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Synchronization in the presence of time delays and inertia: Stability criteria
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Linear stability of synchronized states in networks of delay-coupled oscillators depends on the type of
interaction, the network, and oscillator properties. For inert oscillator response, found ubiquitously from biology
to engineering, states with time-dependent frequencies can arise. These generate side bands in the frequency
spectrum or lead to chaotic dynamics. The time delay introduces multistability of synchronized states and an
exponential term in the characteristic equation. Stability analysis using the resulting transcendental characteristic
equation is a difficult task and is usually carried out numerically. We derive criteria and conditions that enable fast
and robust analytical linear stability analysis based on the system parameters. These apply to arbitrary network
topologies, identical oscillators, and delays.
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I. INTRODUCTION

Self-organized synchronization can be observed in chem-
ical oscillators, embryonic development, circadian clocks,
ranging to power grids and the orchestration of mobile com-
munications and microelectronic and mechanical systems
[1–10]. This type of synchronization has been considered
for electronic networks since the 1980s due to its robustness
and as its properties scale advantageously with growing sys-
tem size [11,12]. In application, however, it did not prevail
over hierarchical synchronization as the necessary theoretical
framework to guide architecture design was not available [11].
Within phase oscillator models the dynamics in networks of
coupled oscillators can be studied [13,14]. This includes the
effects of inevitable time delays in the coupling. These lead
to phenomena like multistability of synchronized states [15].
Another aspect of the oscillators’ dynamics has recently come
into focus, inert response to external stimuli. Examples are
the inertia of mechanical oscillators, signal filtering in elec-
tronics, or biochemical transport and conversion processes in
cellular oscillators [16,17]. Inert system response in second-
order phase models can trigger bifurcations of synchronized
states with constant frequency [18,19]. Frequency modulation
occurs, side bands arise in the spectrum, and synchronized
states with constant phase relations become unstable. There
are numerical tools that allow us to study such bifurcations
[20]. Furthermore, the stability of synchronized states in net-
works of identical oscillators can be studied using, e.g., the
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Master Stability Formalism [21]. This method extends the
linear stability analysis in dynamical systems theory and intro-
duces a so-called master stability function. Several works have
built on that and studied specific systems with time-delayed
coupling [22–27]. For example, in networks with inertia and
processing delays, necessary and sufficient conditions for the
asymptotic stability have been derived [28].

In this work we derive stability criteria for in- and an-
tiphase synchronized states in networks of coupled oscillators
with inertia and in the presence of transmission time delays.
The criteria depend only on the physical properties of the
oscillators and the network and can guide, e.g., the architec-
ture design of synchronization layers in networks of mutually
coupled electronic oscillators. We then use the criteria to
obtain parameter space plots and discuss the linear stability of
in- and antiphase synchronized states in general. Our criteria
simplify studying the physical properties of synchronization
over large parameter regimes and, e.g., large but finite time
delays and large number of oscillators. We discuss how linear
stability depends on physical properties such as time delay,
inertia, damping or dissipation, interaction strength, and net-
work topology. These generic concepts can then be related to
application specific concepts like, e.g., the loop gain and band-
width of electronic oscillators or the dissipation coefficients
in power grids [29–32]. Additionally, we present a condition
connecting these quantities. If fulfilled, linear stability is guar-
anteed, and hence no bifurcations occur.

II. NETWORKS OF DELAY-COUPLED
OSCILLATORS WITH INERTIA

The dynamics in such networks can be studied within the
following set of coupled delay-differential equations:

m θ̈k (t ) + γ θ̇k (t ) = ω + K

nk

N∑
l=1

ckl h

(
�θkl (t, τ )

v

)
, (1)
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where k = 1, . . . , N indexes the N oscillators in the network,
ω ∈ R denotes the intrinsic frequency, h(·) a periodic cou-
pling function, K � 0 ∈ R the coupling strength, m � 0 ∈
R an inertial parameter, γ > 0 ∈ R a damping parameter,
nk � 0 ∈ N0 the number of inputs of oscillator k, θi(t ) ∈ S1

for i = {k, l} the phases of the oscillators’ output signals
with θ̇ and θ̈ denoting their first and second time derivatives,
and ckl the components of the network’s adjacency matrix,
being either 1 if there is a connection from oscillator l to
k or 0 otherwise. �θkl (t, τ ) = θl (t − τ ) − θk (t ) is the phase
difference between k and an input l . Here τ ∈ R denotes the
cross-coupling time delay. v > 0 ∈ R denotes the division
of the instantaneous output frequency of the oscillators, e.g.,
induced by a frequency divider. This is well known from,
e.g., periodic cross-coupling signals in networks of electronic
oscillators [33]. Note that Eq. (1) reduces to the classical first-
order Kuramoto model for sinusoidal coupling h(·) = sin(·),
zero coupling delay τ = 0, damping coefficient γ = 1, and
inertia m = 0. We study in- and antiphase synchronized states
and their linear stability making the ansatz

