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Lagrangian descriptors for the Bunimovich stadium billiard
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We apply the concept of Lagrangian descriptors to the dynamics on the Bunimovich stadium billiard, a two-
dimensional ergodic system with singular families of trajectories, namely, the bouncing ball and the whispering
gallery orbits. They play a central role in structuring the phase space, which is unveiled here by means of the
Lagrangian descriptors applied to the associated map on the boundary. More interestingly, we also consider the
open stadium, which in the optical case (Fresnel’s laws) can be directly related to recent microlaser experiments.
We find that the structure of the emission profile of these systems can be easily described thanks to the open
version of the Lagrangian descriptors.
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I. INTRODUCTION

The precise characterization of the structure of the phase
space of chaotic systems is of importance in many areas, and
at the same time a nontrivial task. In particular, the description
of the stable and unstable manifolds associated to unstable
periodic orbits (POs) has recently benefited from the introduc-
tion of a classical measure, the Lagrangian descriptors (LDs)
[1]. They can be easily evaluated [2–4] in comparison with
other methods like obtaining a Poincaré surface of section.
Their applications range from chemical dynamics [5–9] to
abstract mathematical objects like area preserving maps, dy-
namical systems for which discrete LDs have been devised
and applied to prototypical cases, like that of the Arnold’s cat
[10]. In this context, chaotic saddles associated to open [11]
or scattering [12] systems have been studied by a redefinition
of the LDs for open maps in [13]. In fact, eliminating the
trajectories going through an “opening” in phase space (a
given finite area region [14]) leaves just a repeller, which
is a fractal invariant set. The redefined measure adapts the
LD tool in order to reveal the structure embedded in these
repellers while keeping its simplicity. As a result, the homo-
clinic tangles associated to POs belonging to the repeller can
be very efficiently identified. This is a difficult task in general,
but we have shown how it can be easily done in the case of
the open tribaker map [13], where the obtained results can
be contrasted with those of the associated simple symbolic
dynamics. This allowed one to demonstrate once more the
usefulness of LDs.

It is of great interest for both theoretical and experimental
reasons to extend these concepts to realistic situations. This
can be achieved, for example, by considering billiard systems
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that are used as excellent models for resonator cavities in
many devices. Moreover, it is also important to implement
more general ways to make them open, going beyond the
just purely projective (complete) openings or abstract partially
open regions (see, for example, Ref. [13]). A very relevant ex-
ample is the escape of trajectories or rays following Fresnel’s
laws [15], which leads to many interesting mathematical prop-
erties and is directly applicable to optical microdisk cavities
with deformed boundaries [16].

In this paper, we apply LDs to a two-dimensional ergodic
billiard [the paradigmatic Bunimovich stadium (BS)]; more
specifically, to the corresponding map on the boundary using
Birkhoff coordinates, which captures all the essential features
of the dynamics. We find that two families of singular orbits,
namely, bouncing ball orbits (BBOs) and whispering gallery
orbits (WGOs), provide the foundations of the chaotic struc-
ture associated to the closed system phase space. Moreover,
we open the system by letting some trajectories escape ac-
cording to both a completely projective and also an optical
mechanism. The latter corresponds to one of the cavities used
in very recent microlaser experiments [17]. The enhanced vi-
sion of POs and their associated homoclinic tangles provided
by LDs for open maps allowed us to identify which of the
shortest ones are responsible for the main properties of the
emission in experimental situations. This throws new light
on the future design of these devices, as well as to all kinds
of resonator cavities (like microwave, for example). Also, it
reveals which kind of orbits outside of the purely projective
repeller could be relevant in the semiclassical theory of short
POs for partially open systems [18,19].

We have organized this paper in the following way: In
Sec. II we define the LDs used, we describe the main prop-
erties of the BS, and also those of the corresponding map on
the boundary written in Birkhoff coordinates. In Sec. III we
apply this definition to unveil the underlying structure of the
main manifolds that characterize the BS phase space in the
closed case and more importantly, to explain the properties of
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the emission in the optically open scenario. Our conclusions
are finally presented in Sec. IV.

