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Exploring the effects of phase modulation on the dynamics of the kicked rotor systems
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Inspired by the recent experimental progress in the time-driven phase transition in quantum chaos, we
investigate comprehensively the energy diffusion of a kicked rotor in the presence of phase modulation. In
the classical case, we found that there always exists anomalous diffusion as long as the phase is modulated
periodically and changes by 0 or π from kick to kick. On the contrary, for quasiperiodic and random phase
modulation, anomalous diffusion is suppressed. On the other hand, in the quantum case, there exist only ballistic
energy diffusion and dynamical localization in the standard and periodically shifted cases, while random phase
modulation destroys the quantum coherence and totally suppresses the dynamical localization. Furthermore, the
quasiperiodic phase modulation is an intermediate phase between the standard case and the random one. In both
the classical and quantum cases, quasiperiodic phase modulation is inequivalent to random phase modulation at
large kicking times (>103), thus caution has to be taken when dealing with these two kinds of phase modulation
in experiments.
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I. INTRODUCTION

The noise effect is of great significance to classical and
quantum systems [1]. The properties of physical systems de-
pend on the correlations between their degrees of freedom,
and noise affects these correlations [2–4]. In particular, the
dynamics of quantum systems is controlled by quantum inter-
ference [5–7], which is very sensitive to noise [8,9]. Subtle
noise may destroy the correlations and drive the quantum sys-
tem towards classical behavior [1,5,10]. Since the introduction
of noise makes the quantum system in some sense more classi-
cal, it is ideal for studying quantum-classical correspondence
[11]. Therefore, a research tool to accurately control the level
of noise is required. The kicked rotor is one such tool [12],
and it can be used to explore the effects of noise on classical
and quantum systems.

The kicked rotor is a paradigm for studying classical and
quantum chaos, since its model is very simple and it exhibits
complex dynamics that can capture the essence of chaos
[13–15]. In the field of classical chaos, the kicked rotor has
been studied extensively as a fundamental nonlinear system,
while from the perspective of quantum chaos the kicked rotor
is easy to realize experimentally [11,16–18]. Although ballis-
tic energy growth was not observed in the initial experiment
[16] that meets the quantum resonance conditions, subsequent
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work [19] shows that this is due to insufficient experimental
time, but not the system itself [11].

Modulation effects on kicked rotors have long been studied
over the years, and they are often referred to as noise [1,5].
For example, previous studies have found that amplitude noise
can suppress anomalous diffusion in the classical kicked rotor
[20,21]. On the other hand, in quantum systems, by adding
amplitude noise with new incommensurate frequencies, it has
been proved that the kicked rotor is equivalent to the Anderson
model, and it can be easily generalized to higher dimensions
[14,22]. In three dimensions, the model demonstrates an effec-
tive metal-insulator transition [5,14,22]. Research also shows
that, in quantum systems, the amplitude noise can destroy the
dynamical localization, and it has no effect on quantum reso-
nance [9,23], while the diffusion resonance is sensitive to the
applied fluctuation of kicking strength [12]. Moreover, under
the influence of quantum coherence, timing noise can destroy
the dynamical localization and restore the energy diffusion
[24], which has also been confirmed by experiments.

Spontaneous emission is also a kind of noise that af-
fects coherence and dynamical behavior [18,25]. For example,
spontaneous emission in a kicked rotor leads to a small
increase in the momentum diffusion rate of the classical
system [21] and a striking enhancement of the energy at
resonance of the quantum system [5,11,26]. Furthermore,
in a quantum kicked rotor, dynamical localization is a co-
herent effect, and the coupling between the system and the
environment will affect it [8,10,25,27,28]. Thus, the intro-
duction of decoherence into the quantum kicked rotor by
spontaneous emission destroys the original coherence, thus
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destroying the dynamical localization and leading to quantum
diffusion [18,25,28].

Furthermore, the noise on the kicking frequency destroys
the dynamical localization in the quantum system [12], while
preliminary research shows that quantum resonance is robust
against certain types of phase noise [5]. Precise phase modu-
lation of an optical potential can be achieved experimentally,
which allows researchers to control the quantum correlations.
Therefore, relevant experiments have attracted much attention
[29,30].

In this paper, we study comprehensively the effects of
phase modulation on the dynamical behavior of classical and
quantum kicked rotors. We found that different types and
strengths of phase modulation may lead to various dynamical
behaviors, some of which are quite distinct from those previ-
ously studied.

II. METHOD

We consider a kicked rotor whose Hamiltonian is given by
[5,29,30]

H (t ) = L2

2m
+ K cos[θ − a(t )]

∑
n

δ(t − nT ), (1)

where L is the angular momentum, m is the mass, n is an
integer, T is the kicking period, K is the kicking strength, θ

is the angular position (for example, on a ring), taken modulo
2π , a(t ) is the phase, and δ is the Dirac delta function. Fur-
thermore, the initial state is started at t = 0−. For simplicity,
we omit the superscript − in t throughout this work.

For the classical kicked rotor, the dynamics of the system
can be described by the standard map,

Ln+1 = Ln + K sin(θn − an),

θn+1 = θn + T

m
Ln+1, (2)

where the subscript n represents the quantities at t = nT .
On the other hand, for the quantum kicked rotor, the

dynamics of the system is determined by the Schrödinger
equation

ih̄
∂�(θ, t )

∂t
= H (t )�(θ, t ), (3)

and the time evolution operator over one period can be written
as [5]

U (n + 1, n) = e−i L2T
2mh̄ e−i K

h̄ cos(θ−an ), (4)

which relates the wave functions at t = nT and t = (n + 1)T
as

�[θ, (n + 1)T ] = U (n + 1, n)�(θ, nT ). (5)

Here, L should be replaced by −ih̄ ∂
∂θ

, and h̄ is the reduced
Planck constant [31].

