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Effect of mobility in the rock-paper-scissor dynamics with high mortality
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In the evolutionary dynamics of a rock-paper-scissor model, the effect of natural death plays a major role
in determining the fate of the system. Coexistence, being an unstable fixed point of the model, becomes
very sensitive toward this parameter. In order to study the effect of mobility in such a system which has
explicit dependence on mortality, we perform Monte Carlo simulation on a two-dimensional lattice having three
cyclically competing species. The spatiotemporal dynamics has been studied along with the two-site correlation
function. Spatial distribution exhibits emergence of spiral patterns in the presence of mobility. It reveals that the
joint effect of death rate and mobility (diffusion) leads to new coexistence and extinction scenarios.
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I. INTRODUCTION

A stable ecosystem consists of different coexisting species
with naturally balanced intra- and interspecies interactions
like offspring production, predation-prey, intrinsic natural
death, etc. A natural goal of any ecological system is to
maintain the biodiversity such that any species can avoid its
extinction. To capture the complexity in a stable ecological
system, the principal idea behind evolutionary game dynamics
is that the survival or success of species depends on others is
very useful [1–6].

A paradigmatic model of evolutionary game dynamics
such as the rock-paper-scissor (RPS) model, where cyclic
dominance [7–11] determines the fate of each strategy, often
successfully mimics the emergence of biodiversity in several
natural systems. Colony formation and coexistence of several
microbes [8,12–14], parasites [15,16], etc., have been stud-
ied using this type of formalism. The stability of the Uta
stansburiana lizards [17], fermentation in the presence of
oxygen and at high glucose concentrations [18], and diversity
of coral-reef organisms [19] can be explained with this type
of cyclic game. The study of evolutionary RPS model can
be characterized [17] in two formalisms: the Lotka-Volterra
approach [20–22], in which particular species densities are
conserved, and the May-Leonard (ML) approach [23], where
vacant sites are introduced and thereby species densities can
be varied.
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It has already been studied (both theoretically and exper-
imentally) that parameters such as system size, mobility, in-
teraction region, protection spillover, and risk-averse hedgers
affect the stability and evolution of the system in a significant
manner [4,8,24–28]. In particular, demographic fluctuation
breaks the coexistence leading to the extinction of certain
species [29–32]. Currently, the role of individual natural death
(mortality) has been examined on the cyclic interaction of
three species [33]. It is observed that suitable intrinsic death
rate of a species may dominate the effect of the birth or
predation rates. As a result, a tiny change in the death rate may
lead the system toward extinction or make any one species
dominate over the others.

On the other hand, mobile species, i.e., species having
some kind of exchange or hopping probability may alter
the erstwhile scenario of survival [8,34,35]. Depending on
the strength of the mobility, several spatial structures such
as spiralling pattern [34,36,37] may emerge in the extended
two-dimensional (2D) systems. In certain cases, these spi-
rals grow in size depending on the rate of exchange, and
after a critical value of the hopping rate, the system shows
anomalous behavior where only one species survives and
other two go extinct. In particular, the size of spirals ex-
pands deliberately and it becomes larger than the system’s
size enabling any one of those species occupy the whole
system [10].

In this backdrop, we revisit the effect of mobility in a cyclic
RPS game dynamics where each species has its own intrin-
sic natural death rate. Using Monte Carlo (MC) simulations
[1,38,39], we have explored the effects of mobility in a 2D
RPS system within ML formalism where each individual has
a mortality rate, i.e., all the species have a probability of death
irrespective of any other parameters like predation or repro-
duction. We have observed that mobility helps the species
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FIG. 1. Schematic diagram of cyclic interaction and mobility in presence of natural death. (a) Red arrows represent the cyclic predation
between three species (red, blue, and green). Blue and black arrows reflect the reproduction and natural death respectively. (b) Mobility or
exchange between two nearest neighbors (one of them may be vacant site). [(c) and (e)] At low death rate (d = 1), the densities of species
remain finite for two mobility strength: smaller D = 1 × 10−7 as well as in higher value D = 5 × 10−4. (d) At high death rate (d = 4) and for
low diffusion, the density of each species is almost zero and no oscillatory behavior is observed there. However, (f) in the presence of higher
diffusion, the oscillation with higher amplitude appears. In all the cases, 1000 × 1000 lattice has been considered with unnormalized predation
and reproduction rates, p = 7 and r = 7, respectively, for each of the species.

survive in an unfavourable environment where mortality rate
is high.

