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Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion
and cross advection
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We describe analytically, and simulate numerically, traveling waves with oscillatory tails in a bistable,
piecewise-linear reaction-diffusion-advection system of the FitzHugh-Nagumo type with linear cross-diffusion
and cross-advection terms of opposite signs. We explore the dynamics of two wave types, namely, solitary
pulses and their infinite sequences, i.e., periodic wave trains. The effects of cross diffusion and cross advection
on wave profiles and speed of propagation are analyzed. For pulses, in the speed diagram splitting of a curve into
several branches occurs, corresponding to different waves (wave branching). For wave trains, in the dispersion
relation diagram there are oscillatory curves and the discontinuous curve of an isola with two branches. The
corresponding wave trains have symmetric or asymmetric profiles. Numerical simulations show that for large
values of the period there exist two wave trains, which come closer and closer together and are subject to fusion
into one when the value of the period is decreasing. Other types of waves are also briefly discussed.
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I. INTRODUCTION

Spatiotemporal pattern formation in excitable (active) me-
dia can be modeled adequately in terms of reaction-diffusion
equations. While most theoretical descriptions assume a di-
agonal diffusion matrix, important applications require the
inclusion of off-diagonal terms, i.e., cross-diffusion terms
where the diffusion of a species depends on the gradient of an-
other species. Some of the earlier inquiries into this topic are
related to the model for interactions between tectonic plates
in seismology by Burridge and Knopoff [1–3] and other geo-
logical multiphase solids [4–6], the model for chemotaxis by
Keller and Segel [7,8], and the equations for the populations
of two competing species by Shigesada et al. [9]. Over the
years, the effects of cross diffusion were explored in various
areas, but most prominently in chemistry [10] and in biology
and ecology [11,12]. Recent works involve the investigations
of the formation of various types of patterns and waves, such
as Turing patterns and traveling waves [13–18].

The FitzHugh-Nagumo (FHN) equations [19,20], also
known as the Bonhoeffer–van der Pol model [21–23],
were originally introduced as a simplification of the
Hodgkin–Huxley model [24], which describes the propaga-
tion of an action potential along nerve fibers. The FHN model
is a system of two reaction-diffusion equations, where the
variable u = u(x, t ) represents the “activator” or potential
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variable and the variable v = v(x, t ) is the “inhibitor” or re-
covery variable. The FHN model has been extended to include
cross-diffusion effects [25–29]. We consider the specific case
that the cross-diffusion terms have opposite signs, i.e., the
cross diffusion is attractive-repulsive,

∂u

∂t
= u(1 − u)(u − a) − v + D

∂2u

∂x2
+ h

∂2v

∂x2
, (1a)

∂v

∂t
= ε(u − v) + D

∂2v

∂x2
− h

∂2u

∂x2
. (1b)

The reaction part contains two positive parameters, namely,
the excitation threshold a and the ratio of timescales ε. The
diffusive part contains two positive constants, D and h, which
are the self- and cross-diffusion coefficients, respectively.

Motivated by wave existence arguments for such nonlinear
evolution equations, we consider here a generalization of the
cross-diffusive FHN model to one with cross advection to
explore the interplay of cross diffusion and cross advection on
the dynamics of traveling waves. While cross diffusion is well
understood in physicochemical systems [10] and ecological
systems [11], and its effects in excitable systems have been
studied over the last decades (see, for example, [12,25,30]),
cross advection, where the motion of one species comes about
due to the motion of another species, occurs more rarely and
has received less attention. The origins of cross advection in
physical, chemical, geophysical, and ecological systems and
the motivation for studying the effects of cross advection have
been discussed in detail in Ref. [31]. We will not repeat that
discussion here and will mention only briefly that though
cross advection is rare in physical and chemical systems, it
is by no means unknown. Two examples are oxygen-limited
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biodegradation in three-dimensionally heterogeneous aquifers
[32] and thermosolutal and binary fluid convection [33]. How-
ever, most studies of cross-advection effects are found in
the biological, ecological, and population dynamics literature.
An example of cross advection is a two-species population,
where a parasite moves by convection of a host [12,30].
Cross-advection terms are also found in models for vegeta-
tion patterns in arid environments (see, for example, [34,35]),
models for moving filaments [36] and directed particle flow
[37], descriptions of fully nonlinear strongly coupled compet-
itive systems [38], and models of run-and-tumble dynamics
for bacteria [39].