The wave function �(θ, t ) can be expressed by Fourier
transform as �(θ, t ) = ∑

l eilθψl (t ), and since Leilθ = h̄leilθ

[32], we have the iteration relation

ψl ′ [(n + 1)T ] = e−i h̄T
2m l ′2

∑
l

Jl−l ′

(
−K

h̄

)
il−l ′ei(l−l ′ )anψl (nT ),

(6)

where

Jl−l ′

(
− K

h̄

)
= 1

2π
i−(l−l ′ )

∫ 2π

0
dθ ei(l−l ′ )θe−i K

h̄ cos θ . (7)

Here Jl−l ′ (−K
h̄ ) is the Bessel function of the first kind. In

the numerical calculation, the value of l in Eq. (6) is from
−M + 1 to M, and we set M = 5 × 105. At every step of
the iteration, we calculate the probabilities of particles ap-
pearing at the boundary of momentum space (i.e., |ψM |2 and
|ψ−M+1|2), and they are always less than 10−20. Therefore,
we believe that the grid is sufficiently large, and all the com-
ponents do not run over the boundary of momentum space.

The energy diffusion is very helpful in understanding the
dynamical behavior of the kicked rotor, therefore in this work,
we study the expectation value of the rotor’s energy growth,
which is defined as

〈�L2(t )〉 = 〈L2(t ) − L2(0)〉. (8)

In the classical system, we average over various initial
conditions to calculate 〈�L2(t )〉. In the quantum system, we
set the initial state to be �(θ, 0) = 1√

2π
at t = 0, i.e., ψl (0) =

1√
2π

δl,0. Throughout this work, we concentrate only on those
times that are integer multiples of the kicking period, i.e.,
t = nT .

III. RESULTS AND DISCUSSION

We consider five types of phase modulation in the kicked
rotor system.

(i) The standard kicked rotor where a(t ) is constant. This
model has been studied for many years.

(ii) The periodically shifted kicked rotor with a(t ) = a(t +
PT ), where P is an integer and P �= 1. To be specific, we
set a(t ) = π cos(2πv t

T ) with v = 0.25 (therefore, P = 4). In
this case, the phase a(t ) is periodically modulated with a
sinusoidal form, and it jumps by π from kick to kick [5].

(iii) Another type of periodically shifted kicked rotor,
where we also set P = 4 and average over 100 sets of
{a0, a1, a2, a3} picked randomly from −π to π [29].

(iv) The randomly shifted kicked rotor where each a(t ) is
randomly distributed from −π to π . In this case, the results
presented below have also been averaged over 100 different
realizations. We adopt this type of phase modulation in order
to study the effect of uncorrelated phase modulation on the
dynamical properties of the system.

(v) The quasiperiodically shifted kicked rotor, where we set
a(t ) = π cos(2πv t

T ) with v =
√

5−1
2 , which is considered to

be, in some sense, the most irrational number. In this case, the
frequency of the phase modulation is incommensurate with
respect to the kicking frequency [5].

The rotor’s energy growth 〈�L2(t )〉 at large t can be gen-
erally expressed as

〈�L2(t )〉 ∼ tα, (9)

and since we consider only t = nT , we have [33]〈
�L2

n

〉 ∼ nα. (10)

In the following, we use this relation to analyze the dynam-
ical behaviors of the kicked rotor.
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FIG. 1. Log-log plot of the expectation value of the rotor’s en-
ergy growth 〈�L2

n〉 in the standard kicked rotor, for the classical case.
Both the phase a(t ) and the initial angular momentum L0 are set to
0. For the initial angular position, we use 105 values of θ0 evenly
spaced between −π and π . In addition, we also include those θ0

satisfying T
m K sin θ0 = ±2π and θ0 ∈ [−π, π ]. Here we set T = 1

and m = 1. 〈�L2
n〉 is then calculated by averaging over all these θ0.

The red dotted line is a guide to the eye, showing the diffusion index
α by fitting the data between 5 × 104 � n � 105 to Eq. (10).

A. Classical kicked rotor

The dynamics of the classical kicked rotor is determined
by Eq. (2), and we have [33]

Ln = L0 + K
n−1∑
i=0

sin(θi − ai ),

L2
n = L2

0 + 2L0K
n−1∑
i=0

sin(θi − ai )

+ K2
n−1∑

i, j=0

sin(θi − ai ) sin(θ j − a j ), (11)

and

�L2
n = L2

n − L2
0

= 2L0K
n−1∑
i=0

sin(θi − ai )

+ K2
n−1∑

i, j=0

sin(θi − ai ) sin(θ j − a j )

= 2L0K
n−1∑
i=0

sin(θi − ai ) + K2
n−1∑
i=0

sin2(θi − ai )

+ K2
n−1∑

i, j=0,i �= j

sin(θi − ai ) sin(θ j − a j ). (12)

For the standard kicked rotor, if T
m L0 = 2kπ and

T
m K sin(θ0 − a0) = 2lπ [33], then it can be verified that

�L2
n = K sin(θ0 − a0)[K sin(θ0 − a0)n2 + 2L0n]. (13)

Therefore, along this special class of trajectories in the (L, θ )
phase space, if K sin(θ0 − a0) �= 0, the rotor’s energy growth
will show an n2 dependence [if K sin(θ0 − a0) = 0, the rotor’s
energy will not vary with n], which we denote as resonance
[33]. On the contrary, if T

m L0 = (2k + 1)π and T
m K sin(θ0 −

a0) = 2lπ , then we will have Ln = L0 (for even n) and Ln =
L0 + K sin(θ0 − a0) (for odd n). In this case, �L2

n will os-
cillate between 0 and K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0].
Therefore, we denote this case as antiresonance. Similarly, if
T
m L0 = 2kπ and T

m K sin(θ0 − a0) = (2l + 1)π , then it can be
proved that

�L2
n =

⎧⎨
⎩

0 for even n,

K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0] when mod(n, 4) = 1,

K sin(θ0 − a0)[K sin(θ0 − a0) − 2L0] when mod(n, 4) = 3.