θk (t ) = �t + βk + εqk (t ), (2)

where � denotes the frequency of a synchronized state, εqk (t )
a small perturbation (ε � 1), and βk a phase offset. Using
the ansatz (2) in Eq. (1) and Taylor expansion of h(·) with
respect to ε we obtain the properties of synchronized states
from O(ε0)

γ � = ω + K h

(
−�τ + β

v

)
, (3)

where β/v = (βk − βl )/v equals 0 or π . This implies that in-
and antiphase synchronized states self-organize at the level
of the divided cross-coupling signals. As a consequence, the
phase relations with respect to the output frequency � can be
in antiphase only if v is odd since β = {0, vπ}. The dynamics
of the perturbations qk (t ) are given by O(ε1) of the Taylor
expansion

mq̈k (t ) + γ q̇k (t ) = α

nk

N∑
l=1

ckl [ql (t − τ ) − qk (t )], (4)

where α = K
v

h′( −�τ+β

v
) denotes a steady-state parameter,

characterized by {�, β}. Substituting qk (t ) = q0
k eλt into

Eq. (4), the dynamics of small perturbations in the Laplace
domain are obtained as

eλτ (mλ2 + γ λ + α)q0
k = α

N∑
l=1

dkl q0
l , (5)

where dkl = ckl/nk are the components of the normalized
adjacency matrix D, and λ = σ + iμ the complex frequency.
Rewriting in matrix form, we identify the eigenvalue problem
ζ �q = D �q and the characteristic equation

λ2 + ωcγ λ + αωc(1 − ζe−λτ ) = 0, (6)

where ωc = m−1 and ζ = |ζ |ei� are the eigenvalues of the
normalized adjacency matrix D [34]. These ζ relate to the
perturbation modes in the network, and each generates an
infinite discrete set �ζ of solutions λ. For diagonalizable D

arbitrary perturbations can be expressed by linear combina-
tions of �q, the eigenvectors. The eigenvector that induces a
global shift of all phases �q = (1, 1, . . . , 1) has the eigenvalue
ζ = 1 since

∑
l dkl = 1. It does not affect the synchrony of

the system and will be excluded in the following discussions.
From dynamical systems theory it is known that the largest
σ in the union ∪ζ �=1�ζ dominates the long-term dynamics
of the perturbations. If the largest σ > 0, then perturbations
grow, and the state is linearly unstable. If all σ < 0 the system
is linearly stable. From Eq. (6) we find that if α = 0, then
λ1 = 0 and λ2 = −ωcγ . Hence, α = 0 relates to marginally
stable solutions and will not be considered in the following.

III. DERIVATION OF STABILITY CRITERIA

For first-order Kuramoto models with time delays, i.e.,
without inertia, Earl and Strogatz derived a criterion that
determines linear stability of synchronized states [35]. It con-
cludes that synchronized states in networks of delay-coupled
oscillators with arbitrary coupling topology are linearly stable
if and only if α = K h′(−�τ ) > 0. For Kuramoto models
with time delay and inertia it has been shown that this cri-
terion cannot sufficiently predict linear stability [34]. There
is no known closed form solution to second-order exponen-
tial polynomials like Eq. (6). Such solutions can be obtained
numerically but require a careful choice of initial conditions
and become increasingly difficult for large time delay and net-
work size. In previous works, conditions that connect inertial
properties with the interaction strengths and properties of the
synchronized states that prevent instability have been found
[11,30,36].

Here we introduce stability criteria that allow us to predict
linear stability of in- and antiphase synchronized states in
networks of delay-coupled oscillators with inertia for any set
of parameters. Furthermore, we extend the previously found
conditions and connect them to properties of the topology
[30]. With λ = σ + iμ in Eq. (6) and separate the real and
imaginary parts:

σ 2 + ωcγ σ = −α ωc[1 − |ζ | cos(μτ − �) e−στ ] + μ2, (7a)

2σμ = −ωc[μγ + α|ζ | sin(μτ − �) e−στ ]. (7b)

Squaring and adding these equations we obtain

(σ 2 − μ2 + ωcγ σ + αωc)2 + (2σμ + ωcγμ)2

= (αωc|ζ |)2e−2στ . (8)

We begin by addressing one direction of the known stabil-
ity criterion presented in [35]. For second-order phase models
we show that if α < 0, there always exists at least one σ > 0,
and hence the states in Eq. (3) are unstable. Setting α = −|α|
and ρ = |ζ | cos(μτ − �) in Eq. (7a) we find after rearranging

σ 2 + ωcγ σ = |α| ωc(1 − ρe−στ ) + μ2, (9)

where ρ ∈ [−1, 1], since |ζ | � 1 as can be shown from
Gershgorin’s circle theorem [37]; see the Appendix. Us-
ing the boundedness of the |ζ |′s and Eq. (9) we prove the
proposition graphically; see Fig. 1 (left). The left-hand side
(LHS) of Eq. (9) is quadratic in σ and crosses the x-axis
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FIG. 1. Graphical solutions to Eqs. (7) shown for α = −|α| < 0 (left), α > 0, μ̃ < 0 (middle), and σ � 0, when μ̃ = 0 (right). Red lines
denote the LHS and blue the RHS of Eqs. (7), respectively.

