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Robust controlled formation of Turing patterns in three-component systems
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Over the past few decades, formation of Turing patterns in reaction-diffusion systems has been shown to be the
underlying process in several examples of biological morphogenesis, confirming Alan Turing’s hypothesis, put
forward in 1952. However, theoretical studies suggest that Turing patterns formation via classical “short-range
activation and long-range inhibition” concept in general can happen within only narrow parameter ranges.
This feature seemingly contradicts the accuracy and reproducibility of biological morphogenesis given the
stochasticity of biochemical processes and the influence of environmental perturbations. Moreover, it represents
a major hurdle to synthetic engineering of Turing patterns. In this work it is shown that this problem can be
overcome in some systems under certain sets of interactions between their elements, one of which is immobile
and therefore corresponding to a cell-autonomous factor. In such systems Turing patterns formation can be
guaranteed by a simple universal control under any values of kinetic parameters and diffusion coefficients of
mobile elements. This concept is illustrated by analysis and simulations of a specific three-component system,
characterized in absence of diffusion by a presence of codimension two pitchfork-Hopf bifurcation.
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I. INTRODUCTION

In 1952, Alan Turing suggested that the key to many
events of morphogenesis, i.e., formation of organs in living
organisms, should be the instability of a spatially homoge-
neous state in a system of interacting and diffusing chemicals,
leading to their inhomogeneous distributions and subsequent
different local effects on cell behavior throughout the tissue
[1]. Turing’s theory has been used in a variety of different
studies—not only biological [2–4] and purely mathematical
[5–7] but also physical [8–10], chemical [11–13], and even
sociological [14–16]. The general form of reaction-diffusion
systems considered in these studies can be presented as:

u̇ = A(u − u0) + Q + D�u, (1)

where u = (u1, u2, . . . , uN )T is the vector of N variables; u0 is
the considered uniform stationary state, stable in the absence
of diffusion; A = ai j (i, j = 1, 2, . . . , N ) is the Jacobian of
the system, linearized at u0; D = IN (D1, D2, . . . , DN )T is the
diagonal matrix of diffusion coefficients; and Q is the vector
of nonlinear terms.

Turing derived the conditions for the instability that leads
to the formation of stationary patterns in two-component sys-
tems. These conditions can be represented the following way,
where two first equations guarantee the stability of u0 in
absence of diffusion:

−a11 − a22 > 0,

a11a22 − a12a21 > 0,

D2
2a2

11 + D2
1a2

22 > 2D1D2(a11a22 − 2a12a21).
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In particular, these inequalities infer that one of the ele-
ments, e.g., the first one, should stimulate its own production
near u0, i.e., a11 > 0, while another element should act in the
opposite way, i.e., a22 < 0, and should have a greater diffusion
coefficient, i.e., D2 > D1.

These conditions restrict the values of Jacobian elements
and diffusion coefficients in a way, which is associated with
two problems that are crucial at least in the context of biolog-
ical systems, i.e., the requirements of differential diffusivity
and fine-tuning of parameters. That is, the condition D2 >

D1 has to hold, and under any selected values of diffusion
coefficients the range of Turing instability in the space of
kinetic parameters represents a bounded region whose volume
becomes increasingly small as D2 → D1. However, given the
specificity of the morphogens’ tasks, it is reasonable to expect
them to be mainly large proteins (which most of the suggested
morphogenes indeed are [17]), which thus should have close
values of intrinsic diffusion coefficients under similar condi-
tions. Furthermore, the rates of kinetic interactions in tissues
should depend on stochastic processes, including gene expres-
sion, as well as on external conditions, which should lead
to spatiotemporal as well as interindividual variability in ki-
netic parameters in living organisms. Despite this, patterning
processes in nature are remarkably precise and reproducible,
even under significant environmental perturbations. Viable,
albeit obviously altered, organisms can develop even under
high radiation exposure (of dozens of Grays), which induces
phenotypic changes during ontogenesis (see, e.g., Ref. [18]).

Furthermore, requirements of differential diffusivity and
fine-tuning have led to the fact that Turing patterns are ex-
tremely difficult to engineer in biological synthetic networks
[17], which may have potential application, e.g., in regenera-
tive medicine. At that, Turing patterns engineering is a quite
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feasible task in chemical frameworks, in which uncertainty in
parameter values is low.

Several ideas have been produced that aim to increase the
robustness of Turing patterns formation, i.e., the tolerance of
a pattern-generating system to the alterations of parameters.
The earliest idea of this kind is the introduction of reversible
binding of an activator with an immobile element. The effect
of such a mechanism can roughly correspond to the decrease
of activator’s diffusion coefficient, which thus increases the
kinetic region that provides Turing patterns [19]. This method
allowed experimental confirmation of Turing’s hypothesis in
a chemical system in 1990 [20] and to implement the first
synthetic mechanism, leading to disordered patterns in mam-
malian cells in 2018 [21]. The use of a small inorganic
molecule as long-range inhibitor has also been suggested in
a rather specific potential mechanism that should give rise to
Turing patterns in synthetic bacterial population [22].

