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Lyapunov exponent in the Vicsek model

L. H. Miranda-Filho ,1,* T. A. Sobral ,2 A. J. F. de Souza ,1 Y. Elskens ,3 and Antonio R. de C. Romaguera 1,†

1Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife, Brazil
2Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, RN 288, s/n, Nova Caicó, 59300-000, Caicó, Brazil

3Aix-Marseille Université, UMR 7345 CNRS, Physique des interactions ioniques et moléculaires, campus Saint-Jérôme, case 322, av. esc.
Normandie-Niemen, FR-13397 Marseille cedex 20, France, EU

(Received 20 August 2020; accepted 12 January 2022; published 20 January 2022)

The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surpris-
ingly, there is no direct measure of the chaotic behavior of such systems. Here we discuss the dynamical phase
transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically
computed by following the dynamical evolution in tangent space for up to two million SPPs. As discontinuities
in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We
find a chaotic regime for the collective behavior of the SPPs based on the LLE. The dependence of LLE with the
applied noise, used as a control parameter, changes sensibly in the vicinity of the well-known transition points
of the Vicsek model.
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I. INTRODUCTION

Active matter systems are composed of units with a cer-
tain ability to absorb energy from their surroundings and,
in some way, transform it into mechanical work. Examples
include macroscopic living systems [1] as well as microscopic
ones [2], artificial self-propelled particles [3], and Brownian
motors [4], to cite only a few. As each unit is autonomous
to manage its own energy expenditure, each one evolves
according to individual dynamical rules and can respond
differently to a given external stimulus. This makes the de-
scription of the behavior of a single entity a very tough task.
Notwithstanding, it is possible to observe the development
of intriguing large-scale spatial and temporal patterns during
the dynamical evolution of many such units moving indepen-
dently [2,5]. Such cooperative behavior presents great stability
and constitutes the subject of different areas, such as physical
chemistry [6], biology [7], and economics [8].

The paradigmatic Vicsek model [9] is able to simulate
the motion of several forms of active matter, including that
of flocks of birds [5] and schools of fish [10]. The model
consists of a number of self-driven entities that move together
by aligning their velocities with the average velocity of their
neighbors. At densities high enough and noises below a cer-
tain value, one observes the phenomenon of clusterization, an
ordered motion of the flock, which can unveil different spatial
patterns. Besides the homogeneous polar order, the model also
presents a density bands order [11] and a so-called cross-sea
phase [12]. The dynamical phase transitions that occur in the
model are first-order [13]. The Vicsek model is probably the
most natural starting point to investigate collective dynamics,
and so it has been extensively studied [11,14,15]. However,
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we are not aware of any investigation of the emergence of
chaos in the Vicsek dynamics. Note that a chaotic regime may
favor the dispersion of the flock due to sensitivity to small
perturbations. In addition, either a strongly ordered or a deeply
chaotic regime prevents the system from responding quickly
to sudden changes in the environmental conditions. Thus, it is
important to analyze the existence of a chaotic regime in the
Vicsek model. The Lyapunov exponent measures how chaotic
the dynamics is, as a function of the control parameter [16,17].

In this article, the largest Lyapunov exponent (LLE) is
numerically computed for the Vicsek model by following the
dynamical evolution in tangent space. This method requires
the integration of the linearized equations of motion, which
present discontinuities since there is an interaction between
two agents only if the distance between them is less than
a given cooperation radius. To get rid of this discontinuity,
we introduce a smoothing parameter ε such that the inter-
action goes to zero continuously. The jump discontinuity is
recovered for ε → 0. Therefore, we systematically study the
effect of nonzero values of the smoothing parameter on the
continuous form of the Vicsek model.

Section II provides a brief introduction to the Vicsek
model. Section III establishes the conditions in which the
Lyapunov exponents are numerically computed for discrete
time dynamics. We present suitable linearized equations of
motion in Sec. IV to estimate the LLE for the continuous form
of the Vicsek model. The results are presented in Sec. V, and
finally we dedicate Sec. VI to highlighting some conclusions
and perspectives.