II. LAGRANGIAN DESCRIPTORS AND THE
BUNIMOVICH STADIUM BILLIARD

Since chaotic maps are prototypical models that capture
all the essential features of chaotic dynamics, we restrict
ourselves to them in this work. Open maps are obtained by
considering a region of escape; in our case a two-dimensional
“hole” in our phase space expressed in terms of canonical
variables (q and p) by the function F (q, p), which will be
defined at the end of this section. This gives rise to an invariant
set, the fractal dimensional repeller, given by the intersection
of the forward and backward trapped sets. These sets are
built by computing the trajectories that never escape either
in the past or in the future, respectively. In order to obtain a
representation of the repeller we discretize the phase space
into an arbitrary finite number of smaller areas called Xi.
Then, the invariant set can be expressed in terms of a measure
μ(Xi ), which varies in these Xi regions. To compute μ(Xi ) we
evaluate the average intensity 〈It,i〉 for every Xi, in the limit
t → ∞. This average 〈·〉 = ∑N

(qi,pi )∈Xi
/N is performed over a

large number N of random initial conditions inside a given Xi.
In fact, for any pair of initial conditions (qi, pi ) ∈ Xi we assign
an initial intensity I (q,p)

0,i = 1. This intensity, which is a kind

of weight for each trajectory, evolves according to I (q,p)
t+1,i =

F (q, p)I (q,p)
t,i being updated at every hit on the boundary. We

emphasize that the function F (q, p) here is arbitrary and fully
characterizes the properties of the phase-space opening. A
finite time approximation to this measure (and the repeller)
can be obtained as μb

t,i ∩ μ
f
t,i, where μ

b, f
t,i = 〈It,i〉/

∑
i〈It,i〉 are

the finite time backward and forward trapped sets.
To understand the structure of the repeller, we use in this

work the definition of LDs for open maps of [13], adding the
contribution of N trajectories {qt , pt }t=t f

t=−t f
at each Xi, where

t ∈ N, as

LD = LD− × LD+

=
t=−1∑
t=−t f

(|qt+1 − qt |a + |pt+1 − pt |a)It

×
t=t f −1∑

t=0

(|qt+1 − qt |a + |pt+1 − pt |a)It , (1)

and normalizing the LD to 1. We use this definition of discrete
LDs for open maps, even for the area-preserving case, since
the structure of the manifolds is also better identified in this
way. We take a 28 × 28 square grid on the torus, N = 103

trajectories at each region Xi defined by this grid, and t f = 30
(unless otherwise specified).

A word regarding the significance of LDs is in order here.
This tool is ideal to reveal the phase-space structures that are
embedded in different regions, being them regular or chaotic.
In particular, they are able to identify in a clear-cut way the
structure of homoclinic tangles associated to POs in chaotic
domains. This is difficult to achieve by using Poincaré maps.
They are also suitable to see chains of regular islands in the

FIG. 1. (a) Bunimovich stadium billiard with one of the shortest
POs as an example. (b) Quarter (desymmetrized) billiard with the
corresponding version of the PO shown in (a). Notice the positive
direction of the q coordinate indicated by the curved arrow, and the
tangential momentum p = sin φ also positive in this case.

mixed part of phase space and also very elusive structures
such as cantori. Moreover, they are very easy to calculate
compared to other representations since they rely essentially
on trajectories’ arc lengths. It is also important to clarify the
role of parameter a appearing in Eq. (1). This corresponds to
taking the a norm, which for a = 1 is the so-called taxicab or
Manhattan norm, i.e., the distance corresponding to moving
in a rectangular grid to the final point. For different values it
works as a sensitivity parameter that sometimes allows one to
single out different underlying phase-space structures.

The map to which we apply this measure is the surface of
section corresponding to the phase space of the BS, shown in
Fig. 1(a). Notice that any differentiable curve equipped with
a coordinate q and another p orthogonal to it can be used for
our purposes. When considering billiards that are bounded by
rigid walls, one usually takes the boundary to construct the
surface of section in Birkhoff coordinates, i.e., the boundary
arc length q and the tangential momentum p at the bounces.
In this case the discrete times t of the map correspond to
the instants at which the trajectories hit the walls. In fact,
we consider just the boundary of the quarter (desymmetrized)
billiard measured from the upper-left corner and up to the right
one (corresponding to q = 0 and q = 1, respectively), and
the tangential momentum p = sin φ, where φ is the incident
angle with respect to the normal, as indicated in Fig. 1(b).
This reduction to the fundamental domain captures all the
dynamical properties of the full BS, making at the same time
a much more efficient use of the computational resources by
eliminating redundant calculations.