Further, it has been noticed that the relative range of param-
eters, leading to Turing patterns, increases with the increase of
number of system’s components [23]. Moreover, for stochas-
tic systems it was shown that generation of time-dependent
patterns with large amplitude can happen outside the param-
eter range that provides deterministic Turing patterns [24].
Also in 2018, stochastic Turing patterns were obtained in a
genetically engineered synthetic bacterial population [25].

Such modifications alleviate the problems of differential
diffusivity and fine-tuning but do not exclude them. Signif-
icant results in tackling these problems have been achieved
in theoretical works that study the systems with preassigned
fixed network structures [26–29]. These are the sets of inter-
actions between the system’s elements, each of which can be
activating, inhibiting, or absent. A network structure thus cor-
responds to the set of signs of elements of matrix A in Eq. (1).
Importantly, it does not determine their absolute values, which
correspond to the strengths of interactions. In the correspond-
ing studies they are varied in large ranges. The work [26]
demonstrated the existence of three-component systems with
one immobile element, i.e., having zero diffusion coefficient,
that can produce Turing patterns under any positive values
of diffusion coefficients of the two remaining elements, thus
overcoming the need for their differential diffusivity but main-
taining the need for fine-tuning of the kinetic values. Notably,
from the biological point of view, the case of zero diffusion
coefficient differs qualitatively from the case of very small but
finite diffusion coefficients—immobile elements correspond
to factors that do not leave an individual cell and can perform
its function only inside it, e.g., transcription factors or ele-
ments of signaling pathways. Some network structures, able to
overcome differential diffusivity, turned out to be more robust
than others; however, it was shown that none of them by itself
can guarantee Turing patterns formation. On the contrary,
in Ref. [29] all network structures were demonstrated to be
highly sensitive to perturbations of parameters.

In this work it is shown that certain network structures
allow overcoming the problems of fine-tuning and differential
diffusivity by allowing the selection of a control parameter,
continuous increase of which will eventually result in Turing
instability of the uniform stationary state under any values of
kinetic parameters and diffusion coefficients, with no other in-
stabilities being present. Analysis and numerical simulations

are performed that suggest the existence of systems in which
in the presence of external noise such a method should almost
always lead to the formation of stationary patterns within a
reasonable time window, except for the certain regions of
rather extreme parameter variation.

II. SEARCH FOR NETWORKS CAPABLE OF ROBUST
TURING PATTERNS FORMATION

In this work the systems that correspond to the general
form of Eqs. (1) are considered with N = 3 components. The
full linear analysis in the general case with explicit conditions
for Turing instability can be found in our previous work [30].
Herein only crucial moments are briefly recalled, related to
the special case of the system with one immobile element:
D = I (D1, D2, 0)T , D1 > 0, D2 > 0. The position of the uni-
form stationary state u0 is considered to be independent of
parameters values for simplicity.

In the one-dimensional (1D) case an infinitesimal pertur-
bation that represents a sinusoidal wave with wave number k
evolves in linear approximation as

∑3
j=1 α jvjeikreλ j (k)t , where

α j are the coordinates of initial perturbation with respect to
the basis of eigenvalues vj and λ j (k) are in general case com-
plex numbers that characterize the evolution of corresponding
components. Inserting this formula into the linearized version
of Eq. (1) provides the explicit equation for eigenvalues and
eigenvectors [A − λ(k)I − k2D]v = 0. Eigenvectors can be
nonzero if and only if the so-called dispersion relation holds,
which for the considered case is∣∣∣∣∣∣
a11 − k2D1 − λ(k) a12 a13

a21 a22 − k2D2 − λ(k) a23

a31 a32 a33 − λ(k)

∣∣∣∣∣∣ = 0.

(2)

This relation allows us to find eigenvalues corresponding to
every wave number k. If all of them have negative real parts,
then any infinitesimal perturbation will die out. If for some
k at least one of eigenvalues has positive real part, then the
corresponding perturbation will grow, indicating one of the
diffusion instabilities. A positive real eigenvalue corresponds
to Turing instability, leading to stationary patterns. Two com-
plex conjugate eigenvalues with positive real part correspond
to wave instability (that is impossible in two-component case),
which yields autowaves right after its onset [31]. Note that
since the dispersion relation depends only on the norm of
wave vector k, it is as well valid for any dimensionality of
space due to the rotational symmetry of spatially homoge-
neous systems.

A. Eliminating the need for differential diffusivity

As k → ∞, Eq. (2) can be presented as

k4D1D2[a33 − λ(k)] + o(k4) = 0,

and therefore one of its solutions tends to a33. If a33 is positive,
then the waves within an infinite range of wave numbers,
including infinitesimal wavelengths, are unstable, and the crit-
ical eigenvalue tends asymptotically to a33 for large wave
numbers. Notably, an analogous situation emerges in classical
two-component activator-inhibitor systems under an infinite
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disparity between diffusion coefficients of its elements. Im-
portantly, it does not lead to the formation of stable Turing
patterns. It was shown that in continuous space the solutions
of such systems are unstable [32], while in discretized space,
which may correspond to biological cells, an initial noisy
prepattern evolves to form a stationary “salt-and-pepper” pat-
tern with a characteristic wavelength equal to the minimal
of those that spatial discretization can reproduce [28]. This
feature has been noticed already in Turing’s seminal paper in
the context of cells [1].

The case of a33 = 0, however, is qualitatively different and
thus presents certain interest and will be considered from now
on.