The paper is organized as follows. We describe the model
in Sec. II. Section III contains the analytical solutions of the
model and a discussion of the propagation behavior for soli-
tary pulses. Wave trains are considered in Sec. IV. We discuss
some aspects of the problem and summarize our results in
Sec. V

II. MODEL

The FHN model with cross diffusion and cross advection
[31] is described by the equations

∂u

∂t
= u(1 − u)(u − a) − v + D

∂2u

∂x2
+ h

∂2v

∂x2
+ j

∂v

∂x
, (2a)

∂v

∂t
= ε(u − v) + D

∂2v

∂x2
− h

∂2u

∂x2
− j

∂u

∂x
. (2b)

We consider the specific case that the cross-advective terms
have opposite signs, similar to the cross-diffusive terms, and
are characterized by one positive constant j. This choice is
motivated by previous work [40–42] on the reaction-diffusion
system with cross diffusion of opposite signs where we found
solitary pulses, periodic wave trains, fronts of complex shapes
(pulse-front waves), and bound states of pulses (multipul-
sons). Our goal here is to assess the additional effect of cross
advection on the wave behavior in systems where the cross-
diffusion and the cross-advection terms are of the same type,
i.e., opposite signs for both.

To solve the system analytically, we consider the case
ε = 1, as in previous studies, and apply McKean’s piecewise-
linear approximation [43–45], where the cubic nonlinearity
in the activator equation is replaced by the Heaviside func-
tion, H (u − a), so that the FHN model is described by the
equations

∂u

∂t
= −u − v + H (u − a) + D

∂2u

∂x2
+ h

∂2v

∂x2
+ j

∂v

∂x
, (3a)

∂v

∂t
= ε(u − v) + D

∂2v

∂x2
− h

∂2u

∂x2
− j

∂u

∂x
. (3b)

We focus our attention here on traveling waves, specifically
on solitary pulses and infinite sequences of pulses, i.e., peri-
odic wave trains.

III. SOLITARY PULSES

First we consider traveling wave solutions of the solitary
pulse type. The traveling pulses form a homoclinic trajectory
in the phase plane (u, v) and in the piecewise-linear model
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FIG. 1. Speed of the pulse waves as a function of the

cross-diffusion coefficient, c = c(h). The values of the excitation
threshold, the ratio of the timescales, and the self-diffusion and
cross-advection coefficients are fixed at a = 1/4, ε = 1, D = 1, and
j = 1, respectively. Results of analytical calculations are marked by
circles (narrow wave) and diamonds (wide wave), while numerical
simulations are marked by crosses.

consist of three parts that are fitted together using a specific
matching procedure. The three parts of the pulse solutions are
given by [40]

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )], (4a)

u2(ξ ) = ek+ξ [A21 cos(l−ξ ) + A23 sin(l−ξ )] +
ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2, (4b)

u3(ξ ) = ek−ξ [A32 cos(l+ξ ) + A34 sin(l+ξ )], (4c)
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FIG. 2. Speed of the pulse waves as a function of the cross-

advection coefficient, c = c( j). The values of the excitation thresh-
old, the ratio of the timescales, and the self- and cross-diffusion
coefficients are fixed at a = 1/4, ε = 1, D = 1, and h = 2, re-
spectively. Results of analytical calculations are marked by circles
(narrow wave) and diamonds (wide wave), while numerical simula-
tions are marked by crosses.
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FIG. 3. Solitary pulse waves for weak cross advection. Profiles for the activator u = u(ξ ) (a,d,g), for the inhibitor v = v(ξ ) (b,e,h), and
in the (u, v)-phase plane (bold lines) (c,f,i). The waves propagate with the speed c ≈ −3.0525 (a,b,c), c ≈ −3.0535 (d,e,f), and c ≈ −3.2267
(g,h,i). The cross-advection coefficient is fixed at j = 1. The excitation threshold, the ratio of the timescales, and the self- and cross-diffusion
coefficients are fixed at a = 1/4, ε = 1, D = 1, and h = 2, respectively. The middle parts, u2 and v2, of the pulses are indicated by the gray
color. The nullclines f (u, v) = −u − v + H (u − a) = 0 and g(u, v) = u − v = 0 are marked by thin lines in panels (c,f,i).