Finally, we define the opening function to obtain the open
map on the boundary as the composition of the correspond-
ing closed one with the function. In this work, we consider
two different functions in phase space. First (for illustrative
purposes) FR(q, p), with R being a reflectivity parameter that
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FIG. 2. LD for the Bunimovich stadium map on the boundary.
The left panels correspond to the closed Bunimovich stadium, and
the right ones show the results for the completely open case with
n = 3.3. The upper panels [(a) and (b)] correspond to a = 0.3 while
the lower ones [(c) and (d)] are for a = 0.9. In the right panels the
value of ptr is indicated by means of blue (black) horizontal lines.
The color code used here and in the following similar figures goes
from light to dark orange signaling lower to higher values of LD.

goes from complete escape for R = 0 to the closed map when
R = 1 [19]. The opening region, in this case, is the domain
given by the angle of total internal reflection which translates
into the corresponding ptr = 1/n value by using Snell’s law,
where n is the refraction index of the material from which
the BS cavity is fabricated. As such, this region is delimited
by −ptr � p � ptr for all q. More precisely, we take a con-
stant function given by the value of R in the opening and 1
elsewhere. In this case, we select a complete opening, i.e.,
R = 0 (some amount of the incoming trajectories is reflected
for other values). The second reflection mechanism is given
by a Fresnel-type reflectivity function [15] that involves a
partial escape at a dielectric interface. For transverse magnetic
polarization it is given by

Fn(q, p) =
[√

1 − (np)2 − n
√

1 − p2√
1 − (np)2 + n

√
1 − p2

]2

, (2)

the opening region being the same as in the previous case. The
function Fn(q, p) of Eq. (2) corresponds exactly to the situa-
tion arising in experimental setups, in particular for the case of
microlasers. In fact, this is a widely used expression to obtain
correct predictions that solve differences with measured data
arising when just considering the complete opening of the first
case. These differences are critical for quantum calculations
where the usual Weyl law needs to be carefully considered.

III. RESULTS

We first apply LDs to study the closed BS. The results
are presented in Figs. 2(a) and 2(c) for two different values
of the parameter in Eq. (1): a = 0.3 and 0.9, respectively.
We have evaluated the behavior of LD varying the a norm
in order to check if there is any important dependence on it,
when identifying the structures in the phase space. Our results
show that aside from an enhancement of some structures and
a blurring of others, no qualitatively different features can be
found due to the variation of the used norm. Moreover, it is
clear that the structure of the chaotic phase space is mainly
dominated by the manifolds emanating from the BBOs family.
This is a family of singular, i.e., marginally stable trajectories,
that constitute a continuous set along the lower values of the
boundary coordinate (corresponding to the straight segment of
the wall), impacting at an angle φ = 0. Also, the WGOs that
develop mainly along the boundary with very large values of
φ, play an important part in the phase-space structure. Indeed,
they give rise to the next relevant sets of manifolds emanating
from them, which are essentially located in a very narrow
region corresponding to the circular part of the boundary near
p = 1. Next, in Figs. 2(b) and 2(d) we present the effect on
this set of manifolds considering a complete opening in the BS
for n = 3.3. As can be seen, the BBOs are completely wiped
out along with their manifolds, while the WGOs survive in
the repeller. Actually, the latter are the dominating POs (with
their manifolds) for this case, completely ruling the structure
of the phase space.

We now further analyze the partially (Fresnel) open BS in
order to characterize the structure of the repeller beyond the
clear dominance of the WGOs. The top and bottom panels of
Fig. 3 show the results for two extreme cases, corresponding
to low and high values of n, respectively. In Fig. 3(a) we show
the case n = 1.5 (a = 0.3) where the ptr value is high. There
is a big opening through which most of the trajectories escape
and the only relevant surviving ones are the WGOs with a few
more orbits contributing to the structure of the repeller. To
find out which are the most significant, we take a = −0.3 and
eliminate the WGOs [see the results in Fig. 3(b)]. This leaves
just one relevant small area that is far from the ptr line. On
the other hand, at the other extreme, i.e., n = 5.0, we see that
although WGOs are again the main component of the repeller
[see Fig. 3(c) where we used a = 0.3], there are many more
POs and associated manifolds building it. This is due to the
fact that the opening is much smaller than in the previous
case. Also, there is a significant portion of the repeller in the
opening, rendering a morphology which is different from that
of the completely open or even the previous case. Again, by
taking a = −0.3 and eliminating the WGOs, we can see that
just two small regions mainly build the repeller, and that they
are far from the ptr line [see Fig. 3(d)].