The rest of the article is organized as follows. We describe
the model, the dynamics, and the method of simulation in
Sec. II. The results are discussed in Sec. III and finally we
conclude our remarks in Sec. IV.

II. THE FORMULATION OF THE MODEL AND MONTE
CARLO SIMULATION

We consider three species in a 2D lattice where each lattice
site can either have one species or be vacant. In the beginning
of the simulation, the species and vacancies are randomly dis-
tributed. Then we perform MC simulation governed by some
interactions such as reproduction, predation, natural death,
and mobility all subjected to some predefined conditions.

We denote the three species by A, B, and C and the corre-
sponding densities by ρa, ρb, and ρc, respectively. The va-
cancies are denoted by V and their density by ρv where
ρa + ρb + ρc + ρv = 1. In the cyclic domination process, the
predations can be represented by the following equations:

A + B −→ A + V with rate pa

B + C −→ B + V with rate pb (1)

C + A −→ C + V with rate pc,

where pa,b,c are the predation rates of A, B, and C, respec-
tively. The reproductions can be expressed as

A + V −→ A + A with rate ra

B + V −→ B + B with rate rb (2)

C + V −→ C + C with rate rc.

The rate of reproductions are denoted by ra,b,c. Alongside, the
natural death of a species can make a site vacant as well,

S −→ V with rate da,b,c, (3)

where S represents any of the three species A, B, or C and V
is the vacant site. The corresponding rate of death is da, db,
or dc. The cyclic predations, reproductions, and deaths are
schematically shown in Fig. 1(a). Here red lizards (say, A)
predate the greens (B), greens predate the blues (C), and blues
predate the reds again. The blue arrows in Fig. 1(a) denote the
birth of new species. Each lizard of particular color creates
another one of the same color (shown in smaller size). The
black arrows indicate the natural death, and the grey lizards
indicate the dead ones. Note that we have considered iden-
tical predation, reproduction, and death rate of each species:
pa = pb = pc = p, ra = rb = rc = r, and da = db = dc = d .

Finally, we have considered nearest-neighbor pair ex-
change where the species can exchange their positions with
that of the neighboring species or vacancy governed by some
probability:

S + φ( �= S) −→ φ( �= S) + S with rate ε. (4)

Here φ can be A, B, C, or V. Figure 1(b) describes this mo-
bility process. Here one blue and one red lizard in the lattice
exchanged their position (marked by thick black arrow). In a
similar way, a lizard (see the green one) may hop to a vacant
site (described as black filled dots). Note that both swaps
(between species-species or species-vacant) do not occur si-
multaneously but in two different MC step. We consider only
nearest neighbor interactions and assume periodic boundary
condition while doing the simulation. The simulation starts
with a random initial configuration. At each MC step one
lattice site is considered randomly. Then another site is chosen
out of the four nearest neighbors of the first site and possible
operations (predation, reproduction, exchange) are made be-
tween two sites with specified probabilities. Apart from this,
the chosen first site is converted to a vacant one with death
rate d . All the probabilities are normalized by the rates r, p,
d , and ε. This entire process is repeated until an equilibration
is reached. Numerical simulations have been performed on
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1000 × 1000 lattice, and total number of required MC steps
varied from 104 to 106 depending on the rate of mobility. The
exchange process in Eq. (4) leads to an effective diffusion of
the individual species governed by the macroscopic diffusion
constant D. In our case of a two-dimensional system, we
connect this diffusion constant D with the exchange rate ε

through system size by the relation, ε = 2N2D [40].