for the activator variable, and

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )], (5a)

v2(ξ ) = ek+ξ [B21 cos(l−ξ ) + B23 sin(l−ξ )] +
ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2, (5b)

v3(ξ ) = ek−ξ [B32 cos(l+ξ ) + B34 sin(l+ξ )], (5c)

for the inhibitor variable.
Here the notations k± and l± stand for k± = ±y − p and

l± = z ± q, respectively, where [31]

p = cD + jh

2(D2 + h2)
, (6a)

q = ch − jD

2(D2 + h2)
, (6b)

b = p2 − q2 + D + h

D2 + h2
, (6c)

d = 2pq − D − h

D2 + h2
, (6d)

y =
√

(
√

b2 + d2 + b)/2, (6e)

z =
√

(
√

b2 + d2 − b)/2. (6f)

The integration constants B are expressed as

B1,3 = − 1

γ 2
1 + δ2

1

[(α1γ1 + β1δ1)A1,3 ∓ (α1δ1 − β1γ1)A3,1],

(7a)

B2,4 = − 1

γ 2
2 + δ2

2

[(α2γ2 + β2δ2)A2,4 ∓ (α2δ2 − β2γ2)A4,2],

(7b)

with

α1 = D(k2
+ − l2

−) + ck+ − 1, β1 = l−(2Dk+ + c),

γ1 = h(k2
+ − l2

−) + jk+ − 1, δ1 = l−(2hk+ + j),

α2 = D(k2
− − l2

+) + ck− − 1, β2 = l+(2Dk− + c),

γ2 = h(k2
− − l2

+) + jk− − 1, δ2 = l+(2hk− + j).

(8)

The dynamics of the pulse waves is illustrated by the speed
diagrams in Figs. 1 and 2. The first diagram displays the be-
havior of the wave speed c as a function of the cross-diffusion
coefficient h, while the second one displays the behavior as
a function of the cross-advection coefficient j with all other
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FIG. 4. Solitary pulse waves for strong cross advection. Profiles for the activator u = u(ξ ) (a,d,g,j,m,p), for the inhibitor v = v(ξ )
(b,e,h,k,n,q), and in the (u, v)-phase plane (bold lines) (c,f,i,l,o,r). The waves propagate with the speed c ≈ −3.0123 (a,b,c), c ≈ −3.0903
(d,e,f), c ≈ −3.0906 (g,h,i), c ≈ −3.1051 (j,k,l), c ≈ −3.1378 (m,n,o), and c ≈ −3.2947 (p,q,r). The cross-advection coefficient is fixed at
j = 1.6; all other parameters are the same as in Fig. 3.
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model parameters fixed. The plot of c as a function of h shows
that the speed of the pulses increases (in the absolute value)
as the cross-diffusion coefficient increases. The range of the
cross-diffusion coefficient shown, h ∈ [0.01, 4], splits up into
two intervals, namely, [0.01,1.4] and [1.6,4]. (No points were
calculated in between the two intervals.) In the first interval,
two pulses exist, the narrow wave (marked by circles in the
figure) and the wide one (marked by diamonds). The narrow
wave is slow whereas the wide one is fast. The situation
changes substantially in the second interval, where (i) three
waves appear, one narrow wave and two wide waves, and
(ii) the points in the diagram corresponding to the narrow
and wide waves change places with each other, so that now
the narrow wave (circles) is fast while the two wide waves
(diamonds) are slow. The two wide waves differ by their width
but have almost the same speed values, so that they are not vi-
sually distinguishable in the speed diagram. The related wave
profiles for the activator u and inhibitor v variables and the
(u, v)-phase planes are plotted in Figs. 3(a,b,c) and 3(d,e,f) for
the two wide waves and in Figs. 3(g,h,i) for the narrow wave.