Dispersion relation (2) can be rewritten as
λ(k)3 − σ (k)λ(k)2 + �(k)λ(k) − �(k) = 0, where, taking
into account a33 = 0:

σ (k) ≡ σ0 − k2[D1 + D2],

�(k) ≡ �0 + k2[D1a23a32 + D2a13a31],

�(k) ≡ �0 − k2[D1a22 + D2a11] + k4D1D2. (3)

Here σ0 is the trace of matrix A, �0 is its determinant, and
�0 is the sum of its principal minors.

The Routh-Hurwitz stability criterion [33] provides the
following conditions for the absence of diffusion instabilities,
where the relations between the coefficients of dispersion
relation and its roots are accounted for:

∀k σ (k) = λ1(k) + λ2(k) + λ3(k) < 0,

�(k) = λ1(k)λ2(k)λ3(k) < 0,

σ (k)�(k) − �(k)

= [λ1(k) + λ2(k)][λ1(k) + λ3(k)][λ2(k) + λ3(k)]

< 0. (4)

For k = 0 these conditions are assumed to be met, since
they correspond to the spatially uniform case. As k is in-
creased, violation of the second condition, while the third
is met, implies the change of sign of the real part of one
eigenvalue and thus indicates the onset of Turing instability.
Analogically, violation of the third condition means the onset
of wave instability. The first condition cannot be violated, as
σ (k) is a decreasing function of k.

According to Eqs. (3), if a13a31 and a23a32 are non-negative
with at least one of them positive, then �(k) nullifies at one
and only one value of positive wave number k. If no wave
instability is manifested simultaneously, then the plot of the
critical eigenvalue looks at a qualitative level as depicted in
Fig. 1. In this case the waves within an infinite range of wave
numbers are unstable and their linear rate of growth tends to
zero for infinitesimal wavelengths. This feature is maintained
under any positive values of D1 and D2, thus formally not
requiring differential diffusivity.

Contrary to the case of a33 > 0, such type of Turing insta-
bility can lead to the formation of classical Turing patterns in
response to small perturbations of the uniform stationary state,
as was demonstrated in Ref. [30]. This is due to the fact that
the waves with smaller wavelengths should grow increasingly
slower in linear approximation. Therefore they merely should
not have time to significantly influence the process of pattern

FIG. 1. Dispersion curves for the critical eigenvalue of the ma-
trix ((−1 − k2D1, 2, 1), (−1, −k2D2, 0), (1, a32, 0))T under a32 = 1,
D1 = D2 = 1 (black line); a32 = 1, D1 = 1, D2 = 10 (green line);
a32 = 1, D1 = 10, D2 = 1 (red line); and a32 = 0, D1 = D2 = 1
(gray dashed line).

formation before a pattern is already close enough to its stable
state. And when it is close to it, the small perturbations of
the pattern, corresponding to great wave numbers, will die out
instead of growing. Though being hard to prove analytically,
such a concept can be illustrated via numerical simulations,
which will be done in Sec. III.

Therefore, three-component network structures, in which
the third element is immobile (D3 = 0) and the following con-
ditions for the types of interactions of the immobile element
with itself and the mobile ones are met,

a33 = 0,

a13a31 � 0, a23a32 � 0, a13a31 + a23a32 > 0, (5)

are capable of producing classical Turing patterns if, as it
was assumed, the homogeneous stationary state is stable in
absence of diffusion and wave instability is not manifested si-
multaneously. Compliance with these requirements, however,
in general still requires fine-tuning of the values of elements of
matrix A. The following section is aimed at searching specific
network structures for which these requirements can be met
without fine-tuning.

B. Selecting network structures

1. Explanation of the concept

The main step toward solving the formulated problem is
investigating the possibility that some three-component net-
work structures that meet the conditions expressed in Eqs. (5)
possess a certain interaction whose strength can be selected as
a control parameter so that its increase over a certain threshold
(by any amount, thus not requiring fine-tuning) will guarantee
the stability of the matrix A and therefore the stability of the
homogeneous stationary state of the corresponding system in
absence of diffusion.

Due to the symmetries, implied by Eqs. (5), it is sufficient
to consider |a11|, |a12|, and |a13| as candidates for control
parameters. The cases of other parameters come down to one
of these via relabeling variables u1 and u2 or/and applying
mirror reflection of A with respect to its main diagonal or,
in other words, changing the directions of all the mutual
interactions within a network.
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It is convenient to rewrite the conditions for stability of A,
implied by Eq. (4), the following way:

−σ0 = −a11 − a22 > 0, (6a)

�0 = a11a22 − a12a21

<0︷ ︸︸ ︷
−a13a31 − a23a32 > 0, (6b)

−�0 = a11a23a32 + a22a13a31

− a12a23a31 − a13a32a21 > 0, (6c)

− σ0�0 + �0 > 0, (6d)

where the second condition is excessive but convenient to be
considered separately, since it is necessary for the fulfillment
of the fourth condition. Each condition should be met either
under any absolute values of all parameters or under any
absolute values of noncontrol parameters and sufficiently high
values of the control parameter. For brevity, theses cases will
be referred to as situations, in which a condition is met by itself
or can be controlled. It is easy to notice that for a condition to
be met by itself each of its terms has to be positive, while for
it to be able to be controlled, each of its terms that involves
the highest power of the control parameter has to be positive.
That means, in particular, that in any case all the terms that
involve the highest power of the control parameter have to be
positive and otherwise need to be nullified.