(14)

Furthermore, if T
m L0 = (2k + 1)π and T

m K sin(θ0 − a0) = (2l + 1)π , then

�L2
n =

⎧⎨
⎩

0 when mod(n, 4) = 0,

K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0] when mod(n, 4) = 1 or 3,

4K sin(θ0 − a0)[K sin(θ0 − a0) + L0] when mod(n, 4) = 2.

(15)

Since �L2
n in Eqs. (14) and (15) also oscillates around a fixed

value periodically, we denote the initial conditions that led
to Eqs. (14) and (15) as antiresonance as well. As long as
the resonance is included in the initial conditions we choose,
then the expectation value of the rotor’s energy growth 〈�L2

n〉
will exhibit anomalous diffusion at large n [1 < α � 2 in
Eq. (10)]. As can be seen from Fig. 1, for small enough T

m K
(K = 0.01), the diffusion index α is 0. For larger values of T

m K
satisfying | T

m K| < 2π (K = 3), we have α = 1 (normal diffu-

sion). For | T
m K| > 2π (K = 6.7 and 8), anomalous diffusion

shows up, which is signified by 1 < α � 2.
In Fig. 2, we show the θ -L phase map of the standard

map with different initial conditions. In the K = 0.01 case,
a particle returns to its original point after N iterations, and
all the trajectories look regular [see Fig. 2(a)] and they lead
to localization. Furthermore, we also observe the growth of
the chaotic region with increasing K . Thus, in the K = 3 case,
the regular regions shrink into two blank areas and the chaotic
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FIG. 2. The θ (mod 2π ) and L (mod 2π ) phase space of the standard map. For the initial angular position, we use 105 values of θ0 evenly
spaced between −π and π , and the initial angular momentum L0 is set to 0. Part (a) shows trajectories for the K = 0.01 case, corresponding
to the regular regions. Part (b) shows trajectories for the K = 3 case, corresponding to the mixed regions (chaos and regular orbits). Part
(c) shows trajectories for the K = 6.7 case, where the islands correspond to the accelerator mode. Part (d) shows trajectories for the K = 8
case, corresponding to the chaotic regions, and the accelerator island shrinks to a point in the phase space.

regions occupy most dark areas, and the dynamical behavior
is mixed [chaos and regular orbits; see Fig. 2(b)] and leads
to normal diffusion. Later, accelerator modes can be found
around each of the stable accelerating fixed points (e.g., K =
6.7). In the K = 6.7 case, around the accelerator mode, the
particle does not return to its original point after N iterations,
but instead goes to the island that is shifted up or down by
some multiple of 2π in L and causes ballistic diffusion. We
can see that the accelerator modes exist only in a small region
of phase space [see the small islands in Fig. 2(c)]. Finally, for
the K = 8 case, at first glance, the chaotic sea extends over
all phase space, which should lead to normal diffusion. How-
ever, it has an accelerator mode when θ0 meets the resonance
condition, and the accelerator island shrinks to a point in the
phase space. Therefore in this case, if the accelerator mode is
added, then the energy will show anomalous diffusion. In the
other four cases with the addition of phase modulation, the
energy diffusion can be similarly linked to Fig. 2. Previously,
Ref. [33] studied the same standard kicked rotor, but found
that the anomalous diffusion is restricted inside some specific
K intervals (see Fig. 2 of Ref. [33]). The differences between
Ref. [33] and ours can be understood as follows. In Ref. [33],
it calculated 〈�L2

n〉 by using 104 values of θ0 evenly spaced

between 0 and 2π . In this case, only a few θ0 can satisfy the
resonance condition, while most θ0 cannot. Suppose, ideally,
for those θ0 that satisfy the resonance condition, �L2

n ∝ n2,
and for those that do not, �L2

n ∝ n. If we further assume
that the portion of θ0 satisfying the resonance condition is y,
then we will have 〈�L2

n〉 = yn2 + (1 − y)n. Next, Ref. [33]
extracted the value of α by fitting from n = 1000 to 5000
kicks. In this case, only in some specific K intervals can yn2

be comparable to, or larger than, (1 − y)n, i.e., anomalous
diffusion. However, theoretically speaking, if n → ∞, then
〈�L2

n〉 will show an n2 dependence as long as y is not exactly
0. Therefore in our work, in addition to 105 values of θ0

evenly spaced between 0 and 2π , we further include four
special θ0 that satisfy K sin θ0 = ±2π (see the caption of
Fig. 1). In this way, y is increased. Furthermore, we fit the
data from n = 5 × 104 to 105, which is closer to the n → ∞
condition. Thus in our work, we conclude that the anomalous
diffusion will show up as long as the resonance condition is
included in calculating 〈�L2

n〉. Finally we notice, in Fig. 1,
for n = 1000 to 5000, the green curve (K = 8) almost has the
same slope as the violet one (K = 3), therefore if we only fit
to this interval, the anomalous diffusion in the K = 8 case will
be missed.
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FIG. 3. Similar to Fig. 1, but for the periodically shifted case with an = π cos( π

2 n) [see (a)] and {a0, a1, a2, a3} picked randomly from −π

to π [see (b)]. For the initial conditions, we set L0 = 0 and take 105 values of θ0 evenly spaced between −π and π . For (a), we also include
the initial conditions T

m L0 = π and T
m K sin(θ0 − a0) = ±2π (θ0 ∈ [−π, π ]). For (b), an additional average over 100 sets of random numbers

is implemented. Here we still set T = 1 and m = 1. 〈�L2
n〉 is then calculated by averaging over all these L0 and θ0.