III. SIMULATION RESULTS

It has already been established [33] that the system has
sharp dependence on natural death as compared to preda-
tion and reproduction. For a certain set of parameter values
[33] the system also exhibits coexistence of all the species
resulting from an unstable fixed point having all nonzero den-
sities. Now, with the incorporation of diffusion (or mobility),
the fluctuation expectedly increases in the dynamics. Fig-
ures 1(c)–1(f) reports the density of the species with respect
to time for two different death rates and two different mobility
rates. In lower (higher) death rate, the density of each species
shows a stable oscillation with high (small) amplitude. How-
ever, the fluctuations are noted to be increased considerably
when the mobility rate increases from 1.0 × 10−7 [Figs. 1(c)
and 1(d)] to 5.0 × 10−4 [Figs. 1(e) and 1(f)]. Increase of
mobility rate is observed to affect the average densities of the
species significantly in the regime of high as well as low death
rate. When death rate is high the average species densities
remain very low, leaving most of the lattice sites vacant for
low mobility [e.g., see Fig. 1(d) for d = 4]. However, an
increasing value of diffusion enhances the species densities
for the same rate of death. We can see in Fig. 1(f) that the
average density of the species has been raised as mobility
becomes 5.0 × 10−4. The situation becomes opposite when
we are in the low death regime. Increasing mobility lowers
the species densities there. This feature indicates that a co-
existence regime may arise under high death rates within a
critical boundary of mobility We explore the combined effect
of death rates and mobility for finding the coexistence as well
as the the extinction regime.

To delve deeper, we have calculated the total density
of species (1 − ρv) in the lattice as a function of mobility
strength for different death rates. The time-averaged total
density is calculated following the definition

ρtotal = 1

t f − ti

t f∑

ti

(ρa + ρb + ρc), (5)

where both ti and t f are in the equilibrated region of the
MC simulation. Figure 2(a) shows the plots of ρtotal against
mobility rate for six different death rates. At lower mobility
(D ∼ 10−7) and low death rates (d = 0 and d = 1, i.e., purple
and green lines), the three species collectively occupy around
90% and 80% space of the whole lattice, respectively. When
the mobility rate increases, ρtotal decreases continuously and
saturates at certain values (∼0.8 for purple and ∼0.7 for green
line). The total density remains almost unaltered with varying
mobility for moderate death rates (d ∼ 2). On the other hand,
for species with higher death rates (d � 3), an increase in ρtotal

is observed with increasing mobility rate. For very high death
rate (d ∼ 5), coexistence of species is observed. By contrast,

FIG. 2. Role of mobility and death rate on species coexistence.
(a) Total species densities are plotted against mobility strength (D)
for six constant death rates. We observe that at lower death rates as
the mobility increases the total species density decreases slowly. At
high death rate and low mobility the species density is very low (gets
extinct for d = 5). However, as the mobility increases species density
increases (“revives” even for d = 5) and coexists. (b) Total species
density is plotted for two extreme mobility constants (D = 1.0 × 107

and D = 5.0 × 10−4) with increasing death rate. With increasing
death rate, the total species density decreases, but the slope for these
two cases are different. Lower mobility leads to faster extinction but
higher mobility decreases the slope and leads to nonextinction of the
species for a wider range of death rate.

the system shows extinction at low diffusion. In Fig. 2(b), we
have plotted the total species density as a function of death
rates for two extreme mobility strengths (D = 1.0 × 10−7 and
D = 5.0 × 10−4). We observe a monotonic decrease of ρtotal

with the death rate d . As the figure shows that the lower
mobility rate (magenta line) has faster decay in ρtotal than
the higher mobility case (green line). This leads to the fact
that the system with higher mortality can overcome extinction
for certain range of higher mobility value. Additionally, we
observe a crossover of the two lines where the total density
is around 0.55. This intersection point gives a certain value
of death rate and species density where two extreme mobility
rates lead to an identical population density.