2. Rejecting parameters, unsuitable for control

It can be immediately seen that condition (6b) cannot be
met by itself since, according to Eqs. (5), −(a13a31 + a23a32)
is always strictly negative. Moreover, |a13| therefore cannot
act as the control parameter.

If |a11| is considered as the control parameter, then from
condition (6a) it follows that a11 has to be negative. Condition
(6b) has to be controlled, and therefore a22 < 0. According
to Eqs. (5), a23a32 � 0, hence the condition (6c) cannot be
controlled and has to be met by itself. Its first term has to be
nullified, at least one of a23 and a32 being set equal to zero.
According to the current conditions, a22a13a31 � 0, therefore,
this term as well has to be nullified. But a22 is already strictly
negative, thus at least one of a13 and a31 have to be set to zero.
This reasoning leads to contradiction will the last condition
in Eqs. (5). Therefore, |a11| cannot act as a control parameter.
The only candidate left for this role is |a12|, which can fit it
under suitable network structures.

3. Search for suitable network structures

When |a12| is considered as the control parameter, the con-
dition (6a) should be met by itself and thus a11 � 0, a22 � 0.
For the condition (6b) to be controlled, a12a21 should be
negative. The term a12a23a31 is included with different signs
in (6c) and (6d) as a part of �0 with no higher powers of a12

being present. Therefore, this term has to be nullified. Without
loss of generality, let us set a23 = 0; it comes down to the
case of a31 = 0 by application of both mirror and relabeling
symmetries, which eventually preserve the control parameter
[both parameters cannot be set to zero simultaneously due to
Eqs. (5)]. As a12 is now not included in the condition (6c), it
has to be met by itself. It now contains two terms, that are yet
nonzero: a22a13a31 and −a13a21a32. The first term is lower or

FIG. 2. Network structures that produce Turing instability under
any values of kinetic parameters and diffusion coefficients of mobile
elements under the increase of strength of the control interaction over
a certain threshold, given by Eq. (7). Four more relevant structures
can be obtained by mirror reflections of matrices with respect to main
diagonals.

equal to zero and therefore has to be nullified. The only option
to comply with Eqs. (5) is to set a22 = 0, due to which a11 has
to be strictly negative. The remaining term in the condition
(6c) now has to be positive. The only condition that now has
be controlled is (6d), which can be done if

|a12| > atr ≡
∣∣∣∣
[

a31

a21
+ a32

a11

]
a13

∣∣∣∣. (7)

The validity of the condition (6b) follows from this in-
equality, as it infers |a12a21| > |a13a31|.

Overall, all the required conditions for the sought network
structures are

a33 = 0, a23 = 0, a22 = 0, a11 < 0,

a12a21 < 0, a13a31 > 0, a13a21a32 < 0. (8)

That results in four possible network structures, depicted
in Fig. 2. Four more structures can be obtained by applying
the mirror symmetry, discussed above (while relabeling sym-
metry merely leads to an identical structure). If the control
parameter exceeds the threshold atr , given by Eq. (7), then the
spatially homogeneous state becomes stable through a reverse
Hopf bifurcation [since the condition (6c) is met by itself,
while (6d) is controlled]. As it will be shown in the next
section, wave instability cannot be manifested at least when
(7) is met. Therefore, Turing instability destabilizes the waves
with wave numbers

k > kT ≡
√∣∣∣∣a21a32

D2a31

∣∣∣∣, (9)

which follows from Eq. (3), this range being independent of
the control parameter. Note that the decrease of |a13| under
fixed values of other parameters should lead to the same result.
However, from a practical point of view, such an option seems
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to be less attractive at least in noisy conditions and therefore
is not considered.

4. Impossibility of simultaneous wave instability

As it follows from Eqs. (4) with account of Eqs. (8), the
function that indicates the onset of wave instability under
its nullification can be presented as a function, bicubic with
respect to k2: αk6 + βk4 + γ k2 + δ, where

α = −[D1 + D2]D1D2, β = [2D1 + D2]D2a11,

γ = −D2a2
11 + D1[a12a21 + a13a31] + D2a12a21,

δ = σ0�0 − �0.

If |a12| > atr , then all its coefficients are strictly negative.
Therefore, for k2 > 0 it is a decreasing function with a neg-
ative value at k2 = 0. Hence, it cannot be nullified and wave
instability is thus impossible.

III. INVESTIGATION OF CONTROLLED TURING
PATTERNS FORMATION

A. Random sampling of parameter sets

The first step of investigation of controlled Turing pat-
terns formation under suggested network structures was the
random sampling of relevant matrices A = ai j (i, j = 1, 2, 3)
and diffusion coefficients D1, D2 that would correspond to
linearized dynamics of a yet unspecified system near its ho-
mogeneous stationary state. A thousand parameter sets were
generated, 250 sets per every network structure, depicted in
Fig. 2. The absolute values of parameters were represented as
10n, where the exponents were independently and uniformly
selected from the range [−2, 1] for the kinetic parameters and
[−2, 2] for the diffusion coefficients. All parameter sets are
listed in the Supplemental Material [34] along with the corre-
sponding values of atr , kT as well as the values of maximum
linear growth rates λM = max λc(k) and corresponding wave
numbers kM = arg max λc(k) at |a12| = atr , along with their
statistics. The latter allows indicating the following deficien-
cies.