II. THE VICSEK MODEL

In his model, proposed in 1995, Vicsek [9] considers the
motion of N self-propelled particles with constant speed v that
move in the plane inside a square-shaped cell of size L under
periodic boundary conditions. Here we follow the updating
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scheme of most studies of Vicsek-style models [11,14], by
taking

x�(t + �t ) = x�(t ) + v�(t + �t ) �t, (1)

where one can attribute to the velocity v� a propagation angle
θ�. In the Vicsek model, the self-propelled particles line up
with their neighbors within an interaction distance, usually
taken as a standard distance unit. The advance angle θ� of the
particles evolves by consulting those of their neighbors within
the cooperation radius, according to the dynamical rule

θ�(t + �t ) = 〈θ�(t )〉r + �θ�(t ). (2)

The term 〈θ�(t )〉r is related to local alignment mechanisms
and denotes the average direction of the velocities of particles
in the neighborhood of particle �, including the particle itself.
The index r labels all particles inside the interaction range of
particle �. The contribution �θ� plays the role of noise in this
model. It assumes random values uniformly distributed in the
interval �θ� ∈ [−η/2, η/2], where the control parameter of
the system η is the amplitude of the noise.

The ordering level ϕ constitutes the order parameter in this
particular system and is evaluated by

ϕ = 1

Nv

∣∣∣∣∣
N∑

κ=1

vκ

∣∣∣∣∣, (3)

that is, ϕ is the speed of the center of mass divided by the
speed v of each particle. The ordering level is a normalized
quantity, where ϕ → 1 indicates a completely ordered regime,
where all particles share the same orientation; while ϕ → 0
indicates a completely nonordered regime, where there is no
collective motion.

From random initial conditions, the global behavior of the
self-propelled particles experiences a transient regime in time
until assuming a steady order parameter ϕ∗ for some values of
the noise amplitude η.

Numerical evidence [9,11] indicates the existence of a
noise amplitude ηc, where the system suffers a transition from
an ordered regime to a disordered one. This reveals the noise
amplitude η as a control parameter of this dynamical phase
transition. For small values 0 � η < ηc, the level of ordering
ϕ in the steady state is nonzero, which reflects the alignment
of most agents in a spontaneously chosen direction. For higher
values ηc � η � 2π , the level of ordering ϕ in the steady state
goes to zero, owing to the lack of alignment in any direction.
Unlike what was originally claimed [9], this is a first-order
phase transition [13].

III. NUMERICAL DETERMINATION
OF THE LYAPUNOV EXPONENT

From the point of view of dynamics, exponential separation
of trajectories departing from infinitesimally nearby points is
the main characteristic manifested by chaotic regimes [18,19].
In this sense, Lyapunov exponents are measures of the sta-
bility of the trajectories [20] whose estimations require using
both the equations of motion and their local deviations. Stan-
dard approaches [21–23] are based on a linear analysis and
consist of observing how infinitesimal perturbations develop
around a typical fixed trajectory.

For a generic discrete-time dynamical system, the coor-
dinates U ≡ (q1, q2, . . . , qν ) evolve according to a recursive
relation

U(t + �t ) = F(U(t )). (4)

The infinitesimal variations u ≡ (δq1, δq2, . . . , δqν ) follow
the linear transformation

u(t + �t ) = ∂F(t )

∂U
u(t ) := G(t ) u(t ), (5)

with G being the Jacobian matrix. The perturbation u(t ) of
trajectory U(t ) is

u(t ) = G(t − �t ) u(t − �t )

= G(t − �t ) G(t − 2�t ) u(t − 2�t )

=
s−1∏
n=0

G(n�t ) u(0), (6)

with s = t/�t . When the elements of G are bounded func-
tions of t , the solutions of (6) do not grow faster than an
exponential function. The Lyapunov exponents are defined by

λ = lim
t→∞

1

t
ln

‖u(t )‖
‖u(0)‖ . (7)

Once the limit above exists, the definition (7) may be seen
as a long-time average of the logarithm of the deviations u
evaluated along a trajectory U(t ). Thanks to Birkhoff and
Oseledets’ theorem [24], the values of the Lyapunov exponent
do not depend on the initial conditions for ergodic processes,
except for a set with null measure.

From a generic initial condition U0, we obtain a refer-
ence trajectory U(t ). For the deviation, a set of independent
normalized vectors (u(0)

1 , u(0)
2 , . . . , u(0)

ν ) is defined as initial
conditions. Both differences (4) and (5) are iterated in such
a way that in every time step the values of U(t ) generate new
elements of the Jacobian matrix, which in turn provides the
parameters of the linearized equation. After a sufficiently long
time, the set of resulting deviation vectors unveil the degree of
divergence (or convergence) of the characteristic directions on
the state space, each one of them related, according to (7), to a
value of the Lyapunov exponent. Thereby, for a ν-dimensional
space of the vectors u, there exists a set composed of ν expo-
nents, which is called the Lyapunov spectrum [19]. The largest
Lyapunov exponent (LLE) determines the kind of stability of
a given trajectory. Positive values are related to exponential in-
stabilities, and therefore chaos, while a negative LLE implies
stability.