In a recent series of very interesting experiments [17] the
emission at the boundary of a partially open BS following
Fresnel laws has been studied both theoretically and experi-
mentally. In order to compare with these experimental works,
we take n = 3.3 (considered in [15]), which is approximately
the experimental value and evaluate the same measures as be-
fore. In Fig. 4(a) we take a = 0.3 to obtain the corresponding
LD, which permits one to see the WGOs, as well as more POs
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FIG. 3. LD for the partially (Fresnel) open Bunimovich stadium
map on the boundary. The left panels correspond to a = 0.3 while the
right ones to a = −0.3. The upper panels show the n = 1.5 case and
for the lower ones n = 5.0. In all panels the value of ptr is indicated
by means of blue (black) horizontal lines.

and manifolds building the repeller [less than in the Fig. 3(c)
case, though] . As can be seen, there is also a portion of it
lying inside the opening. In order to reveal its structure beyond
the influence of the WGOs, we again take a = −0.3. The
corresponding results are shown in Fig. 4(b), where two small
regions can be noticed as the major contribution to the repeller
structure. One of them is located at both sides of the ptr line (at
around q = 1). To better understand the physical meaning of
this region, we have conducted a systematic search through
the first 200 POs of the BS reaching a maximum number
of bounces T = 14 with the full boundary [see Fig. 1(a)].
We have checked which of them pass through this enhanced
region. The results of this search are shown using green (gray)
circles in Fig. 4(b). These are all POs that have periodic points
in the map on the boundary that are either in the neighborhood
of WGOs or around the ptr line.

What do these relevant POs look like? To gain some insight
about their morphology, we present them in the left column
of Fig. 5, plotted in configuration space, by ascending length
order (from top to bottom). The first four are some of the
shortest possible POs, and only the last one is a bit longer.
Nevertheless, they all share a common main property: they
have a large portion that resembles the WGOs, and make
one or two bounces near ptr . In fact, they connect the highly
confined regions of the repeller with the opening. The desym-
metrized version of these POs, shown in the right column,
are illustrative of the fact that the economy of computational
resources provided by this approach does not affect capturing
all features of the dynamics.

Finally, we address an important related point, namely,
what is the role played by these POs (and its neighboring

FIG. 4. LD for the partially open Bunimovich stadium map on
the boundary, following Fresnel’s laws with n = 3.3. The value of ptr

is indicated by means of blue (black) horizontal lines. In (a) a = 0.3
and in (b) a = −0.3. The green (gray) circles in (b) show all the
periodic points associated to the shortest POs that pass through the
enhanced region around ptr .

region/homoclinic tangle) in the microlaser emission. To an-
swer this question, we have calculated the unstable manifold
of the partially open BS using the LD+ measure; the results
are shown in Fig. 6(a). Besides the fact that most of the escape
from the repeller happens at the circular part of the boundary,
it is hard to see any finer structure associated to a given
value of q. Moreover, it is worth noticing that determining
the structure of this manifold is not always straightforward
[17,20]; however, the LDs used here allowed us to do that in an
extremely simple way. Also recall that the unstable manifold
method [21–23] is widely accepted in order to make a the-
oretical prediction of the microlasers emission patterns [20],
at least when the wavelength is much smaller than the cavity
size, i.e., deep in the semiclassical regime. In this respect,
some works focused on the inner structure of the emission,
pointing toward POs of interest. In [24] the directionality
of the far-field emission was related to very short POs, in
particular the rectangle orbit of a specific case of the BS
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FIG. 5. Shortest POs that pass through the enhanced region of
LD around ptr shown in Fig. 4(b). In the left and right columns the
full and desymmetrized Bunimovich stadium versions, respectively,
are shown. The POs are ordered according to their lengths, and the
number of bounces T for the full case is indicated for each one of
them. Notice that PO 168 is the only fully symmetrical (with respect
to horizontal and vertical reflections) PO; we show an example of a
symmetry-related partner by means of PO 66.

with a short straight segment (thought of as a deformation of
boundaries associated to mixed phase spaces). Also, in [25] a
stable rectangle PO plays a central role in a mixed dynam-
ical scenario (and in the quantum regime). We next make
systematic our analysis by calculating the short time forward
evolution of 106 random initial conditions, located in small
domains around ptr in phase space. We call this Liouville
distribution L(q, p) (notice that for Lagrangian descriptors we
use the notation LD instead). We consider rectangles of a size
given by one region Xi along q and nine along p, centered at
ptr and at qic = 0.1, . . . , 1.0 with �q = 0.1. The evolution is
then carried out up to t f = 14, which is the maximum number
of trajectory bounces allowed in our previous search. The
results are shown in Figs. 6(b) and 6(c), where we can see
two significant examples of this. In the first case qic = 0.2 was
considered for the initial distribution, while in the second case
qic = 1.0 (see the small rectangles around ptr). It is clear that
for the smaller qic value the evolved density does not reveal
the features of the emission region of the repeller, while it
does for qic = 1.0. Obviously, some differences are observed
between the two cases, and we do not claim that just a single
orbit is responsible for all of the emission, but we do think
that a small set of them associated to a homoclinic tangle
can provide a very complete approximation to its structure.
As a matter of fact, if we look at results in Fig. 6(d), it can
be seen that the normalized cumulative distribution in the
opening D = ∫ ptr