First, the range of λM occupies more than 10 orders of
magnitude. This is important since sufficiently small linear
growth rates are generally associated with slow formation of
low-amplitude Turing patterns. Further, the values of kM vary
by almost five orders of magnitude, implying a great scatter
in the characteristic lengths of corresponding patterns. The
values of atr are also subject to significant variation, exceeding
100 in 8.5% of cases. More generally, it can be noticed that
a universal approach toward guaranteed formation of Turing
patterns under the considered restrictions on the parameter
set should involve the increase of the control parameter up
to the largest of its possible values, which, as it follows
from Eq. (7), is 2×104. Notably, it can be shown that at
|a12| > atr ∀k > kT λc(k) will monotonically decrease with
the increase of the control parameter, and therefore λM will
monotonically decrease as well. Furthermore, kM → ∞ as
|a12| → ∞ (see Appendix A for the proofs). Hence, using the
fixed value of |a12| = 2×104 should lead to even slower rates
of pattern formation than estimated at |a12| = atr and smaller
characteristic lengths, increasing the chance that such patterns

may not be discernible under realistic noisy conditions. It is
possible to change the control parameter dynamically, with the
final structure depending on the way of its change. However,
a universal approach toward Turing patterns formation should
still involve the increase of the control parameter up to 2×104,
which may correspond to a quite unrealistic scale separation
in a real system. The following section indicates a way to
alleviate these problems.

B. Setting a32 = 0

From the statistical processing it follows that both kM and
λM show a strong correlation with kT , thus implying that its
decrease should be beneficial. It can be achieved by proper
variation of four parameters in its formula [see Eq. (9)]. How-
ever, since the parameter values cannot be specified within
a network structure, the only way to vary a parameter is to
nullify it or to change its sign, the latter being of no use in this
situation. Setting a21 to zero is useless, since it will at least
require infinite threshold value for the control parameter, as
follows from Eq. (7). Setting a32 to zero is therefore the only
beneficial action that leads to nullification of kT and trans-
forms qualitatively the dispersion curve as shown in Fig. 1 via
dashed line. Notably, it renders the uniform stationary state
only marginally stable, formally leading to violation of one
of the conditions for the network structures, listed in Eqs. (8).
However, as it will be shown in the next section, at least in
some systems this does not affect their ability to generate
Turing patterns.

Furthermore, setting a32 = 0 simplifies the condition on
the threshold value for the control parameter:

|a12a21| > |a13a31|,

and allows us to use both |a12| and |a21| as control parameters,
independent in the general case. Given the above-mentioned
restrictions on the parameter set, the spatially homogeneous
state is marginally stable for any values of noncontrol param-
eters when both control parameters are greater than 10, which
is the upper boundary of the range of kinetic parameters.

Setting a32 = 0 in the generated parameter sets signifi-
cantly reduces the ranges of λM and kM , estimated under
|a12| = |a21| = aTr ≡ √

a13a31, to slightly more than five or-
ders of magnitude and less than three orders of magnitude
correspondingly (see Supplemental Material [34]). Notably,
under a32 = 0 mirror reflections do not lead to new network
structures, thus resulting in overall four suitable types of them.

C. Selection of a specific system

All the reasoning provided above concerns linearized
dynamics, while consideration of a specific system may sig-
nificantly complicate the task of robust controlled formation
of Turing patterns. First, the system may have another uniform
stationary states, which may attract its dynamics, overriding
Turing patterns formation. Moreover, even in the case of
a single uniform stationary state its corresponding network
structure can change depending on the parameter values—
e.g., prevalence of self-activation over degradation and vice
versa would result in different signs of a self-interaction. In
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this section it is shown that these difficulties can be overcome
at least theoretically.

The considered system has the general form

u̇1 = a11u1 + ηsacu2 + a13u3 − u3
1 + D1u′′

1,

u̇2 = −ηsacu1 − u3
2 + D2u′′

2, (10)

u̇3 = a31u1 + a32u2 − u3
3,

where primes denote differentiation with respect to the sole
space coordinate x, ac is always positive for convenience, and
the value of ηs depends on the network structure type s: η1 =
η2 = 1, η3 = η4 = −1 (see Fig. 2). Note that (0,0,0) is the
uniform stationary state under any parameter values. In the
simulations only the cases with a32 = 0 will be considered;
however, using this parameter explicitly in the general form is
useful for the analysis.