The numerical evaluation of (7) requires some careful
considerations. Exponential solutions of the linearized equa-
tions may become problematic in a long-time analysis. In
addition, to obtain the full Lyapunov spectrum, it is neces-
sary to ensure that iterated deviations refer to independent
directions of the state space. These issues are circumvented
with the use of the Gram-Schmidt procedure [25]. Periodic
interventions in the integration of the system prevent, by the
normalization, the divergence of the size of the deviation
vectors u, and the orthogonalization ensures the calculation of
the rate of divergence along linearly independent directions.
This scheme for discrete problems is fully equivalent to the
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case of continuous-time systems. For more details about the
algorithm used, see [26].

IV. LINEARIZED EQUATIONS OF THE VICSEK MODEL

The advance angle of each self-propelled agent θ� evolves
according to Eq. (2), which is explicitly written as

θ�(t + �t ) = Arg

[
v�(t ) +

N∑
κ 
=�

J�κvκ (t )

]
+ �θ�(t ), (8)

where the function Arg [·] computes the polar angle from the
positive horizontal x-axis. The argument includes all N agents,
but the function J�κ ensures that only agents within the unit
cooperation radius are considered, since

J�κ =
{

1, if d�κ � 1,

0, otherwise.
(9)

In Eq. (9), d�κ (t ) is the Euclidean distance between agents �

and κ . The velocity of the center of mass of the interaction
group can be written as vCM,� = (mx�, my�) v/N�, where N� =∑

κ J�κ = 1 + ∑
κ 
=� J�κ , a form that enables us to rewrite

Eq. (8) as

θ�(t + �t ) = Arg [mx� + i my�] + �θ� (10)

with the usual representation of vectors in R2 as complex
numbers. The components are

mx�(t ) = cos (θ�) +
N∑

κ 
=�

J�κ cos (θκ ),

my�(t ) = sin (θ�) +
N∑

κ 
=�

J�κ sin (θκ ). (11)

The new directions are defined by (10) and are used to update
the positions x� = (x�, y�). Hence, by using (1), one has

x�(t + �t ) = x�(t ) + v cos [θ�(t + �t )] �t,

y�(t + �t ) = y�(t ) + v sin [θ�(t + �t )] �t . (12)

The time step corresponds to the updating of the angles and
positions of all particles.

Because we have assumed a constant speed v for agents,
the state of the system is denoted by a 3N-dimensional ar-
ray U = (x1, . . . , xN , y1, . . . , yN , θ1, . . . , θN ). This array is
defined in the Vicsek model by computing Eqs. (10), (11),
and (12). In order to obtain the LLE, we also have to
compute the respective deviation vector u = (δx1, . . . , δxN ,
δy1, . . . , δyN , δθ1, . . . , δθN ).

The position equations (12) in linearized form are

δx�(t + �t ) = δx�(t ) − v sin [θ�(t + �t )] δθ�(t + �t ) �t,

δy�(t + �t ) = δy�(t ) + v cos [θ�(t + �t )] δθ�(t + �t ) �t,

(13)

and the angle equation (10) leads to

δθ�(t + �t ) = mx� δmy� − my� δmx�

m2
x� + m2

y�

, (14)

FIG. 1. The weighting factor ��κ is modeled as a binary function
matched with a decreasing cubic function of d�κ . ��κ is plotted for
ε = {0.01, 0.005, 0.001}. The Vicsek limit corresponds to ε → 0.
Inset: The Vicsek weighting function J�κ is originally a Heaviside-
type function.

whose differences in the components (11) are

δmx�(t ) = − sin (θ�) δθ�

+
N∑

κ 
=�

[cos (θκ ) δJ�κ − J�κ sin (θκ ) δθκ ],

δmy�(t ) = cos (θ�) δθ�

+
N∑

κ 
=�

[sin (θκ ) δJ�κ + J�κ cos (θκ ) δθκ ], (15)

where δJ�κ denotes the fluctuations generated by the coupling
term of the model, which can be rewritten as

δJ�κ (t ) =
(

∂J�κ

∂d�κ

)
1

d�κ

[(x� − xκ )(δx� − δxκ )

+ (y� − yκ )(δy� − δyκ )]. (16)

If we realize J�κ as a Heaviside step function, its derivative
∂J�κ/∂d�κ would behave as a Dirac distribution, that is, it
would be nonzero only at the point d�κ = 1. As a conse-
quence, the deviations from particles located infinitesimally
close to the interaction boundary cannot be quantified by
Eq. (16), since δJ�κ is not well defined at these points.