Similarly, for the periodically shifted case with an =
π cos( π

2 n), the phase an changes by π from kick to kick
and we can prove that the resonance condition now becomes
T
m L0 = (2k + 1)π and T

m K sin(θ0 − a0) = 2lπ . In this case,

�L2
n = K sin(θ0 − a0)[K sin(θ0 − a0)n2 + 2L0n]. (16)

On the contrary, for T
m L0 = 2kπ and T

m K sin(θ0 − a0) = 2lπ ,

�L2
n =

{
0 for even n,

K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0] for odd n.
(17)

For T
m L0 = 2kπ and T

m K sin(θ0 − a0) = (2l + 1)π ,

�L2
n =

⎧⎨
⎩

0 when mod(n, 4) = 0,

K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0] when mod(n, 4) = 1 or 3,

4K sin(θ0 − a0)[K sin(θ0 − a0) + L0] when mod(n, 4) = 2.

(18)

And for T
m L0 = (2k + 1)π and T

m K sin(θ0 − a0) = (2l + 1)π ,

�L2
n =

⎧⎨
⎩

0 for even n,

K sin(θ0 − a0)[K sin(θ0 − a0) + 2L0] when mod(n, 4) = 1,

K sin(θ0 − a0)[K sin(θ0 − a0) − 2L0] when mod(n, 4) = 3.

(19)

Therefore, the initial conditions that lead to Eqs. (17)–
(19) are now the antiresonance conditions in this periodically
shifted case. As long as the resonance is included in the
initial conditions, 〈�L2

n〉 in this periodically shifted case will
also exhibit anomalous diffusion at large n, similar to the
standard case, as can be seen from Fig. 3(a). If we decrease
the strength of the phase modulation, for example if we set
an = π

6 cos( π
2 n), then the phase an will change by π

6 from kick
to kick, instead of π , thus the previous resonance condition
is not applicable. In this case, the energy growth only shows
localization and normal diffusion, as shown in Fig. 4(a).

For the other periodically shifted case with {a0, a1, a2, a3}
picked randomly from −π to π , in Eq. (12), after averaging
over various initial conditions and 100 sets of random number
realizations, we have 〈sin(θi − ai )〉 = 0, 〈sin2(θi − ai )〉 = 1

2 ,
and 〈sin(θi − ai ) sin(θ j − a j )〉 = 0 (for i − j �= 4k). 〈· · · 〉 de-
notes the ensemble average, which means that θ0 is averaged
105 times and an is averaged 100 times. On the other hand,
for i − j = 4k with k �= 0, it can be proved that 〈sin(θi −
ai ) sin(θ j − a j )〉 �= 0, and if we assume full correlation be-
tween θi and θ j in this case, i.e., θi = θ j + 2lπ , then the upper
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FIG. 4. (a) Similar to Fig. 3(a), but for the periodically shifted case with an = π

6 cos( π

2 n). (b) Similar to Fig. 3(b), but for periodically
shifted case with {a0, a1, a2, a3} picked randomly from − π

6 to π

6 .

bound of Eq. (12) can be obtained as

〈
�L2

n

〉 = K2

2
n for 1 � n � 4,

〈
�L2

n

〉
� K2

2
n + K2

8
n(n − 4) for n > 4 and mod(n, 4) = 0,

〈
�L2

n

〉
� K2

2
n + K2

8
(n − 1)(n − 3) for n > 4 and mod(n, 4) = 1 or 3,

〈
�L2

n

〉
� K2

2
n + K2

8
(n − 2)2 for n > 4 and mod(n, 4) = 2. (20)

As can be seen from Fig. 3(b), when K is small (e.g., K =
0.01), the expectation value of the rotor’s energy saturates at
large n [α = 0 in Eq. (10)], while when K is larger, 〈�L2

n〉
shows normal diffusion. Therefore, there exists a localization-
delocalization transition in this case. And if {a0, a1, a2, a3} is
picked randomly from −π

6 to π
6 , the conclusion is qualitatively

similar, as shown in Fig. 4(b).
For the randomly shifted case, since each an in Eq. (12) is

randomly distributed from −π to π , we have 〈sin(θi − ai )〉 =

0, 〈sin2(θi − ai )〉 = 1
2 , and 〈sin(θi − ai ) sin(θ j − a j )〉 = 0 (for

i �= j). The ensemble-averaged result is 〈�L2
n〉 = K2

2 n, which
means that in this case, the expectation value of the ro-
tor’s energy growth always shows normal diffusion [α = 1
in Eq. (10)], as long as K �= 0, as shown in Fig. 5(a). When
each an in Eq. (12) is randomly distributed from −π

6 to π
6 , the

energy growth still shows normal diffusion and the conclusion
is qualitatively similar to the case above at large n, as shown
in Fig. 6(a).

FIG. 5. (a) 〈�L2
n〉 in the randomly shifted kicked rotor, which is calculated by the same averaging procedure as adopted in Fig. 3(b).

(b) Similar to (a), but for the quasiperiodically shifted case. We generate a very long quasiperiodic sequence according to an = π cos[(
√

5 −
1)nπ ], and 〈�L2

n〉 is further averaged over 100 sets of quasiperiodic number realizations. The parameters T and m, as well as the initial
conditions L0 and θ0, are all taken to be the same as those in Fig. 3(b).
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FIG. 6. (a) Similar to Fig. 5(a), but for the randomly shifted case with each an randomly distributed from − π

6 to π

6 . (b) Similar to Fig. 5(b),

but for the quasiperiodically shifted case with an = π

6 cos[π (
√

5 − 1)n].

Finally, for the quasiperiodically shifted case, although
the phase an seems to form a pseudorandom sequence, its
dynamical behavior is different from that of the randomly
shifted case. Specifically, for K < Kc (e.g., K = 0.01), the
expectation value of the rotor’s energy saturates at large n
[α = 0 in Eq. (10)], while above Kc, 〈�L2

n〉 shows normal
diffusion, as shown in Fig. 5(b). Here Kc refers to the critical
value of the kicking strength when the energy growth changes
from localization to delocalization. Therefore, there exists a
localization-delocalization transition in this quasiperiodically
shifted case, as opposed to the randomly shifted one. And if
we set an = π

6 cos[π (
√

5 − 1)n], the result is similar to the
above case, as shown in Fig. 6(b).