Straightforward transformation of the equations allows us
to obtain the expression for the coordinates u2 of the uniform
stationary states, which can be presented as

a32u2 + ηs

{
−a31

ac
+

[
ac

a13

]3}
u3

2 +
13∑
j=2

Kju
2 j+1
2 = 0, (11)

where the signs of all the coefficients Kj coincide with the
sign of ηs[−1]s−1, i.e., they are all positive for s = 1, 4 and
negative for s = 2, 3. When ac > ap f ≡ 4

√
a3

13a31 , the cubic
term with respect to u2 has the same sign. As it may follow,
e.g., from simple geometric reasoning, in this case Eq. (11)
has one (zero) real root if the sign of a32 coincides with that
indicated in Fig. 2 (which is also the sign of ηs[−1]s−1) and
three real roots otherwise. If ac < ap f , then there are still
three real roots if sgna32 �= sgn(ηs[−1]s−1); otherwise, there
are five real roots under sufficiently small |a32| and one (zero)
real root otherwise. It is easy to see that each of these roots can
correspond to only one stationary state of the nondistributed
system, corresponding to Eqs. (10). This suggests that it un-
dergoes a pitchfork bifurcation when a32 changes its sign. It
is subcritical if ac < ap f and supercritical otherwise. If a32 is
fixed to zero, then in the absence of diffusion the stationary
state (0,0,0) is marginally stable under any value of ac. Under
ac > ap f it is the only stationary state, while under ac < ap f

two more stable states exist.
As it follows from Eq. (7) and the reasoning provided in

Sec. II B 3, in the absence of diffusion the uniform stationary
state (0,0,0) of the system of Eqs. (10) undergoes Hopf bifur-
cation if sgna32 = sgn(ηs[−1]s−1) at

ac = aH ≡ −
ηsa13a32 +

√
4a2

11a13a31 + a2
13a2

32

2a11
. (12)

Therefore, when ac < aH , state (0,0,0) is unstable. When
ac > aH , it is stable, and depending on the type of Hopf
bifurcation, either it is the only attractor ∀ac > aH (supercrit-
ical case) or a stable periodic attractor as well persists under
sufficiently low values of ac (subcritical case). Numerical sim-
ulations suggest that such behavior maintains under a32 = 0
(when aH = aTr = √

a13a31). The type of Hopf bifurcation
can be determined by weakly nonlinear analysis, which is
performed in Appendix B.

All these features of the system of Eqs. (10) suggest that
at a32 = 0 under sufficiently large values of ac it will always
have only one uniform stationary state, which is marginally
stable in absence of diffusion, with no other attractors. Un-
der the presence of diffusion the system will undergo Turing
instability and only that, since wave instability is impossible
(see Sec. II B 4). This makes this system a good candidate
for numerical investigation, which is performed in the next
section.

D. Numerical simulations

Numerical simulations were performed for all 1000 gener-
ated parameter sets in a one-dimensional domain of the length
L = 25 with no-flux boundary conditions. Initial conditions
corresponded to trivial uniform stationary state. The system
was subjected to random low-amplitude noise. Splitting with
respect to physical processes was used. During it, kinetic
equations were solved by a Runge-Kutta fourth-order method
and diffusion equations were solved by an implicit Crank-
Nicholson method. Time and space steps were selected so that
their decrease yielded no visible qualitative difference for the
solutions. The simulations were run until t = T = 3×105. For
four parameter sets two-dimensional simulations were per-
formed analogically, diffusion equations being solved using
the alternating direction implicit method. The computational
codes were implemented in C + + and can be found in the
Supplemental Material along with the visualizations of all 1D
simulations and their statistics [34].

At first a trivial control was implemented, i.e., using con-
stant ac = 10. In this case in 1D simulations at t = T clearly
visible Turing patterns were formed in 95.2% of cases. The
use of a dynamic control ac(t ) = min(0.01×104t/T , 10) in-
creased the rate of pattern formation before t = T to 99.7%,
while it was checked that in the three remaining cases the
patterns did form before t = 2T . In accordance with the the-
oretical reasoning, provided in Sec. III A, dynamic control
on average yielded greater characteristic length of patterns,
some of which were noticeably more regular. The number
of individual structures N (determined roughly as half of the
number of intersections of u3 distribution with x axis) on
average was ≈1.5 times less in the case of dynamic control.
At that, the amplitude of patterns P (determined as half of the
difference between maximum and minimum values of u3) on
average was less by ≈4%.

Figure 3 illustrates the process of Turing patterns forma-
tion under dynamic control in 1D in cases corresponding
to four different network structures as well as the resulting
patterns in 1D and the patterns obtained in 2D for the same
parameter sets. For each of the network structures, depending
on the parameter values, the process of patterns formation
in 1D could be qualitatively different. For some of the pa-
rameter sets the patterns appeared before the passages of
both Hopf bifurcation point (denoted via orange line) and the
point where additional uniform stationary states disappeared
(denoted via green line), like in Fig. 3(a). In other cases,
like in Fig. 3(b), the system was at first attracted to one of
these stable states. For some parameter sets uniform oscilla-
tions appeared transiently, and in some cases with subcritical
Hopf bifurcation they affected pattern formation even after the
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FIG. 3. Formation of Turing patterns in the systems: (a) u̇1 = −3.657u1 + ac(t )u2 + 5.133u3 − u3
1 + 0.294u′′

1, u̇2 = −ac(t )u1 − u3
2 +

32.661u′′
2, u̇3 = 0.083u1 − u3

3; (b) u̇1 = −0.069u1 + ac(t )u2 − 1.532u3 − u3
1 + 0.29u′′

1, u̇2 = −ac(t )u1 − u3
2 + 0.228u′′

2 , u̇3 = −0.021u1 − u3
3;