at the origin σ1 = 0 and at σ2 = −ωcγ . The right-hand side
(RHS) of Eq. (9) crosses the y-axis, where μ̃ = μ(σ = 0), at
μ̃2 + |α| ωc(1 − ρ). Since ρ ∈ [−1, 1] the y-axis is always
crossed at positive values if μ �= 0 and there is at least one
intersection with σ > 0 independently of the branches for ±ρ.
However, there could be an intersection at zero if μ = 0 and
ρ = 1. This occurs if |ζ | cos(−�) = 1, which is true only
for |ζ | = 1 and � = 2π n (n ∈ Z), i.e., related to a global
phase shift as previously discussed. This concludes the proof,
and hence, for α < 0 there always exists at least one σ > 0.
Hence, the direction α < 0 → σ > 0 of the stability criterion
in [35] holds in the presence of inertia.

Now we show that in regimes where the perturbation re-
sponse dynamics are overdamped, i.e., μ = 0, the stability
criterion holds also for second-order phase models. Hence, for
μ = 0 and if α > 0 there can only be solutions with σ < 0. Let
us consider the contrary, for μ = 0 and if α > 0 there always
exists at least one solution with σ � 0. In that case we would
have μ = 0, σ = |σ | and α = |α|. Using these expressions in
Eq. (8) we find

(|σ |2 + ωcγ |σ | + |α|ωc)2

(|α|ωc)2
= |ζ |2e−2|σ |τ . (10)

The RHS is always in [0,1] due to |ζ | ∈ [0, 1] as shown
before using Gershgorin’s circle theorem and e−2|σ |τ ∈ [0, 1]
for σ � 0. For σ > 0 the LHS is always larger than 1, which
contradicts |ζ |2e−2|σ |τ � 1. The LHS can be equal to 1 only
for σ = 0, which leads to equality with the RHS for ζ = ±1
only. For ζ = −1 while λ = 0 we know that α has to be zero
[see Eq. (6)], which contradicts the assumptions. The case
ζ = 1 relates to a global phase shift and is not considered as
discussed before. As the contrary can never be fulfilled, the
original proposition is always true.

Using the same graphical procedure as before in Fig. 1
(left) we now ask, for μ �= 0, whether if α > 0, there al-
ways exists at least one σ � 0. Setting α = |α| in Eq. (7a)
it can be shown that the proposition cannot always be fulfilled
when studying the RHS for σ = 0. If the asymptotic value of
the RHS is μ̃2 − |α| ωc < 0 and we consider the branch for
ρ > 0, then if μ̃2 − |α| ωc(1 − |ρ|) < 0 only solutions at σ <

0 can exist. For ρ < 0 there cannot be a solution for σ � 0
and a solution at σ < 0 cannot be guaranteed. Hence, the
proposition cannot always be fulfilled; bifurcations can occur
when α > 0.

As we just showed, the synchronized states in Eq. (3)
with constant phase difference 0 or π are not guaranteed to

be stable if α > 0 and μ �= 0. Hence, we proceed now to
derive sufficient and necessary criteria that identify param-
eter regimes for which these states become unstable. Note
that the parameters ωc and γ have a physical meaning and
are positive. Studying the properties of Eqs. (7) at the crit-
ical point, σ = 0, and taking into account their asymptotic
properties for σ → ∞, stability criteria that connect μ̃ = μ

(σ = 0) and the parameters can be obtained. How the μ̃ can
be calculated explicitly is shown in the next section, which
explains how the criteria derived here are applied. Using the
information about the frequencies μ̃ at the critical point we
ask whether there are solutions to Eqs. (7) with positive real
part σ . Rearranging Eq. (7b) and setting ρ̂ = |ζ | sin(μτ − �)
we find 2σμ = −ωc(μγ + |α|ρ̂ e−στ ). Four cases {±μ̃, ±ρ̂}
need to be distinguished. The cases for μ̃ = −|μ̃| are shown
in Fig. 1 (middle). Using the asymptotic property of the RHS
of Eq. (7b) reveals that for the case α > 0 and ρ̂ < 0 the RHS
is bound to the first quadrant; see Fig. 1 (middle). At the same
time the LHS of Eq. (7b) is bound to the fourth quadrant, and
hence there cannot be an intersection for σ � 0. Using the
same logic we now discuss the other case when α > 0 and
ρ̂ > 0. It can then be inferred that if |μ̃| > |α||ρ̂|/γ the RHS
of Eq. (7b) intersects the y-axis in Fig. 1 (middle) above zero.
Then no intersections can exist for σ � 0. Applying the same
analysis for the other cases when μ̃ = |μ̃| one finds that for
ρ̂ > 0 there cannot be an intersection at σ � 0. For ρ̂ < 0 no
solutions at σ � 0 can exist if |μ̃| > |α||ρ̂|/γ . The proof to
conclude necessity has the same structure. Our criteria are in
agreement with abstract mathematical results obtained for real
ζ [38].