In short, in the classical kicked rotor with phase modula-
tion, anomalous diffusion is a common phenomenon as long

as the phase an is periodically modulated and changes by 0
or π from kick to kick. On the contrary, for the random and
quasiperiodic phase modulation, the anomalous diffusion is
suppressed, and the effect of quasiperiodic phase modulation
is inequivalent to the random one when n � 102.

B. Quantum kicked rotor

We solve the Schrödinger equation for the kicked rotor in a
quantum system, and we obtain an analytical formula for the
momentum diffusion [34]. Then we use numerical simulation
to verify the analytical solutions of quantum resonance and
antiresonance.

Since we assume ψl (0) = 1√
2π

δl,0, from Eq. (6) we have

ψl1 (T ) = 1√
2π

e−i h̄T
2m l2

1 i−l1 e−il1a0 J−l1

(
− K

h̄

)
,

ψln (nT ) = 1√
2π

e−i h̄T
2m l2

n i−ln e−ilnan−1

×
∑
ln−1

eiln−1(an−1−an−2 )e−i h̄T
2m l2

n−1 Jln−1−ln

(
− K

h̄

)

...

×
∑

l1

eil1(a1−a0 )e−i h̄T
2m l2

1 Jl1−l2

(
− K

h̄

)
J−l1

(
− K

h̄

)
for n � 2 (21)

and

|ψl1 (T )|2 = 1

2π
J2
−l1

(
− K

h̄

)
,

|ψln (nT )|2 = 1

2π

∑
l1

· · ·
∑
ln−1

∑
l ′1

· · ·
∑
l ′n−1

ei h̄T
2m (l ′2n−1−l2

n−1 ) · · · ei h̄T
2m (l ′21 −l2

1 )ei(ln−1−l ′n−1 )(an−1−an−2 ) · · · ei(l1−l ′1 )(a1−a0 )

× Jln−1−ln

(
− K

h̄

)
· · · Jl1−l2

(
− K

h̄

)
J−l1

(
− K

h̄

)
Jl ′n−1−ln

(
− K

h̄

)
· · · Jl ′1−l ′2

(
− K

h̄

)
J−l ′1

(
− K

h̄

)
for n � 2.

(22)
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FIG. 7. Log-log plot of the expectation value of the rotor’s energy growth 〈�L2
n〉 in the standard kicked rotor for the quantum case. The

parameters are chosen to be h̄ = 1, m = 1. The red dotted line is a guide to the eye, showing the diffusion index α by fitting the data of the last
104 kicks to Eq. (10). Part (a) is for K = 1. Part (b) is similar to (a), but for K = 10. Part (c) is for T = 2.05π .

For the standard kicked rotor, if the free evolution part in
Eq. (6) can be neglected, i.e., h̄T

2m = 2kπ , then from Eqs. (21)
and (22) it can be proved that

ψl (nT ) = 1√
2π

e−ila0 i−l J−l

(
− nK

h̄

)
(23)

and 〈
�L2

n

〉 = 〈
L2

n − L2
0

〉
=

∑
l

(h̄l )2[|ψl (nT )|2 − |ψl (0)|2]

= h̄2

2π

∑
l

l2J2
−l

(
− nK

h̄

)

= h̄2

4π

(
nK

h̄

)2

= K2

4π
n2. (24)

Therefore, in this case, the expectation value of the rotor’s en-
ergy grows ballistically (∼n2) for arbitrary n and K , which is
denoted as quantum resonance [9,19,35–42]. On the contrary,
if h̄T

2m = (2k + 1)π , then

ψl (nT ) =
{ 1√

2π
δl,0 for even n,

1√
2π

e−ila0 i−l J−l ( K
h̄ ) for odd n.

(25)

In this case, we have

〈
�L2

n

〉 =
{

0 for even n,
K2

4π
for odd n,

(26)

and the expectation value of the rotor’s energy will return to
its initial value after every two kicks, which is denoted as
quantum antiresonance [9,19,35,37–42].

As we can see from Figs. 7(a) and 7(b), if the resonance
condition is met (e.g., T = 4π ), then the diffusion index α

will always be 2, irrespective of the value of K . On the
contrary, if h̄T

2m is irrational to π (e.g., T = 1.1), then α will
be 0 for arbitrary K , and this phenomenon is the well-known
dynamical localization [34]. Finally, if the resonance condi-
tion is not met and h̄T

2m is rational to π [e.g., T = 2.05π as
shown in Fig. 7(c)], then depending on the values of T and K ,
the behavior of 〈�L2

n〉 at large n can switch between ballistic
diffusion (α = 2) and localization (α = 0). Throughout the
parameter space of T and K , we did not find a diffusion index
α other than 2 and 0, suggesting that in the standard kicked
rotor, 〈�L2

n〉 exhibits only ballistic diffusion or localization.
For the periodically shifted case with an = π cos( π

2 n),
since an+1 − an = ±π , it can be proved that the resonance
condition of the standard kicked rotor now becomes the an-
tiresonance one, and vice versa [5]. The behavior of 〈�L2

n〉 is
similar between these two cases, which shows only ballistic
diffusion or localization, as can be seen from Figs. 8(a)–8(c).
If we set an = π

6 cos( π
2 n), although the resonance condition

cannot be satisfied, the conclusion is qualitatively similar to
that of an = π cos( π

2 n), as shown in Fig. 9.
For the other periodically shifted case with {a0, a1, a2, a3}

picked randomly from −π to π , after averaging over various
random number realizations, we have

|ψln (nT )|2 = 1

(2π )4

∫ π

−π

da0 · · ·
∫ π

−π

da3|ψln (nT )|2. (27)

Then by using the relation

1

2π

∫ π

−π

dθ ei(l−l ′ )θ = δl,l ′ , (28)
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FIG. 8. Similar to Fig. 7, but for the periodically shifted case with an = π cos( π

2 n). Part (a) is for K = 1. Part (b) is similar to (a), but for
K = 10. Part (c) is for T = 2.05π .

and the properties of the Bessel function, it can be proved that, for h̄T
2m = kπ ,〈

�L2
n

〉 = h̄2
∑

ln

l2
n |ψln (nT )|2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K2

4π
n when 1 � n � 4,

K2

16π
n2 when n > 4 and mod(n, 4) = 0,

K2

16π
(n2 + 3) when n > 4 and mod(n, 4) = 1 or 3,

K2

16π
(n2 + 4) when n > 4 and mod(n, 4) = 2.