−ptr
L d p as a function of q resembles that of

the complete unstable manifold D = ∫ ptr

−ptr
LD+d p. We also

plot the same results for the completely open scenario where
the behavior is generally similar but with some differences due
to the fact that a discontinuous function has been taken for the

FIG. 6. (a) LD+ for the partially open Bunimovich stadium map
on the boundary, following Fresnel’s laws with n = 3.3, which corre-
sponds to the unstable manifold. In (b) and (c), L distributions of 106

random initial conditions located at the black rectangles around ptr

(qic = 0.2 and qic = 1.0, respectively) and evolved up to time t f = 14
are shown. In all cases, the values of ±ptr are indicated by means of
blue (black) horizontal lines. (d) Normalized distribution D at the
opening region (from −ptr to ptr) as a function of q for the LD+ in
(a) [red (dark) line for the Fresnel opening and thin black line for the
corresponding distribution in the complete opening case] and for the
distribution in (c) [green (gray) line for the Fresnel opening and thin
orange (light gray) line for the complete opening]. In the inset we
show the overlap O (restricted to the opening) between the LD+ and
similar distributions to those in (b) and (c) but for different values of
qic [red (dark) line with filled circles for the Fresnel opening and thin
black line with empty circles for the corresponding distributions in
the complete opening case].

opening. This introduces more fluctuations, especially for the
case of the small rectangles evolution. In the inset we see that
the overlap O = ∫ ptr

−ptr

∫
q LD+ × L dq d p between the full dis-

tributions in the escaping region corresponding to the unstable
manifold and those at different qic are the worst for qic = 0.2
and the best for qic = 1.0, reaching here a remarkable 0.95
value in the Fresnel opening case. A similar behavior is found
in the completely open setting, but the worst results are now
enhanced by the lack of smoothing of the fractal structure of
the manifold, i.e., when the initial conditions are located at an
empty region they just disappear through the hole, and nothing
is reflected.

IV. CONCLUSIONS

In this work we have extended the application of the LD
classical measure to realistic open systems. By considering
the partially open BS with Fresnel’s laws we have addressed
an issue of great experimental interest, such as the emission
properties of microlasers and dielectric resonant cavities in
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general [17,25]. Nevertheless the LDs of the closed system
proved very useful in understanding the central role played
by BBOs, followed in relevance by the WGOs and their
associated manifolds, in structuring the chaotic phase space.
Opening the system induces the formation of a repeller whose
main characteristic is the lack of the BBOs and their main
manifolds, whose role is now taken over by the WGOs.

By using our definition of LDs for open systems [13] we
were able to unveil the inner structure of the repeller, espe-
cially in the escaping region. We have been able to identify
a set of short POs that pass through a small enhanced re-
gion of the repeller that is located near q = 1.0 and p = ptr .
We have found that they share the same morphology, be-
ing a kind of hybrid between WGOs (that act as a sort of
reservoir) and escaping trajectories. Given that the partially
open BS microlaser emission on the boundary [17] can be
determined by means of the unstable manifold calculation, we
have computed this magnitude by using our measure in a very
straightforward way. Moreover, we compared this distribution
with the ones obtained by means of a short time evolution of
initial conditions very close to the POs identified thanks to
the LDs. We have been able to quantitatively demonstrate in
this way that these POs provide all the relevant structure of

the escaping portion of the repeller. This leads us to conclude
that the interplay between the shape of the microcavity and
the index of refraction n can single out a small group of short
POs than can very well approximate the emission properties
in chaotic systems. Our method provides a systematic way to
find them. This is a very important result that should have a
large influence in the future design of microlasers [26,27].

Finally, we think that this work could be of relevance
at the time of considering smaller cavities, where a purely
classical calculation would not be enough to describe them.
In that scenario, the semiclassical theory of short POs [18,19]
will benefit from the identification of those orbits outside of
the completely open repeller that significantly contribute to
construct the partially open one in realistic situations.
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