In the present paper, we model J�κ as a decreasing function
��κ of d�κ depending on the smoothing parameter ε. Rather
than having an abrupt drop, ��κ (d�κ , ε) smoothly goes to zero.
Its mathematical form is

��κ =

⎧⎪⎨
⎪⎩

1 if d�κ < 1 − 2ε

(dlk−1)2(3ε+dlk−1)
4ε3 if 1 − 2ε � d�κ � 1

0 if d�κ > 1

. (17)

This cubic function is the simplest among all possible choices.
It has theoretical and numerical advantages over exponen-
tial and other similar functions. Both the function ��κ and
its derivatives are continuous, as shown in Fig. 1 for three
values of ε, and it also recovers the step function in the
limit ε → 0. As well, Eq. (17) allows an efficient parallelized
CUDA [27] code making it possible to simulate over 220

interacting agents. By writing ��κ in terms of (dlk − 1), one
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FIG. 2. Results of statistical comparisons between time series of
the order parameter ϕ∗ with the Vicsek factor J�κ and the smoothed
weighting factor ��κ . The inset shows the mean level of ordering
in the steady state ϕ∗ as a function of the control parameter η, for
different ε. Data for L = 16, N = 1 024, and η = 1.0.

keeps the round-off errors bounded and can explore values of
the smoothing parameter ε as small as 10−8.

The procedure described in Sec. III is defined for determin-
istic dynamical systems. In our case, it works for each given
sequence of noise terms �θ�(n�t ) (1 � � � N , 0 � n � s −
1). As a result, the Lyapunov exponent formally depends on
both the initial condition U0 and the realization of the noise.
At the limit t → ∞, the LLE converges to the same value
for almost every initial condition and noise realization. Nu-
merically, one calculates the LLE by averaging over different
initial conditions and several noise realizations.

V. RESULTS AND DISCUSSION

In order to determine the Lyapunov exponents, we iterate
both nonlinear and linearized difference equations, defining
conveniently the units of space and time with �t = r = 1.
The speed considered, v = 0.03, is within the interval sug-
gested by Vicsek [9]. The noise and the initial conditions are
generated by a random number routine with different seeds.
The data of the order parameter ϕ extracted from the Vicsek
model are compared with those obtained via our particular
choice for ��κ . We use Student’s t-test (Fig. 2) for assessing
the statistical significance of the difference between the two
time series during the stationary state, when the order param-
eter exhibits an η-dependent value ϕ∗. For the same set of
parameters, a sample of the order parameter ϕ∗ obtained with
the interaction term J�κ is confronted with samples obtained
with the smoothed function ��κ for different values of ε.
Figure 2 shows how the two distributions become statistically
equivalent as ε decreases.

The inset of Fig. 2 shows the level of ordering in the
steady state ϕ∗ as a function of η, the control parameter of the
model. For a given η, the level of ordering tends to be slightly
lower for larger ε, which may be directly associated with the
slight reduction of the strength of the interaction within the
region 1 − 2ε < d < 1; see Eq. (17) and Fig. 1. In addition,
the behavior of ϕ∗ for the system in the ordered phase η < 1
and the nonordered phase η > 5 is insensitive to the value of

FIG. 3. Susceptibility χ and order parameter in the steady state
ϕ∗ (inset) as a function of the amplitude noise η. Data for L = 256
and L = 512, corresponding to 218 and 220 particles, respectively.
ε = 10−8.

ε. Moreover, as expected, the continuous form of the model
reproduces the results of the Vicsek system as ε → 0.

The standard Vicsek model presents a polar order for a
fixed density, ρ = N/L2, and η � ηc [12]. In Fig. 3 we show
the order parameter and its fluctuation as a function of η

for ρ = 4, ε = 10−8, and two values of N , viz., N = 218

and N = 220. The fluctuation (∝ susceptibility) is given by
χ = N〈(ϕ − 〈ϕ〉)2〉, where 〈· · · 〉 indicates time average in the
steady state. The susceptibility for both sizes exhibits a peak.
The position of the maximum for the susceptibility is a rough
estimate of the phase transition point. From the data for N =
220, we infer that the polar order ceases at ηc ≈ 2.25(5). The
polar order parameter also drops quickly to an N-dependent
value for η > ηc as shown in the inset of Fig. 3.