(29)

Since in this case the expectation value of the rotor’s energy
also grows ballistically (∼n2) at large n for arbitrary K , it
is denoted as quantum resonance as well. Therefore, both
the resonance and antiresonance conditions of the standard
kicked rotor become the resonance one for this periodically
shifted case. On the other hand, if h̄T

2m is irrational to π , then
similar to the above two cases, 〈�L2

n〉 will exhibit dynamical
localization [see the T = 1 case in Figs. 10(a) and 10(b)]. On
the contrary, if the resonance condition is not met and h̄T

2m is
rational to π , then unlike the above two cases, 〈�L2

n〉 will
not show any localization-delocalization transition and exhibit
only ballistic diffusion, irrespective of K [see the T = π case

in Figs. 10(a) and 10(b)]. Intuitively, it was suggested that the
ballistic energy growth should stem from quantum interfer-
ence, and random modulation should destroy it. However, here
we show that, with random but periodic phase modulation,
the quantum coherence is retained and the parameter space
for observing ballistic energy diffusion is greatly enlarged. If
{a0, a1, a2, a3} is picked randomly from −π

6 to π
6 , the con-

clusion is qualitatively similar to the above case, as shown in
Fig. 11.

For the randomly shifted case, since each an is randomly
picked from −π to π , therefore, similar to Eqs. (27) and (28),
we have

|ψln (nT )|2 = 1

(2π )n

∫ π

−π

da0 · · ·
∫ π

−π

dan−1|ψln (nT )|2

= 1

2π

∑
l1

· · ·
∑
ln−1

J2
ln−1−ln

(
− K

h̄

)
· · · J2

l1−l2

(
− K

h̄

)
J2
−l1

(
− K

h̄

)
. (30)

Furthermore, by using the relation

∑
ln

l2
n

∑
l1

· · ·
∑
ln−1

J2
ln−1−ln

(
− K

h̄

)
· · · J2

l1−l2

(
− K

h̄

)
J2
−l1

(
− K

h̄

)
= n

2

(
K

h̄

)2

, (31)

we have

〈
�L2

n

〉 = K2

4π
n, (32)

which means that, in the randomly shifted case, the expecta-
tion value of the rotor’s energy always shows normal diffusion
(∼n), as evidenced by Figs. 12(a) and 12(b). The reason is that
the addition of random phase modulation completely destroys
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FIG. 9. Similar to Fig. 8, but for periodically shifted case with an = π

6 cos( π

2 n). Part (a) is for K = 1. Part (b) is similar to (a), but for
K = 10. Part (c) is for T = 2.05π .

the quantum coherence and thus destroys the dynamical lo-
calization. Furthermore, the satisfaction of Eq. (30) destroys
the quantum resonance. If each an is randomly picked from
−π

6 to π
6 , then Eq. (30) will not be satisfied. In this case, the

dynamical localization should be destroyed while the quantum
resonance should be retained. In Fig. 13 we can see that the
expectation value of the rotor’s energy still shows normal
diffusion (∼n) if h̄T

2m is not integer multiples of 2π (see the
T = 1 and 2π cases). When h̄T

2m is integer multiples of 2π

(see the T = 4π case), which is the resonance condition of
the standard model, 〈�L2

n〉 shows ballistic diffusion (α = 2),
irrespective of the value of K .

Finally, for the quasiperiodically shifted case, the situation
becomes more complicated. When h̄T

2m = 2kπ , then similar to
the standard kicked case, 〈�L2

n〉 shows resonance behavior
and grows as n2 for large n, irrespective of the value of
K [see the T = 4π case in Figs. 14(a) and 14(b)]. On the
other hand, if h̄T

2m = (2k + 1)π , then 〈�L2
n〉 will be localized

for arbitrary K [see the T = 2π case in Figs. 14(a) and
14(b)], similar to the antiresonance condition in the standard
kicked case. Furthermore, if the above two conditions are
not met while h̄T

2m is still rational to π [e.g., T = 2.05π as

shown in Fig. 14(c)], then depending on the values of T
and K , the behavior of 〈�L2

n〉 at large n can switch between
ballistic diffusion (α = 2) and localization (α = 0), which is
also similar to that in the standard kicked case. However, if
h̄T
2m is irrational to π , then there will exist a critical value Kc,
leading to α = 0 for K < Kc and α = 1 for K > Kc [e.g.,
the T = 1 case shown in Fig. 14(d)]. Besides, the value of
Kc depends on the exact value of h̄T

2m . Thus in this case,
the behavior of 〈�L2

n〉 can switch between normal diffusion
(α = 1) and localization (α = 0). The above results indicate
that the behaviors of ballistic diffusion, normal diffusion, as
well as localization can all show up in the quasiperiodically
shifted case. Therefore, it is somewhere between the standard
kicked case and the randomly shifted one. And if we set an =
π
6 cos[π (

√
5 − 1)n], the conclusion is qualitatively similar to

that of an = π cos[π (
√

5 − 1)n], as shown in Fig. 15.
In the above two cases, sequences produced by random

modulation are nonrepeatable and need to be ensemble-
averaged, which greatly increase the difficulty of experiment
and calculation. However, the quasiperiodic sequence is sim-
ilar to the random one in the degree of disorder, and is
controllable and repeatable, therefore the previous work [5]

FIG. 10. Similar to Fig. 7, but for the periodically shifted case with {a0, a1, a2, a3} picked randomly from −π to π . Part (a) is for K = 1.
Part (b) is similar to (a), but for K = 10.
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FIG. 11. Similar to Fig. 10, but for the periodically shifted case with {a0, a1, a2, a3} picked randomly from − π