(c) u̇1 = −0.075u1 − ac(t )u2 + 0.759u3 − u3
1 + 2.588u′′

1 , u̇2 = ac(t )u1 − u3
2 + 4.815u′′

2, u̇3 = 2.492u1 − u3
3; and (d) u̇1 = −0.018u1 −

ac(t )u2 − 4.306u3 − u3
1 + 1.636u′′

1 , u̇2 = ac(t )u1 − u3
2 + 2.252u′′

2, u̇3 = −6.55u1 − u3
3 under dynamic control parameter ac(t ) =

min(0.01×104t/T , 10), T = 3×105. Lower pictures show evolutions of distribution of u3, the green line denotes the moment at which
pitchfork bifurcation changes its type from subcritical to supercritical, the orange line denotes the moment at which reverse Hopf bifurcation
takes place, which is supercritical for (a) and (b) and subcritical for (c) and (d). Middle pictures demonstrate distributions of u1 (red), u2

(green), and u3 (blue) at the moment T . Upper pictures show distributions of u3 in the two-dimensional case at the moment T .

passage of its point, like in Fig. 3(c). Moderate oscillations
of well-discernible nonhomogeneous patterns persisted until
the end of some simulations, like in Fig. 3(d), thus yielding
a mixed Turing-Hopf regime. Notably, all four variants of the
phase relations between the variables were produced in the
simulations, each one inherent to a certain network structure
in accordance with the rules, deduced in Ref. [28].

Although Turing patterns eventually formed under all the
parameter sets, their amplitudes varied by about three orders
of magnitude and the numbers of their structures also differed
substantially. Under dynamic control in five cases more than
100 structures fit into the computational region, while in seven
cases only half of a structure emerged, which effectively di-
vided the region into two parts of notably different levels of u3.
The following combinations of parameters, suggested by ana-
lytical results, showed a good correlation with the logarithms
of amplitudes and number of structures correspondingly:

α = lg

(
D2

D1
a13a31

)
, ν = lg

(
a13a31

D1D2

)
,

which is demonstrated in Fig. 4. This in particular suggests
that despite formally overcoming the need for differential
diffusivity, the increase of the ratio of diffusion coefficients
D2/D1 should nevertheless be beneficial for the manifestation
of patterns, which may be crucial under realistic noisy condi-
tions.

IV. DISCUSSION

In physics and chemistry, experimental control of various
spatiotemporal structures, including Turing patterns, is a pop-
ular area of research [35,36]. Generally, a control requires
knowledge of the parameter values [37] or/and implementa-
tion of complex feedback schemes relying on ongoing system
dynamics [38]. In this work, it was shown that in some sys-
tems with suitable sets of interactions between their elements
Turing patterns formation can be guaranteed by a simple
universal control under any values of parameters and in the
absence of feedback loops that would rely on a system state.

This concept was illustrated by analysis and simulations of
a simple three-component system. It was demonstrated that
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FIG. 4. Logarithm of (a) amplitudes P and (b) numbers N of Turing structures at the end of simulations of Eqs. (10) under control
ac(t ) = min(0.01×104t/T , 10) as functions of α = lg (D2a13a31/D1) and ν = lg (a13a31/[D1D2]) correspondingly.

a smooth monotonic increase of the control parameter for
the considered system should be more profitable in terms of
probability of Turing patterns formation in finite time in the
presence of external noise than just setting initially a suffi-
ciently large value of the control parameter. This is due to the
behavior of the dispersion curve with increase of the control
parameter, discussed in Sec. III A, i.e., the decrease of maxi-
mum linear growth rate of spatially inhomogeneous patterns.
From a biological point of view, such control may roughly
correspond, e.g., to the inflow of an externally produced en-
zyme, or its production due to some epigenetic switch, in
the area where Turing pattern formation is to take place, this
enzyme influencing the strength of the control interaction in
a corresponding network under the gradual increase of its
concentration and thus overall acting as a trigger of the pattern
formation.

Such a mechanism can be important for synthetic engi-
neering, as it allows generating Turing patterns in certain
networks by a simple universal control under any values of
system parameters, which in relevant biological systems are
often difficult to measure with desirable accuracy. Future work
will focus on identification of analogical mechanisms in more
complex and more realistic systems.
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APPENDIX A: BEHAVIOR OF λ(k) ON INCREASE OF |a12|
Let us recall the dispersion relation in the form

λ(k)3 − σ (k)λ(k)2 + �(k)λ(k) − �(k) = 0,

its coefficients being defined by Eqs. (3). We consider a
linearized system, corresponding to one of the network struc-
tures, depicted in Fig. 2, in a Turing regime, i.e., at |a12| >

atr [see Eq. (7)]. Therefore, ∀k σ (k) < 0, �(k) < 0, while
�(k) < 0 for k < kT [see Eq. (9)] and �(k) > 0 for k > kT .
Since �(k) changes its sign only once and no wave instability
is possible (see Sec. II B 4), two noncritical eigenvalues have
negative real parts for each k.

First, it can be seen from Eqs. (3) that �(k) is the only co-
efficient that depends on |a12| and lim|a12|→+∞ �(k) = +∞;
moreover, �(k) increases monotonically with increase of
|a12|. This infers that one of the eigenvalues, which can only
be the critical eigenvalue, tends to zero ∀k as |a12| → +∞.