The second speed diagram, Fig. 2, shows the dependence
of c on j, which displays a more complex behavior. When
the cross-advection coefficient j is small, there exists only
one narrow wave. Then the wide wave appears as j in-
creases. At j = 1, already two wide waves occur, and they are
visually distinguishable at j = 1.4. The appearance of ad-
ditional waves, the wave branching, evolves rapidly, and
there exist six pulses at j = 1.6. With further increases of
j > 1.7, the oscillations in the pulse profiles grow and the
wave shape exhibits a pattern, which is an extension of the
pulse solutions that intersect a = 1/4 many times. In other
words, such a pulse must consist of more than three parts,
and this construction can not be described by the approach
used here. Consequently, we restrict our consideration to j =
1.6 and plot the associated six waves in Fig. 4. We observe
two waves, which are almost the same, in Figs. 4(d,e,f) and
4(g,h,i). These waves differ slightly in their widths (25.92 and
25.036) and in their speed values (−3.0903 and −3.0906).
Note that this wave branching does not represent some kind
of self-replication process of the pulses. We emphasize that
this phenomenon differs substantially from the wave splitting
observed in Ref. [46], where two or more waves appear to-
gether simultaneously in the medium. In our case there is only
one pulse in the medium at each instant of time; the branching
occurs in parameter space, i.e., in the speed diagram.

The appearance of multiple pulse solutions, the multiwave
regime, requires a more detailed analysis of the stability of
these waves. To evaluate the stability of the solutions, we
have obtained the solutions numerically from the PDEs of
the basic model (3). The results of numerical simulations for
the propagation of the pulse waves are shown in the speed
diagrams in Figs. 1 and 2 marked by crosses. They reveal
that only one pulse solution, marked by diamonds in both
figures, is realized, i.e., is stable. The numerical simulations
show that the wave from Figs. 4(m,n,o) is stable. The nu-
merical result for speed is c = −3.126 and the analytical
result is c = −3.1378. During the numerical simulations of
the process of wave formation, several waves with different
speed values appear, but only the wave with the above speed
survives, indicating that the other five waves are unstable.
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L
FIG. 5. Speed of the periodic wave train as a function of the

period (dispersion relation), c = c(L), for strong cross advection,
j = 1.6; all other parameters are the same as in Fig. 3. Wave trains
with symmetric profiles are marked by circles, while asymmetric
waves are marked by diamonds and squares (analytical calculations).
Results of numerical simulations are marked by crosses.

IV. PERIODIC WAVE TRAINS

Next we consider infinite sequences of pulses, i.e., periodic
wave trains. The wave trains form a closed smooth trajectory
in the (u, v)-phase plane and in the piecewise-linear model
consist of two parts that are matched together. The two parts
of the wave train solutions are given by [40]

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )]

+ek−ξ [A12 cos(l+ξ ) + A14 sin(l+ξ )], (9a)

u2(ξ ) = ek+ξ [A21 cos(l−ξ ) + A23 sin(l−ξ )]

+ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2 (9b)

for the activator variable, and

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )]

+ek−ξ [B12 cos(l+ξ ) + B14 sin(l+ξ )], (10a)

v2(ξ ) = ek+ξ [B21 cos(l−ξ ) + B23 sin(l−ξ )]

+ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2 (10b)

for the inhibitor variable.
The dynamics of the wave trains is illustrated by the dis-

persion relation, which reflects the dependence of the speed
c of the wave train on the period of the wave train L. The
dispersion relation diagram is shown in Fig. 5 when the
cross-advection effect is strong, as in Fig. 4 for the solitary
pulses. The diagram shows that there exist three types of
curves, indicated by circles, diamonds, and squares in the
figure. As expected, for wave trains with oscillatory tails
the dispersion relation shows oscillatory behavior, the circles
and diamonds in the figure. However, there is an unexpected
feature, namely, an isola, i.e., a discontinuous curve with two
branches, represented by the squares in figure. The wave trains
corresponding to the circles in the diagram have a symmetric
profile, where the inner matching point, which is inside of the
period, is in the middle. These wave trains are shown in Fig. 6
for increasing the period L; all other parameters are fixed.
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FIG. 6. Periodic wave trains with symmetric profiles (corresponding to circles in Fig. 5; one period is shown) for the activator u = u(ξ )
(a,d,g,j), for the inhibitor v = v(ξ ) (b,e,h,k), and in the (u, v)-phase plane (bold lines) (c,f,i,l). Panels (a,b,c) correspond to the period L = 5,
where the calculated speed is c ≈ −3.2879, panels (d,e,f) to L = 15, where the calculated speed is c ≈ −3.1777, panels (g,h,i) to L = 20,
where the calculated speed is c ≈ −3.1230, and panels (j,k,l) to L = 40, where the calculated speed is c ≈ −3.0910. The cross-advection
coefficient is fixed at j = 1.6; all other parameters are the same as in Fig. 3. The first parts, u1 and v1, of the wave trains are indicated by the
gray color.