6 to π

6 . Part (a) is for K = 1.
Part (b) is similar to (a), but for K = 10.

suggested that quasiperiodic modulation can be regarded as
representing a true white noise, which is a great convenience
for experimental research. The relation between the white
noise and incommensurate frequency can be understood from
the Fourier treatment of Eq. (6) in Ref. [5]. When the number
of kicks is sufficiently large, it becomes possible to resolve
the incommensurate frequency in the Fourier spectrum. For
a low number of kicks, the modulation has the approximate
characteristics of white noise. For both the quantum reso-
nance and dynamical localization, our results agree well with
Ref. [5] in the presence of quasiperiodic phase modulation.
An incommensurate frequency is equivalent to white noise
at small n (<102) [5]. But at large n (>103), both our the-
oretical derivation and numerical simulation show that it is
questionable to use the quasiperiodic phase modulation to
represent the truly random one. In summary, we have theo-
retically investigated the effects of phase modulation on the
classical and quantum kicked rotor [5]. By comparing the
results, some unexpected discoveries are made. In the classical
kicked rotor with phase modulation, due to the existence of
acceleration island [33,43], anomalous diffusion is a common
phenomenon as long as the phase an changes periodically

and jumps by 0 or π from kick to kick. On the contrary,
for random and quasiperiodic phase modulation, anomalous
diffusion is suppressed, and the effect of the quasiperiodic
phase modulation is inequivalent to the random one at large
kicking times. For the quantum kicked rotor with phase mod-
ulation, in the standard and periodically shifted cases, it is
worth noting that we did not find a diffusion index α other
than 2 and 0, which indicates that there can exist only ballistic
diffusion (α = 2) or localization (α = 0) in these cases [34].
Conversely, the addition of random phase modulation destroys
the quantum coherence and totally suppresses the dynamical
localization. Furthermore, the quasiperiodic phase modulation
is an intermediate phase between the standard case and the
random one.
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APPENDIX A: THE DERIVATION OF EQS. (3)– (6)

The derivation of Eqs. (3)– (6) is as follows. We consider a kicked rotor whose Hamiltonian is given by

H (t ) = L2

2m
+ K cos[θ − a(t )]

∑
n

δ(t − nT ), (A1)

and the Schrödinger equation is

ih̄
∂�(θ, t )

∂t
= H (t )�(θ, t ). (A2)

When the time t increases from nT − 0+ to nT + 0+, we have∫ �(θ,nT +0+ )

�(θ,nT −0+ )

1

�(θ, t )
d�(θ, t ) = − i

h̄

∫ nT +0+

nT −0+
H (t )dt . (A3)

Then

ln
�(θ, nT + 0+)

�(θ, nT − 0+)
= − i

h̄

∫ nT +0+

nT −0+
H (t )dt
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FIG. 12. Similar to Fig. 7, but for the randomly shifted case. Part (a) is for K = 1. Part (b) is similar to (a), but for K = 10.

= − i

h̄
K cos[θ − a(nT )]

= − i

h̄
K cos(θ − an). (A4)

In the above, since the integral interval is infinitesimal, the contribution from the L2

2m term can be neglected on the right-hand
side, and we use an to denote a(nT ), as mentioned right below Eq. (2). Therefore,

�(θ, nT + 0+) = e− i
h̄ K cos(θ−an )�(θ, nT − 0+). (A5)

Similarly, when the time t evolves from nT + 0+ to (n + 1)T − 0+, we have∫ �[θ,(n+1)T −0+]

�(θ,nT +0+ )

1

�(θ, t )
d�(θ, t ) = − i

h̄

∫ (n+1)T −0+

nT +0+
H (t )dt, (A6)

and then

ln
�[θ, (n + 1)T − 0+]

�(θ, nT + 0+)
= − i

h̄

∫ (n+1)T −0+

nT +0+
H (t )dt

= − i

h̄

L2T

2m
. (A7)

Therefore,

�[θ, (n + 1)T − 0+] = e− i
h̄

L2T
2m �(θ, nT + 0+)

= e− i
h̄

L2T
2m e− i

h̄ K cos(θ−an )�(θ, nT − 0+). (A8)

FIG. 13. Similar to Fig. 12, but for the randomly shifted case with each an randomly distributed from − π

6 to π

6 . Part (a) is for K = 1. Part
(b) is similar to (a), but for K = 10.
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FIG. 14. Similar to Fig. 7, but for the quasiperiodically shifted case. Part (a) is for K = 1. Part (b) is similar to (a), but for K = 10. Part
(c) is for T = 2.05π . Part (d) is similar to (c), but for T = 1.

FIG. 15. Similar to Fig. 14, but for the quasiperiodically shifted case with an = π

6 cos[π (
√

5 − 1)n]. Part (a) is for K = 1. Part (b) is similar
to (a), but for K = 10. Part (c) is for T = 2.05π . Part (d) is similar to (c), but for T = 1.
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Thus, the time evolution operator over one period can be written as

U (n + 1, n) = e− i
h̄

L2T
2m e− i

h̄ K cos(θ−an ), (A9)

which relates the wave functions at t = nT and t = (n + 1)T as

�[θ, (n + 1)T − 0+] = U (n + 1, n)�(θ, nT − 0+). (A10)

From the above, we can see that the time dependence of a(t ) has been considered through the an term in Eq. (A9). Furthermore,
since the model is a δ-kicked one, only the value of a(t ) at t = nT (i.e., an) matters, therefore Eqs. (3)– (5) are justified.