IV. APPLYING THESE CRITERIA TO STUDY
LINEAR STABILITY

The criteria derived in the last section can be meaningfully
applied only if the μ̃ are known. We calculate μ̃ at the bi-
furcation, i.e., at the critical point σ = 0. Hence, side bands
at � ± μ̃ arise in the power spectrum [19]. With these μ̃

linear stability can be analyzed as a function of the network
topology, interaction strength, damping coefficient, time de-
lay, and inertial parameter. Moreover, we obtain a condition
that predicts how the bifurcation can be prevented based only
on the physical parameters of the system. Setting σ = 0, while
α = |α|, Eq. (8) after rearranging becomes

μ̃4 + μ̃2
(
γ 2ω2

c − 2|α|ωc
) + (|α|ωc)2(1 − |ζ |2) = 0. (11)
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TABLE I. Stability criteria for α > 0 and μ �= 0.

Sufficient and necessary criteria Stability

μ̃ < 0 and ρ̂ < 0 Stable
μ̃ < 0 and ρ̂ > 0 and |μ̃| > |α||ρ̂|/γ
μ̃ > 0 and ρ̂ > 0 Stable
μ̃ > 0 and ρ̂ > 0 and |μ̃| > |α||ρ̂|/γ
ζ = −1 and μ̃ = 0 and γ � |α|ωc Stable

Demanding μ̃ ∈ R while α > 0, a condition where synchro-
nized states in Eq. (3) are stable is obtained:

ωcγ
2

2|α| > 1 −
√

1 − |ζ0|2. (12)

Here ζ0 denotes the eigenvalue with the largest magnitude.
This result can be combined with the analysis of the criteria
derived in the previous section using the solutions μ̃ obtained
from Eq. (11). For the case of ζ = −1 (� = π ), e.g., the case
for N = 2 mutually coupled oscillators, the RHS and LHS
of Eq. (7b) become zero when μ̃ = 0. Such μ̃ are actually
solutions to Eq. (11) in this special case. This would imply
that any type of perturbation response is a valid solution.
Consulting Eq. (7a) for such μ̃ = 0 when ζ = −1 it becomes
clear that additional information is necessary to infer whether
or not the bifurcation has occurred. We need to plot Eq. (7b)
for σ � 0 in the μ- f (μ) plane and ask when additional so-
lutions μ �= 0 can arise that lead to bifurcations; see Fig. 1
(right). From studying the slopes at μ = 0 and the smallest
|σ | = 0 we find that if γ � |α|ωc no additional solutions with
σ � 0 can exist, and hence the state is linearly stable. In
Tables I and II all criteria and conditions to be checked with
which to study the linear stability of synchronized states are
summarized. How these criteria and conditions are applied in
practice to determine linear stability is explained in detail in
the Appendix Sec. A 1.

Cyan denotes linearly unstable regimes where α < 0, and
purple unstable regimes triggered by inert system behavior
where α > 0. Gray specifies where the condition in Eq. (12)
is fulfilled and the synchronized state is linearly stable. The
stable regimes identified by the criteria in Table I are shown
in white.

V. PARAMETER SPACE PLOTS ANALYZING
LINEAR STABILITY

All parameter space plots share the same color code. When
plots cover parameter space where multiple synchronized

TABLE II. Sufficient stability conditions.

Sufficient conditions Stability

α < 0 Unstable
α > 0 and μ = 0 Stable

α > 0 and 1 −
√

1 − |ζ0|2 <
ωcγ

2

2|α| Stable

0 5 10 15

ωτ/2π

0.2

0.4

0.6
K
ω

FIG. 2. K vs τ parameter space for 3×3 identical oscillators
mutually coupled to their nearest neighbors on a 2D square grid
with periodic boundary conditions. Parameters are ω = 2π radHz,
v = 1, ωc = 0.028π radHz, γ = 2, ζ ∈ {−0.5, 0.25}. Cyan denotes
linearly unstable regimes where α < 0 and purple unstable regimes
triggered by inert system behavior where α > 0. Gray specifies
where the condition in Eq. (12) is fulfilled and the synchronized state
is linearly stable. The linearly stable regimes identified by the criteria
in Table I are shown in white.

states are stable, the stability of the one with the largest fre-
quency � = {�i}max

i∈N is plotted. Python scripts that implement
these criteria are available online [39]. These can also solve
Eq. (6) numerically for validation purposes; see examples
provided in the Appendix Sec. A 3. For all parameter space
plots presented in this work we consider a sinusoidal coupling
function h(·).