By taking random initial conditions U0 and u0, iterations
of Eqs. (12) and (8) provide the reference trajectories, along
which the deviation vectors evolve according to the linearized
equations of motion (13) and (14). After each time step, the
Jacobian matrix related with the nonlinear version of the
equations is updated, by defining new parameters for the
deviations. The LLE is calculated from time averages in the
stationary state. In most of our calculations, 200 000 time
steps for relaxation time and for evaluation of the numerical
measurements turned out to be enough for convergence of
the LLE. As the LLE depends on the particular realization
of the noise, we repeated the whole process a certain number
of times to calculate the statistical error. For instance, by
considering 60 samples, we estimate an error of about 10−3

for the system with N = 1024 particles.
Figure 4(a) shows how the LLE varies as a function of the

control parameter η for a few chosen values of ε. In all cases,
the LLE is zero for the deterministic case η = 0, reaching a
maximum value when η = 2π . It is tempting to compare the
LLE with the steady state values ϕ∗ in the inset of Fig. 3.
For small amplitudes of the noise, the level of ordering ϕ∗ is
nonzero in the polar phase, and the LLE indicates little or no
exponential disparity between similar trajectories. For η large,
the level of ordering ϕ∗ tends to zero in the nonordered phase,
and the LLE indicates exponential divergence. However, the
size of the system is rather small as compared to those in Fig. 3
to draw any reliable conclusion.
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FIG. 4. (a) LLE as a function of η for a few values of ε. (b) The
Lyapunov exponent for η = 2π as ε approaches the Vicsek limit.
Results obtained for L = 16 and N = 1024.

Figure 4(b) shows the maximum value of the LLE for
η = 2π as a function of ε. As ε decreases, the LLE increases
to a maximum value, after which it decreases and stabilizes
at λε→0, a value close to, but less than 0.5. We find that
the LLE is a continuous function of ε. Therefore, the value
found corresponds to the LLE of the Vicsek model, that is,
λVicsek = λε→0. From Fig. 4(b), we expect that λ(2π ) does
practically not depend on ε when ε < 10−7. In order to study
the thermodynamic limit, we then fixed ε = 10−8 and per-
formed simulations for up to 220 agents.

The impact of the number of particles N on the LLE λ is
shown in Fig. 5 for a fixed density ρ = 4. The general form for
λ(η) is similar to those found in Fig. 4(a) for fewer particles.
In the inset of Fig. 5, we show λ as a function of the number
of particles for η = 2π , where λ reaches its maximum. One
sees that λ increases monotonically with N and seems to
saturate very closely to 1/2. The data points behave very
well as (1/2 − λ) = N−1/2, as illustrated by the continuous

FIG. 5. Largest Lyapunov exponent λ as function of the noise
amplitude η for a set of number of particles N with a fixed density
ρ = 4. Inset: For η = 2π , the largest Lyapunov exponent increases
monotonically with the number of particles. Dotted region shows
finite-size dependence. All data are obtained for ε = 10−8.

FIG. 6. LLE λ as function of η for N = 218, N = 220, with a fixed
density ρ = 4 and ε = 10−8. Vertical lines mark the transition points
ηc = 2.25 and ηd = 3.78. The symbols correspond to an average
over 30 independent runs of 2 × 105 time steps.

line in the inset of Fig. 5, which allows extrapolating to the
thermodynamic limit λ∞ = 1/2. It is also noticeable in Fig. 5
that the LLE presents some dependence on N for η < 4. It is
apparent from the figure that the value of noise separating the
chaotic phase from that of small chaos takes place at η slightly
below 4.0, which is well above ηc = 2.25. Also, although
hardly visible in the scale of Fig. 5, it is possible to notice
a bump near η = ηc; see the highlighted region in it. So we
decide to have a closer look at η in the range 1.5 � η � 4.0.

Figure 6 presents in more detail the dependence of λ as a
function of η in the region where it showed finite-size effects
and a noticeable change of behavior. We show results for
N = 218 and N = 220 with each data point corresponding to
an average over 30 independent runs of 2 × 105 time steps.
From the curve of Fig. 6, we see that λ exhibits a maximum
at η close to ηc = 2.25 where the polar order vanishes. The
LLE decreases almost linearly with η for η > ηc reaching
a minimum at η = 3.78(2), and from then on a vertiginous
growth in chaos occurs.