Now let us prove that at least when k > kT λc(k) tends
to zero monotonically. Let us increase |a12| by an arbitrarily
value, denoting the corresponding increase of �(k) as d�(k)
and new critical eigenvalue as μc(k). Since kT does not de-
pend on |a12|, we can infer that μc(k) > 0. We obtain:

λc(k)3 − σ (k)λc(k)2 + �(k)λc(k) − �(k) = 0,

μc(k)3 − σ (k)μc(k)2 + [�(k) + d�(k)]μc(k) − �(k) = 0.

Subtracting the second equation from the first leads to

{
>0︷ ︸︸ ︷

λc(k)2 + λc(k)μc(k) + μc(k)2

>0︷ ︸︸ ︷
−σ (k)[λc(k) + μc(k)]

>0︷ ︸︸ ︷
+�(k)}[λc(k) − μc(k)]

=
>0︷ ︸︸ ︷

d�kμc(k),

and this inequality can be met only if μc(k) < λc(k), which
infers the proof of the considered proposition.

Finally, let us show that kM = arg max λc(k) → ∞ as
|a12| → ∞. It can be straightforwardly checked that for the
eigenvalues the following relations hold:

λc(k) = �(k)/[λ2(k)λ3(k)],

λ2(k) + λ3(k) = σ (k) − λc(k),

λ2(k)λ3(k) + λc(k)[λ2(k) + λ3(k)] = �(k).

It is known that ∀|a12| λc(k) → +0 as k → ∞, form which
it follows that λ2(k) + λ3(k) → σ (k). Using this, it is easy to
obtain a quadratic equation for the limit of the product of two
noncritical eigenvalues, which leads to (accounting for the fact
that it should be positive):

lim
k→∞

λ2(k)λ3(k) = 1
2 [�(k) +

√
�(k)2 − 4�(k)σ (k)].
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Apparently, ∀k as |a12| → ∞ this expression tends to
�(k), hence, λc(k) → �(k)/�(k). Straightforward calcula-
tions indicate that the maximum of this function is achieved at
k = 4

√−[a12a21 + a13a31]/[D1D2], which tends to infinity as
|a12| → ∞, confirming the considered proposition.

APPENDIX B: DETERMINING HOPF BIFURCATION TYPE

The type of Hopf bifurcation of the stationary state (0,0,0)
of the system of Eqs. (10) in absence of diffusion can be
determined via a multiscale technique, which is described,
e.g., in Ref. [39].

Let us represent the system in the following form:

d

dt

u︷ ︸︸ ︷(u1

u2

u3

)
=

L (ac )︷ ︸︸ ︷( a11 ηsac a13

−ηsac 0 0
a31 a32 0

)
u

h(u)︷ ︸︸ ︷
−

⎛
⎜⎝

u3
1

u3
2

u3
3

⎞
⎟⎠ .

The critical value of the control parameter ac for Hopf
bifurcation, aH , is given in Eq. (12). Note that Hopf bifur-
cation takes place as ac is decreased. The decomposition of
variables with respect to auxiliary smallness parameter ε has
the following form:

u = εu1 + ε2u2 + ε3u3 + · · ·,
ac − aH = ε2γ2 + · · ·,

d

dt
= H

d

dT
+ ε2 d

dτ
+ · · ·

where H is the imaginary part of the critical eigenvalue of
L (aH ):

H =
√−ηsa13a32

a11
aH .

Note that the linear terms in the decompositions of ac − aH

and d/dt are known to be equal to zero for Hopf instability.
To the first order of ε we obtain the following equation:[

L (aH ) − H
d

dT

]
uI = 0. (B1)

We seek a solution in the form

uI = c(τ )veiT + cc,

where c(τ ) is its amplitude. Up to a factor v is equal to

v =
(

2
H/[ηsa32aH − ia31H ]

−aHH/[ηsa31H + ia32aH ]
1

)
.

Since huu(u) is a zero vector, the equation for the second
order of ε coincides with Eq. (B1). Its solution nevertheless in
not included in the equation for the third order of ε, which is[

L (aH ) − H
d

dT

]
uIII = −γ2L

′
ac

uI + u3
I + duI

dτ
= qIII.

According to the theorem of the Fredholm alternative, the
following condition should be met in order for the solution of
this equation to exist:∫ 2π

0
v+ · qIIIdT = 0, (B2)

where v+ is the null eigenvector of

L +(aH ) =
(a11 + iH −ηsaH a31

ηsaH iH a32

a13 0 iH

)
,

which is up to a factor

v+ =
( −iH/a13

ηs[2
H − ia11H + a13a31]/[a13aH ]

1

)
.

In Eq. (B2) nonzero contributions on integration are given
only by terms of qIII that contain the factor eiT . With account
of this, straightforward calculations lead to the equation of the
following form, where z = εc:

∂z

∂t
= (ac − aH )P1z + P3|z|2z,

the general expressions for P1 and P3 being quite cumbersome.
Our goal, however, is only to determine the type of bifurcation
at a32 = 0, which follows from the sign of

lim
a32→0

Re(P1)

Re(P3)
= −2

3

a11a31
√

a13a31

a2
11[3a13 + a31] + a13a31[a13 − a31]

.

When this expression is positive, the system undergoes
subcritical bifurcation and otherwise a supercritical one.
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