Cyan denotes regimes where α < 0 and the in- or an-
tiphase synchronized state [see Eq. (3)] is unstable. States
with different constant phase relations exist in these regimes
and can be stable if α > 0; see Fig. 11 in the Appendix
Sec. A 3 c. Purple regimes denote where in- or antiphase
synchronized states are unstable due to inert system behavior
when α > 0. They are qualitatively different from parameter
regimes where synchronized states that satisfy Eq. (3) become
unstable when α < 0. At their onset they are characterized
by time-dependent frequencies and highly correlated periodic
dynamics; see Figs. 12 and 13 in the Appendix Sec. A 3 c.
Hence, synchronization in a wider sense is not necessarily
lost after the Hopf bifurcation. There are indications that
these systems undergo a route to chaos via subsequent period-
doubling bifurcations as, e.g., the time delay is increased
[40].

Stable synchronized states are shown in gray and white.
Gray specifies where the condition in Eq. (12) is fulfilled for
the ζ0 with the largest magnitude. In general, the synchronized
states of Eq. (3) tend to become unstable as the oscillators
become increasingly inert (ωc � ω), and the purple regimes
cover larger areas in Fig. 2. Since ωc plays an important
role in suppressing higher order frequency contributions in
real systems, it cannot be increased freely. Above some
critical ωc the presence of, e.g., intermodulation products
which are not described in Eq. (1) can also lead to time-
dependent frequencies. Our results can guide towards optimal
parameter choices for applications, e.g., in coupled electronic
oscillators.
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0.1 0.2 0.3 0.4 0.5

K/ω

0.25

0.50

0.75

1.00

ωc
ω

FIG. 3. ωc vs K parameter space. Parameters, network topology,
and color code as in Fig. 2, except γ = 1 and τ = 0.65 s.

VI. THE PHYSICS OF SYNCHRONIZATION
FOR LARGE DELAYS

The stability in the presence of large time delays has been
studied using asymptotic descriptions [41–45]. Simple and ex-
plicit expressions for the linear stability can then be obtained
in the limit of large or infinite time delay. In this section
we study networks in which the time delays are finite but
large compared to the intrinsic period of the oscillators. Our
analysis does not produce quantitative results like perturbation
decay rates, but instead provides the information whether or
not a synchronized state is linearly stable. Networks of mu-
tually coupled electronic oscillators, so-called phase-locked
loops [46], are candidates for enabling new technologies, such
as satellite-independent terrestrial navigation, and to provide
orchestration to complex spatially distributed systems. Their
function relies on a robust clock signal distribution. Given
operational frequencies up to the THz regime, spatial exten-
sions of a few hundreds of meters imply time delays that are
three to six orders of magnitude larger than the oscillation
period. In these cases synchronization can be stable only
for adequately divided cross-coupling frequencies [47]. This
also requires one to sufficiently decrease ωc, i.e., making the
oscillators more inert. Otherwise side bands will appear in
the frequency spectrum that may lead to, e.g., cross-channel
interference [48]. In consequence, the loop gains α have to be
tuned sufficiently small to prevent violation of the condition in
Eq. (12) as ωc is decreased. Our results also show that ωc can
be optimized beyond this condition; see white spaces in Fig. 3.
Another challenge is the large number of synchronized states
that can exist simultaneously. As a result, it becomes difficult
to determine stability numerically or in simulations. Using
the criteria we derived, the stability at arbitrary time delays
can now be obtained. We find that synchronization is feasible
even when time delays span thousands of the oscillators’
periods; see Fig. 4. It shows that there are stable synchronized
states (gray) for sufficiently small coupling strength K . The
condition in Eq. (12) involves a periodic dependence on the
time delay via α. This suggests that fine tuning the delay
can enable stable synchronization at very large time delay.
In real systems this may be limited by signal degradation
during sending and dynamic noise. Note also that for N all
to all (globally) coupled oscillators ζ0 = (N − 1)−1. Hence,

FIG. 4. K vs τ parameter space for 3×3 identical oscillators with
nearest-neighbor coupling on a 2D square grid with open bound-
ary conditions. Parameters are ω = 2π radHz, γ = 1, v = 64, ωc =
0.0007π radHz, and ζ ∈ {−1, −0.5, 0.5}. Cyan structures in inset
are not visible in main due to resolution. The color code is identical
to Fig. 2.

the stable regime guaranteed by condition Eq. (12) increases
with N .

VII. DAMPING COEFFICIENT RESCALES
DELAY AND FREQUENCY

γ relates to, e.g., gains in electronic oscillators, a friction
in mechanical or damping coefficient in power grid systems.
Substituting �∗ = γ� and τ ∗ = τ/γ in Eq. (3) reveals that
γ acts as a rescaling of the time delay and frequency of
synchronized states. The relation between time delay and
period of the oscillations changes; observe the repetitive cyan-
colored structures where α < 0 in Fig. 5. Decreasing γ below
one increases the frequency � of a synchronized state for
constant ωc that changes the ratio ωc/� and can trigger
inertia-induced bifurcations. The rescaling of the time delay
by the damping coefficient can also be seen in Fig. 6. This
may have implications for systems that rely on specific syn-
chronized states between spatially distributed oscillators, e.g.,
the periodic swimming strokes of hydrodynamically coupled
cilia of the green alga Chlamydomonas [49]. Environmental

0 5 10 15

ωτ/2π

0.5

1.0

1.5

γ

FIG. 5. γ vs K parameter space. Parameters, network topology,
and color code as in Fig. 2, except ωc = 0.2π and τ = 2.95 s.
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0.1 0.2 0.3 0.4 0.5

K/ω

0.5

1.0

1.5

γ

FIG. 6. γ vs τ parameter space. Parameters, network topol-
ogy, and color code as in Fig. 2, except ωc = 0.4π radHz and
K = 1.3π radHz.

conditions that alter the damping coefficient γ could hence
lead to changes in the phase relations between cilia beats.