Interestingly, the changes in the derivative of λ(η) with
respect to η coincides with transition points. Therefore, Fig. 6
displays an alternative procedure to find the phase boundaries
for the Vicsek model.

Accordingly, Fig. 6 shows that the standard Vicsek model
experiences two phase transitions for density ρ = 4. The first
transition occurs at ηc = 2.25(5) where the polar order dis-
appears. The second one occurs at ηd = 3.78(2) marking the
beginning of a gaslike phase. We did not identify the nature
of the intermediate small-chaos phase. However, recently four
different phases at very low density were discovered for the
Vicsek model [12]. Based on this finding, we believe that the
intermediate phase corresponds to an ordered band phase [11].

The change in the diffusion regime marks the transition
between the ordered and disordered phases [28]. Thus, the
dynamic behavior provides complementary information about
the transition point. Above ηd = 3.78, the flock disperses
diffusively. Below ηd , the flock has a very distinct behavior.
For η  ηd , the particles move ballistically, owing to the
highly ordered collective behavior. As η approaches ηd from
below, the noise is not strong enough to break the order, but
the flock’s velocity frequently changes direction. Also, the

014213-5



L. H. MIRANDA-FILHO et al. PHYSICAL REVIEW E 105, 014213 (2022)

FIG. 7. (Left) LLE λ as function of η for densities ρ =
1, 1.25, 1.5, and 2. (Right) Vicsek model phase diagram for speed
v = 0.5. Solid lines are from Ref. [29], whereas square and tri-
angle symbols correspond to our numerical results for ηc and ηd ,
respectively.

flock breaks apart sometimes. The mean square displacement
presents a superdiffusive-like motion for the intermediate
timescale before saturating due to finite-size effects. In the
disordered phase, a diffusive-like motion emerges right at
the transition point and remains diffusive up to η = 2π , the
maximum allowed noise.

When η = 2π , the term �θ� is a random variable, uniform
on [−π, π ], drawn independently for each particle. Thus, the
Vicsek and random walk models present equivalent dynamics
with, however, distinct sensitivity to initial conditions, as their
deviations obey different linearized equations. In a random
walk, the angles are updated according to

θ�(t + �t ) = f (θ�(t )) + �θ�(t ), (18)

where f is the identity function f (θ ) = θ and the noise terms
�θ�(t ) are the same as in Eq. (8). For η = 2π , we have an
isotropic random walk. As Eq. (14) is replaced with δθ�(t +
�t ) = δθ�(t ), there is no chaos, implying λ = 0.

On the other hand, for the Vicsek model, the relation be-
tween the new and old angles are nonlinear by construction;
see Eq. (8). Such nonlinearity also is reflected in the form of
deviations, as shown by Eqs. (13) and (15). One computes the
Lyapunov exponent by taking the reference trajectory for a
given noise and the nearby trajectories with the same noise. As
a result, the angles θ� in (13) and (15) are independent random,
uniform on the circle (η = 2π ), but the first variations δθ� are
not independent, which culminates in the results of Figs. 5
and 6.

One relevant issue is whether the LLE can detect phase
transitions in other scenarios. We mitigate this concern by
trying different values for the model parameters. Thus, we run
simulations for a few values of the density ρ, in which the
speed of the particles is v = 0.5 to allow a direct comparison
with the results of Ref. [29] where is reported a thorough
analysis of the Vicsek model.

In the left panel of Fig. 7, we show λ as a function of η for
ρ = 1, 1.25, 1.5, 2 with N = 1 048 576, 1 310 720, 1 572 864,
and 2 097 152, respectively. In all cases shown, one can see

two minima separated by a plateau; that is, λ sensibly changes
its behavior at two different noise values. The transition points
are roughly located between one of the extremities of the
plateau and the nearest minimum. The data presented in
the left panel of Fig. 7 show that the LLE can also identify the
well-known transition points of the Vicsek model at different
densities.

In the right panel of Fig. 7, we report a quantitative com-
parison between our estimates (square and triangle symbols)
for the transition points and the precise data from Ref. [29]
(solid lines). For compatibility with our scale for the noise, we
multiply the noise values of the Ref. [29] by 2π . The transition
lines ηc and ηd are both monotonically increasing functions of
the density ρ. Below the ηc (blue) continuous line in the right
panel of Fig. 7, the polar order is stable, whereas above the ηd

(red) line is the gaseous phase. For ηc(ρ) < η < ηd (ρ), there
exists a mixed phase. As can be seen, our results satisfactorily
agree with the data already present in the literature.