For further analysis, we have plotted the species density
spatially in a 1000 × 1000 lattice (Fig. 3). Each of the figure is
plotted when the system had already reached stable oscillation
well ahead. In the first row, where no natural death rate is
considered, the size of the spirals increase from low mobility
to higher mobility (D = 1.0 × 10−7 to D = 1 × 10−4). If we
increase the mobility rate further (D � 7.0 × 10−4), then the
size of one spiral would be inflated so much that it would
occupy the entire lattice leading to the situation of single
species survival (not shown here). This is consistent with the
previously reported results [10]. Now, if we introduce the
natural death of each species, then the size of the spirals grow
more rapidly (second row, from left to right). In the third row,
at death rate d = 4 and at mobility strength D = 1 × 10−7 a
large fraction of the lattice sites become vacant. Thus a large
collection of black dots appear in the spatial plot. However,
if we increase D, then the large spirals reappear in the lattice.
Panels of two bottom rows, for d = 4 and d = 5, become less
dark as D is increased (left to right). Thus, the mobility has
capability of countering the effect of death rate of the species.
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FIG. 3. Spatial plot of species density for different death rate and mobility strength. Distribution of the species throughout the lattice is
shown by colors (red, green, and blue for A, B, and C, respectively). Black dots are used for blank space. Diffusion strength is increased from
10−7 to 7 × 10−4 (from left to right). Natural death rate is increased from zero to 5 (upper to bottom).

The mathematical analysis of the emergence of spiral patterns
[41–46] will be explored in future.

The patterns can also be realized from the study of the
spatial correlation. The two-site correlation function is defined
by:

gsis j (r − r′, t ) ≡ 〈si(r, t )s j (r′, t )〉 − 〈si(r, t )〉〈s j (r′, t )〉. (6)

Here si, j (r, t ) (i, j ∈ a, b, c) represents a species at the
position r in the 2D lattice at a particular time t [40]. We study
the correlation of species A (gsasa ) and it shows damped oscil-
lation with respect to distance in case of the spiral patterns
as observed in earlier studies [40,47]. The correlation length
(lcorr) is thereby determined by the length at which the corre-
lation drops 1/eth of the maximum value [34]. As expected
[10], all the plots show that the correlation length increases
with increasing mobility indicating the size of a single patch
in the spatial distribution getting bigger. At lower diffusion,
the correlation length for high death rate is almost nil mainly
due to the extinction of species at that regime [Fig. 4(a)]. At
higher mobility (D ∼ 10−5) a new coexistence regime appears
(the blue and yellow line, also see the third and fourth row
of the Fig. 3) significantly boosts up the correlation length
curve jointly with the inflated spiral size. The size of the spiral
increases with the death rate as well. This is indicated by
Fig. 4(b) where we have plotted the wavelength (λ) of the
correlation function (gsasa ) against death rates.

Interestingly in the regime of high diffusion, the growth of
the correlation length, i.e., the size of the patch is elevated and

the significance is that the species are prone to colony forma-
tion more when their mortality rates are high. This feature will
be explored in more details in future.

We have also calculated the extinction probability [Pext,
Fig. 4(c)] against mobility strength for different death rates.
Here Pext is the probability of extinction of one or more
species [10], numerically calculated over a large number of
realizations for a lattice size of 1000 × 1000 and for 106 MC
steps. It is already established that [10] an abrupt transition
occurs from coexistence to extinction (size N → ∞) above
a certain critical D in the case of d = 0. In finite systems,
there are finite-size effects as shown in Fig. 4(b) (blue, red,
and green). For higher mobility (D > 10−3), the coexistence
is completely lost, as the patch of one species becomes big
enough to cover the entire space. The results are almost
same for death rates d = 2 (brown) and d = 4 (green). In the
presence of death, the system reaches extinction at smaller
diffusion compared to zero mortality rate. However, an in-
teresting feature is observed for higher mortality rates. For
large d [d = 5 (yellow) and d = 6 (violet)], new extinction
and coexistence regimes appear that is characterized by two
critical values of D: Dc1 and Dc2. For D < Dc1 and D > Dc2

one species takes over, and coexistence is lost after a time of
order N (effect of lattice size is explored in Fig. 5). For Dc1 <