VIII. DISCUSSION AND CONCLUSIONS

We derived general stability criteria for in- and antiphase
synchronized states in systems of delay-coupled oscillators
with inertia. Using them, we identify parameter regimes
where systems with inert oscillator response can excite
additional frequencies or lead to chaotic dynamics. In a syn-
chronized state with {�, β} constant in time, α denotes the
change of the oscillators interaction terms with respect to
a small perturbation. For α < 0 the interaction between the
oscillators becomes repelling. In this case another stable syn-
chronized state exists for which α > 0 and the coupling is
attractive. As long as perturbation responses are overdamped
no bifurcations occur. That changes for an underdamped re-
sponse. Then our criteria and condition (12) reveal how the
interplay between the oscillators’ parameters and those of
the network lead to bifurcations. A specific example is how
the cutoff frequency ωc of a filter limits the loop gain α in
networks of electronic oscillators; see condition (12). In the
presence of dynamic noise, this analysis can be carried out
within the Fokker-Planck formalism [50,51] and is subject to
ongoing work.

Our analysis can be applied to various fields as the response
of natural systems usually is inert [2,7,11]. It is especially
helpful when the numerical solution of the characteristic
Eq. (6) or simulations become infeasible. For applications,
our results enable fast identification of the parameter regimes
where synchronized states with constant phase differences are
stable. This will improve the architecture design process of,
e.g., networks of electronic oscillators [11,32]. Furthermore
it can enable real-time control algorithms for on-the-fly op-
timization of such complex systems, e.g., when topology or
time delays change over time. We show that stable mutual
synchronization is feasible at large time delay. This makes it
a candidate for the next generation self-organized clocking
signal distribution layers [52]. It is relevant for, e.g., pre-
cise localization using microsatellites or terrestrial beacons,
sensoring and time distribution, and high-precision physical
measurements in spatially distributed systems such as very

long baseline interferometry and gravitational wave detection
[53–56].
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APPENDIX:

Here we provide technical details on the calculations and
theorems used in the main text. We present a numerical
verification of the conditions and criteria presented, using
parameter plots obtained from solving the characteristic equa-
tion numerically. In addition we show exemplary time series
plots of the frequencies and phase relations for the different
types of states in the parameter space plots. The criteria are
summarized in a table for convenient application. The param-
eters of all plots in the the paper and the Appendix are listed
in Tables III and IV.

1. How to apply the critera and conditions

In a first step the properties of the synchronized states
whose linear stability is to be studied have to be computed
using

γ � = ω + K h

(
−�τ + β

v

)
. (A1)

This yields the global frequencies � and phase differences β

of the existing synchronized states. For these solutions, the
parameters

α(�, β ) = K

v
h′

(−�τ + β

v

)
(A2)

can be obtained. Linear stability needs to be studied for each
of these solutions individually. In a next step the eigenvalues
ζ of the normalized adjacency matrix need to be calculated.
Then solving Eq. (11) yields μ̃ from

μ̃ = ±
√

−A

2
± A

2

√
1 − 4B

A2
, (A3)

where α > 0, A(τ, K, ωc, γ , v) = γ 2ω2
c − 2|α|ωc and B(τ, K,

ωc, ζ , γ , v) = (|α|ωc)2(1 − |ζ |2). The stability analysis using
the criteria in Table I requires one to compute the μ̃ explicitly
from Eq. (A3) for a given set of parameters. Note that complex
valued μ̃ contradict the definition, and the stability for such μ̃

may not be found using the criteria. For such complex μ̃ a
theorem [57] allows one to infer linear stability if ζ ∈ R. It
shows that no solutions λ have crossed the imaginary axis to
the RHS if no μ̃ ∈ R exist. Then demanding that μ̃ ∈ R we
obtain from Eq. (A3) a sufficient condition that, if fulfilled
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TABLE III. Parameter values of the in plots in main text.

