optimization and Nonlinear Equations (SIAM,
Philadelphia, PA, 1996).

[29] Y. Duguet, C. C. T. Pringle, and R. R. Kerswell, Relative pe-
riodic orbits in transitional pipe flow, Phys. Fluids 20, 114102
(2008).

[30] L. van Veen, A. Vela-Martin, and G. Kawahara, Time-
periodic inertial range dynamics, Phys. Rev. Lett. 123, 134502
(2019).

[31] R. H. G. Helleman and T. Bountis, Periodic solutions of ar-
bitrary period, variational methods, in Stochastic Behavior in
Classical and Quantum Hamiltonian Systems (Springer-Verlag,
Berlin, 1979), pp. 353–375.

[32] L. Drossos, O. Ragos, M. N. Vrahatis, and T. Bountis, Method
for computing long periodic orbits of dynamical systems,
Phys. Rev. E 53, 1206 (1996).

[33] M. Vrahatix, T. Bountis, and M. Kollmann, Periodic orbits and
invariant surfaces of 4d nonlinear mappings, Int. J. Bifurcat.
Chaos 06, 1425 (1996).
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