D < Dc2 long-lived coexistence of all species (metastable
state) occurs for a time that grows exponentially with N
(Fig. 5). For instance, at d = 5, there is only one surviving
species for D � 10−5 and D � 10−3 and species coexist for
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FIG. 4. (a) Correlation lengths (lcorr) are plotted against different mobility strengths (D). At higher diffusion, the length is enhanced. This
is consistent with previous results [10]. If the death rate is increased, then the length is also sharply increased. In intermediate mobility strength
(D ∼ 10−5), the species density “revives” (species coexistence) for higher death rate thus correlation becomes nonzero (see the blue and yellow
lines). (b) The wavelength (λ) of the correlation function as a function of death (d) for a particular value of mobility (D = 1.0 × 10−4). The
wavelength is increasing as we increase the death value. This indicates the spirals increase in size with increasing death rate. (c) Extinction
probability as a function of mobility D. Five death rates have been chosen. For higher death rates (d = 5, 6), the extinction probability is high
for low (D ∼ 10−7) and high (D � 10−3) diffusion and goes to zero in the intermediate values of D ∼ 10−4.

10−5 < D < 10−3. Here the joint effect of high death rate
and mobility leads to new extinction and coexistence regimes
or scenarios. Below we provide an intuitive interpretation of
these findings. Note that we have confirmed this scenario and
the values of Pext, Dc1, and Dc2, for larger systems in order to
rule out the influence of finite-size effects.

When d is large, there are numerous spontaneous death
events leading to a lot of empty spaces. Moreover, when there
is enough mobility (high D), individuals visit a large fraction
of the lattice and hence can efficiently find available empty
sites where to reproduce before being killed. In this sense
high mobility rate D counters high death rates and allows
species to coexist under extreme conditions (high d) provided
that they are sufficiently mobile (high-enough D). Of course,
if D is too large, then spiralling patterns just outgrow the
system as in Ref. [10]. When d is small, we also recover
essentially the same extinction-coexistence scenario as in
Ref. [10].

Novel phenomenology hence arises when d is large and D
is sufficiently large (but not too large); mobility counters the
effect of killing and allows species to coexist for a very long
time (see below and Fig. 5). In the opposite limit, when D
is small (d being large), individuals are not mobile enough to
escape spontaneous death and species coexistence ceases after
a finite time.

Finally, we have investigated the effect of finite size
in the dynamics. We have chosen four death rates: d =
0, 2, 4, and 5. The average extinction time 〈Tex〉 of the species
is plotted with the system size N [Figs. 5(a)–5(d)]. The ex-
tinction time (Tex) is measured when one of the species goes
to extinction. For each death rate and diffusion, the average
extinction time, 〈Tex〉 is calculated for 100 realizations (1
time step = N Monte Carlo steps = N update moves). The
mean extinction time 〈Tex〉 increases with increasing system
size and the nature of the curve depends on the strength
of mobility as observed previously in absence of any death

FIG. 5. Effect of lattice size on average extinction time at different death rates and mobility parameters: 〈Tex〉 is plotted against lattice size,
N (= L2) for different death rates (d) and mobility (D). [(a)–(b)] Diffusion dominates for low death rates as it lowers the extinction time.
[(c) and (d)] For high death rates both low and high diffusivity show lower extinction times, whereas 〈Tex〉 is raised for an intermediate range
of diffusion. Note that in (d) data for d = 5, N = 5002, and D = 10−4 and D = 10−5 are given as eye guides since coexistence is not lost at
time 1.5 × 105 (hence, in these cases 〈Tex〉 > 1.5 × 105), see text. Insets of (b) and (d): 〈Tex〉 vs. N on lin-log scale. In this work, in one time
step there are N elementary update moves corresponding to N = L2 Monte Carlo steps.