VI. CONCLUDING REMARKS

In the present study, we focused on characterizing the
chaotic behavior of self-propelled agents ruled by the Vicsek
model. In this context, discontinuities in the dynamical rules
hinder the determination of the Lyapunov exponents. To cir-
cumvent this obstacle, we introduced a continuous decreasing
function �(ε) which recovers the Vicsek dynamics in the limit
ε → 0.

For a sufficiently large number of particles, the largest
Lyapunov exponent (LLE) shows peculiar behavior at phase
boundaries. We found that the Vicsek model suffers two
phase transitions as the noise is varied at fixed density ρ = 4.
Roughly speaking, the LLE presents a slightly chaotic regime
in the ordered phases and a substantially chaotic regime as it
enters in the gaslike phase.

Close to the transition points, the LLE presents a striking
change of behavior. The derivative of LLE with respect to
noise changes its sign at the phase boundary points. In partic-
ular, the almost linear behavior of the LLE turns into a rapid
growth right after the system enters the disordered phase.

Similar behavior of the LLE has been reported for a Hamil-
tonian system near a second-order phase transition [30]. We
propose that the Lyapunov exponent can work as a phase
transition indicator, also for this out-of-equilibrium system.

The LLE regulates over long times the exponential growth
rate of the separation between similar trajectories. Through
the LLE, the predictability of Vicsek’s dynamical system has
been studied, and we found different behaviors for ordered
and nonordered phases. The full Lyapunov spectrum and Lya-
punov vector analysis are natural next topics for investigation.
Furthermore, it is worth calculating the LLE in lower densi-
ties to investigate whether it can detect the cross-sea phase
recently observed [12].

ACKNOWLEDGMENTS

A.R.C.R. thanks the Brazilian agency FACEPE for fi-
nancial help (Grant No. APQ-0198-1.05/14). L.H.M.-F.
thanks the PIIM, CNRS-AMU for their hospitality, Bruno V.
Ribeiro for discussions, and CAPES for financial support.

014213-6



LYAPUNOV EXPONENT IN THE VICSEK MODEL PHYSICAL REVIEW E 105, 014213 (2022)

We also thank anonymous reviewers for their constructive
comments. We gratefully acknowledge the support of the

Nvidia Corporation with the donation of GPUs for our
research.

[1] A. Filella, F. Nadal, C. Sire, E. Kanso, and C. Eloy, Model
of Collective Fish Behavior with Hydrodynamic Interactions,
Phys. Rev. Lett. 120, 198101 (2018).

[2] C. Chen, S. Liu, X. qing Shi, H. Chaté, and Y. Wu, Weak
synchronization and large-scale collective oscillation in dense
bacterial suspensions, Nature (London) 542, 210 (2017).

[3] J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Hanson, A. Y.
Grosberg, D. J. Pine, and P. M. Chaikin, Artificial rheotaxis,
Sci. Adv. 1, e1400214 (2015).

[4] R. D. Astumian and P. Hänggi, Brownian motors, Phys. Today
55, 33 (2002).

[5] J. Brown, T. Bossomaier, and L. Barnett, Information flow in
finite flocks, Sci. Rep. 10, 3837 (2020).

[6] Y. Sumino and K. Yoshikawa, Self-motion of an oil droplet:
A simple physicochemical model of active Brownian motion,
Chaos 18, 026106 (2008).

[7] A. Deutsch, G. Theraulaz, and T. Vicsek, Collective motion in
biological systems, Interface Focus 2, 689 (2012).

[8] P. W. Anderson, K. J. Arrow, and D. Pines (eds.), The Economy
as an Evolving Complex System (CRC Press, Boca Raton, 2018).

[9] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Novel Type of Phase Transition in a System of Self-Driven
Particles, Phys. Rev. Lett. 75, 1226 (1995).

[10] D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G.
Theraulaz, Swarming, schooling, milling: Phase diagram of a
data-driven fish school model, New J. Phys. 16, 015026 (2014).

[11] F. Ginelli, The physics of the Vicsek model, Eur. Phys. J.: Spec.
Top. 225, 2099 (2016).

[12] R. Kürsten and T. Ihle, Dry Active Matter Exhibits a Self-
Organized Cross Sea Phase, Phys. Rev. Lett. 125, 188003
(2020).