ω ωc τ γ K
Fig. (radHz) (radHz) (sec) (radHz) (radHz) ζ v

2 2π 0.028π − 2 − {−0.5, 0.25} 1
3 2π 0.0007π − 1 − {−1,−0.5, 0.25} 64
4 2π − 0.65 1 − {−0.5, 0.25} 1
5 2π 0.4π − − 1.3π {−0.5, 0.25} 1
6 2π 0.2π 2.95 − − {−0.5, 0.25} 1

while α > 0 and ζ ∈ R, guarantees linear stability:

ωcγ
2

2|α| > 1 −
√

1 − |ζ0|2. (A4)

This condition (A4) can then be used to understand where
synchronized states must be stable. If this condition is not
fulfilled and μ̃ ∈ R exist, the criteria in Table I identify
for which parameters states with time-dependent frequencies
have emerged from the ones with constant frequencies. These
criteria also hold for ζ ∈ C and follow from the analysis
presented in Sec. III that takes into account the asymptotic
behavior for σ → ∞ and at the critical point σ = 0, the latter
of which is associated with μ̃. Hence, for each eigenvalue ζ

of the adjacency matrix all associated μ̃ calculated explicitly
from Eq. (A3) for the parameter set {τ, K, ωc, γ , v} need to
be checked. If for all μ̃ the necessary and sufficient criteria in
Table I are fulfilled, no solutions λ to the characteristic Eq. (6)
with σ > 0 exist. Hence, the synchronized state associated
with the parameter set {τ, K, γ , v} is stable. All criteria and
conditions are summarized in Tables I and II and need to
be checked in order to study the linear stability of in- and
antiphase synchronized states with constant frequency. Note
that when using the Python scripts for the parameter space
plots the eigenvalues are specified as pairs {|ζ |, �} since
ζ = |ζ | exp(i�).

2. Gershgorin theorem

The Gershgorin theorem defines disks centered around
each diagonal entry of a matrix D with radius given by the
row sum over all nondiagonal entries [37]. As there is no
self-coupling all dkk = 0 ∀ k, and hence all Gershgorin discs
are centered at the origin. Hence |ζ | is bounded by one:

|ζ | �
∑
l �=k

|dkl | = 1. (A5)

Taking into account the definition dkl = ckl/nk , the bounded-
ness of the ζ given by Gershgorin’s theorem is tied to the
identical coupling capacity of all oscillators

1

nk

∑
l �=k

|ckl | = 1. (A6)

This can also be achieved when the oscillators weight different
inputs with different weights,

1

nkl

∑
l �=k

|ckl | = 1. (A7)

when the sum over all nondiagonal entries equals one.

3. Additional plots and numerical verification

The parameter space plots, Figs. 8 and 9, share the same
color code as introduced in Sec. V. The numerical results

0 5 10 15

ωτ/2π

0.2

0.4

0.6
K
ω

FIG. 7. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained numerically. All other parameters are
listed in Table IV. Red denotes regimes where in-phase synchronizes
states are unstable, blue where they are stable.

TABLE IV. Parameters of plots in the Appendix.

ω ωc τ γ K
Fig. (radHz) (radHz) (sec) (radHz) (radHz) ζ v

7, 8 2π 0.028π − 2 − −1 1
9 2π 0.028π − 1 − −1 1
10 2π 0.028π 0.1 1 0.2 −1 1
11 2π 0.028π 0.7 1 0.2 −1 1
12 2π 0.028π 5 1 0.2 −1 1
13, 14 2π 0.2π 2.95 − − {−0.5, 0.25} 1
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AB C

FIG. 8. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained analytically via the criteria and
condition. All other parameters listed in Table IV. The analytic
results are verified with Fig. 7. Exemplary time series at points A, B,
and C are shown in Figs. 10–12. The color code is identical to Fig. 2.

in Fig. 7 have a different color code as introduced in the
following subsection.

a. Numerical verification of the criteria

We verify the results obtained using the criteria and the
conditions with numerical solutions to the characteristic equa-
tion. The numerical results are obtained using scripts which
are available online [39]. The parameters of the system under
investigation can be set in the dictionaries of these scripts.
The numerically obtained parameter space plot in Fig. 7 has
the following color code. In this case red denotes regimes

FIG. 9. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained analytically via the criteria and
condition. In- (K � 0) and antiphase (K < 0) synchronized states
are shown. All other parameters listed in Table IV. The color code
is identical to Fig. 2.

FIG. 10. Time series of the instantaneous frequencies θ̇k (t ) and
the phase difference �θ12(t ) for case A in Fig. 8. This is the in-phase
synchronized state with Kuramoto order parameter equal to one.

where the real part σ of the characteristic equation is positive,
and hence the synchronized states are unstable. Blue denotes
regimes where σ is negative, and in- and/or antiphase synchro-
nized states are stable. We choose this different color code for
the numerical results to avoid confusion and clearly distin-
guish them from those obtained with the stability conditions
and criteria.

It becomes apparent from the comparison of Figs. 7 and
8 that the results obtained analytically using the criteria are
in agreement with the numerical results. The value of the
perturbation response rate obtained from the numerical solu-
tion shows no qualitative difference for the white and gray
regimes. Hence, it is not represented by the color code in
Fig. 7. Also, the exemplary time series obtained from simu-
lating Eqs. (1) using an Euler scheme confirm the predictions
using the conditions.

b. Parametric plots of different topologies

Here we show parametric plots for different network
topologies of mutually delay-coupled oscillators with inertia.
All other parameters have the same values, i.e., identical os-
cillator parameters and time delays.