014215-5



SAHIL ISLAM et al. PHYSICAL REVIEW E 105, 014215 (2022)

rate [47]. The death rate also has influence on 〈Tex〉. In the
case of low (or no) death rates [Figs. 5(a) and 5(b)], low
mobility is observed to lower the extinction time. For instance,
d = 2, Pext ≈ 1 at D > 10−3, and Pext ≈ 0 for D < 10−3.
This suggests that for d = 2 and D < 10−3 the coexistence is
metastable and extinction occurs in a time that appears to be
scaling exponentially with N , as suggested by Fig. 5(b) [see
the inset of Fig. 5(b)]. On the other hand, when D > 10−3 the
systems settles rapidly in a regime where two species have
gone extinct and 〈Tex〉 seems to be approximately linear in N
when N  1, as in Ref. [47]. In the coexistence-extinction
scenario found here, coexistence is metastable at large d and
sufficiently large D, e.g., for d = 5 and D = 10−5–10−4, a
regime in which Pext ≈ 0 and all species coexist for a time that
appears to be scaling exponentially with N , see Fig. 5(d) and
its inset. Note, however, that for the data point in Fig. 5(d), for
N = 500 × 500, with d = 5, D = 10−4, and D = 10−5, sim-
ulations were performed for 1.5 × 105 time steps after which
species coexistence persists, from which we infer that in these
cases 〈Tex〉 > 1.5 × 105, which appears to be compatible with
〈Tex〉 growing exponentially with N when N  1. However,
at fixed large d , when D is either very high or too low, e.g.,
for D = 10−7 and D � 10−3 in Fig. 5(d), Pext ≈ 1. In these
regimes of very low or high D, two species go extinct on
a much shorter timescale, with 〈Tex〉 that appears to grow
approximately linearly in N when N  1.

IV. CONCLUSION

We study the role of mobility in the spatiotemporal behav-
ior of a three-species ecosystem with cyclically dominating
interaction. We also incorporate a rate of natural death which
represent the finite lifetime of the living system. The ecosys-
tem is mapped into a two-dimensional lattice on which the
RPS dynamics is studied in ML formalism through Monte
Carlo simulation. We mainly concentrate in the parameter
region where the system exhibits coexistence. The natural
death rate has already been proven to affect the coexistence
significantly. Our present study reveals that high mobility rate

overshadows the act of natural death. We have demonstrated
how the time-averaged total density of the competing species
changes with the rate of death as well as the rate of diffusion.
In addition, the spatiotemporal analysis followed by the two-
site correlation length suggests that the size of the patches
formed by individual species increases with both D and d .
Interestingly, an atypical extinction and coexistence regimes
appear under high death rates and are characterized by two
critical mobility rates between which species coexist.

In fact, high death rate leads to an increase of vacant sites,
leading to more opportunity for random mixing than when
d = 0. Again the increase of correlation with the death rate
suggests that increasing d at fixed D would lead to larger
patches of activities but with blurrier shapes and interfaces
due to more random mixing. The results therefore suggest
that an ecosystem with its constituent species being highly
mobile can evade possible extinction caused by increased
mortality rate. It has recently been shown that the introduc-
tion of pestilent species attacking over a single species may
jeopardize the stability of the coexistence [48]. We would like
to explore this feature in the presence of natural death and
mobility. Moreover, de Oliveira et al. [49] have checked the
effect of mobility in a lattice of living organisms [50]. Instead
of global restrictions on reproduction and movement, these
authors considered local restrictions and showed that these
were able to generate multicluster states. In future we would
like to explore the effect of breaking the directional symmetry
of the movement on the appearance of the original coexistence
and the extinction scenario.

A diffusive system system allows interspecies exchange
which eventually promotes colony formation among the
species. However, the influence of mobility in the effect of
death rate is counterintuitive because mobility and mortality,
as incorporated in this system, are apparently two uncon-
nected phenomena.
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