[13] G. Grégoire and H. Chaté, Onset of Collective and Cohesive
Motion, Phys. Rev. Lett. 92, 025702 (2004).

[14] H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud,
Modeling collective motion: Variations on the Vicsek model,
Eur. Phys. J. B 64, 451 (2008).

[15] F. Bolley, J. A. Cañizo, and J. A. Carrillo, Mean-field limit for
the stochastic Vicsek model, Appl. Math. Lett. 25, 339 (2012).

[16] M. Cencini, F. Cecconi, and A. Vulpiani, Chaos: From Simple
Models to Complex Systems, Series on Advances in Statistical
Mechanics, Vol. 17 (World Scientific Publishing Company, Sin-
gapore, 2009).

[17] R. Araújo, L. H. Miranda Filho, F. A. N. Santos, and M. D.
Coutinho-Filho, Geometry and molecular dynamics of the

hamiltonian mean-field model in a magnetic field, Phys. Rev.
E 103, 012203 (2021).

[18] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry, and Engineering, Studies
in Nonlinearity (CRC Press, Boca Raton, FL, 2014).

[19] A. Pikovsky and A. Politi, Lyapunov Exponents: A Tool to
Explore Complex Dynamics (Cambridge University Press, Cam-
bridge, 2016).

[20] L. Monteiro, Sistemas dinâmicos (Editora Livraria da Física,
2002).

[21] I. Shimada and T. Nagashima, A numerical approach to ergodic
problem of dissipative dynamical systems, Prog. Theor. Phys
61, 1605 (1979).

[22] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lya-
punov characteristic exponents for smooth dynamical systems
and for Hamiltonian systems; a method for computing all
of them. Part 2: Numerical application, Meccanica 15, 21
(1980).

[23] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Deter-
mining Lyapunov exponents from a time series, Physica D 16,
285 (1985).

[24] J. R. Dorfman, An Introduction to Chaos in Nonequilibrium
Statistical Mechanics, Cambridge Lecture Notes in Physics,
edited by P. Goddard (Cambridge University Press, Cambridge,
1999).

[25] S. Hassani, Mathematical Physics: A Modern Introduction to Its
Foundations (Springer, New York, 2002).

[26] L. H. Miranda Filho, M. Amato, Y. Elskens, and T. M. Rocha
Filho, Contribution of individual degrees of freedom to Lya-
punov vectors in many-body systems, Commun. Nonlinear Sci.
Numer. Simul. 74, 236 (2019).

[27] NVIDIA, P. Vingelmann, and F. H. Fitzek, Cuda, release
10.2.89 (2020) J. Nickolls, I. Buck, M. Garland, Nvidia, K.
Skadron, and U. of Virginia, Scalable parallel programming
with CUDA, ACM Queue 6, 40 (2008).

[28] G. Grégoire, H. Chaté, and Y. Tu, Active and passive particles:
Modeling beads in a bacterial bath, Phys. Rev. E 64, 011902
(2001).

[29] A. P. Solon, J.-B. Caussin, D. Bartolo, H. Chaté, and J. Tailleur,
Pattern formation in flocking models: A hydrodynamic descrip-
tion, Phys. Rev. E 92, 062111 (2015).

[30] L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Geometry of
Dynamics, Lyapunov Exponents, and Phase Transitions, Phys.
Rev. Lett. 79, 4361 (1997).

014213-7

https://doi.org/10.1103/PhysRevLett.120.198101
https://doi.org/10.1038/nature20817
https://doi.org/10.1126/sciadv.1400214
https://doi.org/10.1063/1.1535005
https://doi.org/10.1038/s41598-020-59080-6
https://doi.org/10.1063/1.2943646
https://doi.org/10.1098/rsfs.2012.0048
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1088/1367-2630/16/1/015026
https://doi.org/10.1140/epjst/e2016-60066-8
https://doi.org/10.1103/PhysRevLett.125.188003
https://doi.org/10.1103/PhysRevLett.92.025702
https://doi.org/10.1140/epjb/e2008-00275-9
https://doi.org/10.1016/j.aml.2011.09.011
https://doi.org/10.1103/PhysRevE.103.012203
https://doi.org/10.1143/PTP.61.1605
https://doi.org/10.1007/BF02128237
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/j.cnsns.2019.03.011
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1103/PhysRevE.64.011902
https://doi.org/10.1103/PhysRevE.92.062111
https://doi.org/10.1103/PhysRevLett.79.4361