The wave trains corresponding to the diamonds and squares
in the diagram have asymmetric profiles and are shown in
Figs. 7 and 8, respectively. For each asymmetric case there
exist two wave trains: one wave train with the inner matching
point ξ0 placed in the (0, L/2) interval and one wave train with
ξ0 ∈ (L/2, L). Both of these wave trains have the same value
of the propagation speed and have profiles that are rearranged
with respect to one another when the inner matching point
changes its location from (0, L/2) to (L/2, L). Therefore we
show in Figs. 7 and 8 only one wave train, namely, the one
with ξ0 ∈ (0, L/2).

The asymmetric wave trains corresponding to the dia-
monds and the squares differ in size: the “diamond” wave
train is small and localized near the second fixed point at

u = v = 1/2 in the (u, v)-phase plane, Figs. 7(c,f,i,l). This
is the case because the inner matching point is placed in
the (0, L/2) interval. The asymmetric wave train with ξ0 ∈
(L/2, L), which is not shown, is localized near the first fixed
point at u = v = 0. The “square” wave train is large and visits
the vicinity of both fixed points, Figs. 8(c,f,i,l), but inner loops
in the (u, v)-phase plane appear near the second fixed point at
u = v = 1/2 due to the choice of ξ0, as for the “diamond”
wave train. The “square” wave trains are shown in Fig. 8
mostly for the slow wave, in terms of the absolute value of the
speed, corresponding to the upper branch of the speed curve in
Fig. 5, with the exception of Figs. 8(j,k,l), where the “square”
wave train corresponding to the lower branch is displayed for
comparison.
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FIG. 7. Periodic wave trains with asymmetric profiles (corresponding to diamonds in Fig. 5; one period is shown) for the activator u = u(ξ )
(a,d,g,j), for the inhibitor v = v(ξ ) (b,e,h,k), and in the (u, v)-phase plane (bold lines) (c,f,i,l). Panels (a,b,c) correspond to the period L = 5,
where the calculated speed is c ≈ −3.3561, panels (d,e,f) to L = 9, where the calculated speed is c ≈ −3.3438, panels (g,h,i) to L = 12, where
the calculated speed is c ≈ −3.2393, and panels (j,k,l) to L = 20, where the calculated speed is c ≈ −3.2988. The cross-advection coefficient
is fixed at j = 1.6; all other parameters are the same as in Fig. 3. The first parts, u1 and v1, of the wave trains are indicated by the gray color.

All wave trains are calculated for characteristic values of
the period where the shape of the wave train profile changes
significantly. The symmetric wave train at L = 5 has simple
sinelike profiles, Figs. 6(a,b), and a one-loop shape in the
(u, v)-phase plane, Fig. 6(c). Then at L = 15, the profiles
become deformed, Figs. 6(d,e), so that there is a pair of
cusps in the (u, v)-phase plane, Fig. 6(f). When the period
is increased further, the oscillations in the profiles become
more pronounced, Figs. 6(g,h), and the two cusps transform
into two inner loops at L = 20, Fig. 6(i). Such a process of
inner loop formation repeats again; at L = 40, Fig. 6(l), two
“new” inner loops appear inside the “old” inner loops. We did
not perform calculations for L > 40, due to the limitations of
our two-part construction for the wave train. When the period
is sufficiently large, the oscillations in the profiles become

too strong and intersect the line corresponding to the inner
matching point, so that a construction with more than two
parts needs to be considered. Nevertheless, we expect that the
process of inner loop formation occurs over and over again as
the period is increased. The scenario of the profile oscillation
growth with the loop formation in the phase plane remains the
same also for both asymmetric wave trains pictured in Figs. 7
and 8, except for a single inner loop and for different values
of the period.