The wave function �(θ, t ) can be expressed by Fourier transform as �(θ, t ) = ∑
l eilθψl (t ), and since Leilθ = h̄leilθ , we can

take the Fourier transform of Eq. (A8),∑
l ′

eil ′θψl ′ [(n + 1)T − 0+] = e− i
h̄

L2T
2m

∑
l ′

eil ′θψl ′ (nT + 0+), (A11)

thus

ψl ′ [(n + 1)T − 0+] = e
−il′2 h̄T

2m ψl ′ (nT + 0+). (A12)

Furthermore,

ψl ′ (nT + 0+) = 1

2π

∫ 2π

0
e−il ′θ�(θ, nT + 0+)dθ

= 1

2π

∫ 2π

0
e−il ′θe− i

h̄ K cos(θ−an )�(θ, nT − 0+)dθ

= 1

2π

∫ 2π

0
e−il ′θe− i

h̄ K cos(θ−an )
∑

l

eilθψl (nT − 0+)dθ.

(A13)

Then by inserting Eq. (A13) into Eq. (A12), we have

ψl ′[(n + 1)T − 0+] = 1

2π
e− il′2 h̄T

2m

∫ 2π

0
e−il ′θe− i

h̄ K cos(θ−an )
∑

l

eilθψl (nT − 0+)dθ. (A14)

By letting θ ′ = θ − an and θ = θ ′ + an, we have

ψl ′ [(n + 1)T − 0+] = 1

2π
e− il′2 h̄T

2m

∑
l

∫ 2π

0
ei(l−l ′ )(θ ′+an )e− i

h̄ K cos θ ′
ψl (nT − 0+)dθ ′. (A15)

Then substituting θ ′ by θ ,

ψl ′ [(n + 1)T − 0+] = 1

2π
e− il′2 h̄T

2m

∑
l

∫ 2π

0
ei(l−l ′ )θei(l−l ′ )an e− i

h̄ K cos θψl (nT − 0+)dθ. (A16)

The Bessel function is expressed as

Jl−l ′

(
− K

h̄

)
= 1

2π
i−(l−l ′ )

∫ 2π

0
ei(l−l ′ )θe− i

h̄ K cos θdθ, (A17)

thus

ψl ′[(n + 1)T − 0+] = e− il′2 h̄T
2m

∑
l

Jl−l ′

(
− K

h̄

)
ei(l−l ′ )an il−l ′ψl (nT − 0+). (A18)

This is Eq. (6), and the time dependence of a(t ) is also considered as an.

APPENDIX B: THE DERIVATION OF EQS. (11)–(13)

For the classical kicked rotor, the dynamics of the system
can be described by the standard map,

Ln+1 = Ln + K sin(θn − an),

θn+1 = θn + T

m
Ln+1. (B1)

For the standard kicked rotor, if the initial angular momentum
L0 and the initial angular position θ0 satisfy

T

m
L0 = 2kπ,

T

m
K sin(θ0 − a0) = 2lπ, (B2)
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then we can multiply both sides of Eq. (B2) by m
T , and we will

obtain

L0 = πm

T
2k,

K sin(θ0 − a0) = πm

T
2l. (B3)

For the standard kicked rotor, the phase an is constant
(i.e., a0 = a1 = a2 = · · · ). According to the initial conditions
Eq. (B3) and the standard map Eq. (B1), we can get the
angular momentum L1 and the angular position θ1 after one
kick,

L1 = L0 + K sin(θ0 − a0)

= πm

T
2k + πm

T
2l

= πm

T
(2k + 2l ),

θ1 = θ0 + T

m
L1

= θ0 + T

m

πm

T
(2k + 2l )

= θ0 + π (2k + 2l ). (B4)

Then the angular momentum L2 and the angular position θ2

after two kicks are

L2 = L1 + K sin(θ1 − a0)

= πm

T
(2k + 2l × 2),

θ2 = θ1 + T

m
L2

= θ0 + π (2k × 2 + 2l × 3). (B5)

Similarly, the angular momentum L3 and the angular position
θ3 after three kicks can be obtained as

L3 = L2 + K sin(θ2 − a0)

= πm

T
(2k + 2l × 3),

θ3 = θ2 + T

m
L3

= θ0 + π (2k × 3 + 2l × 6). (B6)

The angular momentum L4 and the angular position θ4 after
four kicks are

L4 = L3 + K sin(θ3 − a0)

= πm

T
(2k + 2l × 4),

θ4 = θ3 + T

m
L4

= θ0 + π (2k × 4 + 2l × 10). (B7)

The angular momentum L5 and the angular position θ5 after
five kicks are

L5 = L4 + K sin(θ4 − a0)

= πm

T
(2k + 2l × 5),

θ5 = θ4 + T

m
L5

= θ0 + π (2k × 5 + 2l × 15), (B8)

. . . . . .

By mathematical induction, we can get the angular momen-
tum Ln and the angular position θn after n kicks as

Ln = πm

T
(2k + 2l × n),

θn = θ0 + [2k × n + n(n + 1)l]π. (B9)

The initial angular momentum L0 is

L0 = πm

T
2k. (B10)

Therefore, by substituting Eq. (B10) into Eq. (B9), the relation
between Ln and L0 can be obtained, which is

Ln = L0 + πm

T
2ln. (B11)

Now we get the rotor’s energy growth �L2
n with the initial

angular momentum L0 and the initial angular position θ0 sat-
isfying Eq. (B3), which is

�L2
n = L2

n − L2
0

=
(

L0 + πm

T
2ln

)2

− L2
0

= πm

T
2l

[
πm

T
2ln2 + 2L0n

]
. (B12)

And according to Eq. (B3), we know that

πm

T
2l = K sin(θ0 − a0). (B13)

With Eq. (B13) substituted into Eq. (B12), we can get the
rotor’s energy growth �L2

n after n kicks as

�L2
n = K sin(θ0 − a0)[K sin(θ0 − a0)n2 + 2L0n]. (B14)

This leads to Eq. (13), and from Eq. (B9) we know that θn and
θ0 differ only by integer multiples of 2π . Together with a0 =
a1 = a2 = · · · , hence the following relation should hold:

K sin(θ0 − a0) = K sin(θ1 − a1) = · · · K sin(θn − an). (B15)
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