In Fig. 8 the K-τ parameter space for a network of two mu-
tually coupled oscillators is shown. The nontrivial eigenvalue

FIG. 11. Time series of the instantaneous frequencies θ̇k (t ) and
the phase difference �θ12(t ) for case B in Fig. 8. This is the antiphase
synchronized state with Kuramoto order parameter equal to zero.
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FIG. 12. Time series of the instantaneous frequencies θ̇k (t ) and
the phase difference �θ12(t ) for case C in Fig. 8.

ζ of the adjacency matrix is ζ = −1. In Fig. 2 the parameter
space of a network of nine mutually delay-coupled oscillators
in a 2D lattice with nearest-neighbor interactions and periodic
boundary conditions is shown. The nontrivial eigenvalues ζ of
the adjacency matrix in this case are ζ = {−0.5, 0.25}. It can
be observed that linear stability is different for the two cases.
The condition in Eq. (A4) is fulfilled for different regimes,
shown in gray in the figures. When ζ = −1 then gray covers
the smallest regime, as can be understood from Eq. (A4). For
networks in which the oscillators are arranged in 1D with open
boundary conditions, e.g., a chain topology, the value ζ = −1
is always in the set of ζ [19]. The criteria which are presented
in Table I are also affected by the topology, and hence the
stability regimes in white and purple are also different.

c. Parametric plot of in- and antiphase synchronized states

In Fig. 9 we show the parametric K-τ plot for in- and
antiphase synchronized states in a system of two mutually
delay-coupled oscillators with inertia. The regime for K > 0
relates to the in-phase synchronized states and for K < 0 to
the antiphase synchronized states; see also [35]. Observe
how the cyan regimes alternate between in- and antiphase
synchronized state as the time delay increases.

d. Time series data

The complex order parameter is a quantity with which
phase synchronization can be quantified [13]

R(t )eiψ (t ) = 1

N

N∑
k=1

eiθk (t ). (A8)

FIG. 13. Time series of the order parameter R(t ) for case C in
Fig. 8. The instantaneous frequencies θ̇k (t ) and the phase difference
�θ12(t ) are shown in Fig. 12.

0.1 0.2 0.3 0.4 0.5

K/ω

0.5

1.0

1.5

γ

FIG. 14. K vs γ parameter space for 3×3 mutually delay-
coupled oscillators on a 2D square grid with periodic boundary
conditions, obtained analytically via the criteria and condition for
� obtained with Eq. (A1). All other parameters listed in Table IV.
The color code is identical to Fig. 2.

R(t ) measures the phase coherence and ψ (t ) denotes the av-
erage phase. In Figs. 10–12 we show the time series of the
phase difference between and the frequencies of two mutually
delay-coupled oscillators with inertia for different sets of pa-
rameters. In Fig. 13 the time series of the order parameter for
τ = 5, i.e., case C in Fig. 8, is presented. The in-phase (see
Fig. 10) and the antiphase synchronized states (see Fig. 11)
are stable with respect to a small initial phase perturbation.
Rich system dynamics can be observed where synchronized
states become linearly unstable due to the presence of the
inertia. Close to the bifurcation, a stable limit cycle appears,
and hence the frequency of the oscillator becomes periodic;
see Fig. 12. Hence, the time series plots show the expected
solutions for the different regimes in Fig. 8. Note that more
examples of time series of solutions that bifurcate from in-
and antiphase synchronized states in the purple regimes can
be found in the supplemental materials of Punetha et al. [40].

4. A note on the damping coefficient

Here we want to make the reader aware of a small differ-
ence between models of mutually delay-coupled oscillators

0.1 0.2 0.3 0.4 0.5

K/ω

0.5

1.0

1.5

γ

FIG. 15. K vs γ parameter space for 3 × 3 mutually delay-
coupled oscillators on a 2D square grid with periodic boundary
conditions, obtained analytically via the criteria and condition for
� obtained with Eq. (A10). All other parameters listed in Table IV.
The color code is identical to Fig. 2.
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that have been presented previously [8,58]. Besides the dy-
namical Eqs. (1), there are also other formulations, e.g., for a
system of coupled rotors [58,59]

m θ̈k (t ) + γ θ̇k (t ) = γω + K

nk

N∑
l=1

ckl h

(
�θkl (t, τ )

v

)
. (A9)

In this case the damping coefficient affects the frequency of
the free running oscillator, contrary to the case described by

Eqs. (1). For the properties of synchronized states one finds

γ � = γω + K h

(
−�τ + β

v

)
. (A10)

The frequencies of synchronized states are hence differ-
ent from those obtained using Eq. (3). Since the steady-state
parameter α depends on the frequency � linear stability is
affected as well. In Figs. 14 and 15 the difference in linear
stability between the two different models is presented.
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