The results of numerical simulations for the propagation
of the wave trains are also shown in the dispersion relation
diagram in Fig. 5, marked by crosses. The calculations were
started at a value of L = 34. The period was then decreased,
down to L = 5.5. The numerical results show that for large
values of the period there exist two wave trains, which were
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FIG. 8. Periodic wave trains with asymmetric profiles (corresponding to squares in Fig. 5; one period is shown) for the activator u = u(ξ )
(a,d,g,j), for the inhibitor v = v(ξ ) (b,e,h,k), and in the (u, v)-phase plane (bold lines) (c,f,i,l). Panels (a,b,c) correspond to the period L = 12,
where the calculated speed is c ≈ −2.9375, panels (d,e,f) to L = 18, where the calculated speed is c ≈ −2.9374, and panels (g,h,i) and (j,k,l)
to L = 25, where the calculated speeds are c ≈ −2.9346 (g,h,i) and c ≈ −3.0138 (j,k,l). The cross-advection coefficient is fixed at j = 1.6;
all other parameters are the same as in Fig. 3. The first parts, u1 and v1, of the wave trains are indicated by the gray color.

obtained using different initial perturbations in the medium.
The data for the first wave train fit well the upper branch
of the “square” curve for L � 17.5 in the figure, while the
data for the second wave train correspond to the “circle”
curve with small deviations from the analytical results at
L ≈ 20, . . . , 22, 27. When the value of the period continues
to decrease, these two wave trains come closer and closer
together and are subject to fusion into one wave at L ≈ 16,
so that for small values of the period, L < 16, only the wave
train with a symmetric profile (circles) is realized.

V. CONCLUSIONS

Fronts, pulses, and wave trains belong to the three basic
nonlinear waves that are quintessential for excitable systems

like the FHN model. Previous studies showed that the inclu-
sion of cross-diffusion effects in the FHN model leads to new
features, such as the existence of fronts with complex shape,
the pulse-front waves [41], as well as bound states of pulses,
finite pulse trains or multipulsons [42] with specific behav-
ior of propagation, namely, solitonic-type interaction upon
collision [30]. We expected therefore that the inclusion
of cross advection in addition to cross diffusion would
give rise to new spatiotemporal behavior. We discussed
briefly in Sec. I, referring to Ref. [31], the motivation
for including cross-advection terms and provided several
applications where such terms are encountered. In our pre-
vious work [31] we focused on fronts in the FHN systems
with cross advection. The other two types of basic travel-
ing waves in reaction-diffusion systems are solitary pulses
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and their infinite sequences (periodic wave trains). Soli-
tary pulses and the periodic wave trains differ crucially
from fronts and require a separate treatment, performed in
this work.

We have considered here such an extension of the FHN
model with cross advection and obtained the wave solutions
for pulses and wave trains. The solutions for fronts were
obtained earlier in Ref. [31]. Specifically, we have studied
the bistable piecewise-linear FitzHugh-Nagumo model with
linear cross-diffusion and cross-advection terms with oppo-
site signs and obtained the traveling wave solutions and
the speed diagrams for solitary pulses and for infinite se-
quences of pulses, i.e., periodic wave trains. Fronts, pulses,
and wave trains are also observed in the original bistable
FHN model with cross diffusion [40,47], but we note that
the latter two types of waves show more complex dynamics
in the model studied here compared with the FHN model
with cross diffusion only. The speed versus cross-advection
coefficient diagram for pulses exhibits wave branching where

a single curve splits up into many branches, corresponding
to waves with different profiles and speed values. The dis-
persion relation for wave trains is anomalous and contains
oscillatory curves, as well as an isola, a discontinuous curve
with two branches. Numerical simulations show that for large
values of the period there exist two wave trains, which come
closer and closer together are finally subject to fusion into
one wave train as the value of the period is decreased. Our
results reveal that the inclusion of cross advection does in-
deed have nontrivial effects which change qualitatively the
spatiotemporal dynamics of reaction-diffusion systems with
cross diffusion.

Here we have described solitary pulses and the periodic
wave trains in the piecewise-linear FHN reaction-diffusion
system with cross diffusion and cross advection, each
of opposite sign. We plan to investigate other types of
waves in this system elsewhere. A second direction for
future works concerns the stability analysis of different
solutions.
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