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Magnetic lump motion in saturated ferromagnetic films
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In this paper, we study in detail the nonlinear propagation of a magnetic soliton in a ferromagnetic film.
The sample is magnetized to saturation by an external field perpendicular to film plane. A generalized (2 + 1)-
dimensional short-wave asymptotic model is derived. The bilinearlike forms of this equation are constructed
and exact magnetic line soliton solutions are exhibited. It is observed that a series of stable lumps can be
generated by an unstable magnetic soliton under Gaussian disturbance. Such magnetic lumps are highly stable
and can maintain their shapes and velocities during evolution or collision. The interaction between lump and
magnetic solitons, as well as the interaction between two lumps, are numerically investigated. We further discuss
the nonlinear motion of lumps in ferrites with Gilbert damping and inhomogeneous exchange effects. The
results show that the Gilbert-damping effects make the amplitude and velocity of the magnetic lump decay
exponentially during propagation. And the shock waves are generated from a lump when quenching the strength
of inhomogeneous exchange.
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I. INTRODUCTION

The propagation of electromagnetic waves in ordered mag-
netic materials, especially in a ferromagnetic medium, plays
a vital role in faster and higher density storage fields [1–3].
In particular, magnetic soliton (MS), which exists in both
ferro- and antiferromagnets, is becoming a very promising
information carrier because of its particlelike behavior and
maneuverability [4–9]. In the past few decades, a wide range
of soliton-type propagation phenomena has been theoretically
predicted [10–13], and some of them have been confirmed
experimentally [14,15].

Indeed, wave propagation in ferromagnetic media is well
known as a highly nonlinear problem. A complete descrip-
tion of all types of nonlinear excitations is governed by the
Maxwell equations coupled with the Landau-Lifschitz equa-
tion. Now, let us note that a fully nonlinear theory has not
been developed. But the linear theory for sufficiently small
amplitudes was established and validated experimentally [16].

In order to obtain results valid in nonlinear regimes, or
at least weakly nonlinear, one has to resort to intermediate
models (by introducing a small perturbative parameter related
to the soliton wavelength) [17]. These models include long-
wave model [18–20], modulational asymptotic model [21],
and short-wave model [22–25]. Both long-wave model and
modulational asymptotic model are mainly used to explain
and predict the behavior of large-scale phenomena owing to
their long-wave-type approximate condition [26]. However,
this condition is not always applicable because the scale of
magnetic materials and devices is getting more refined and
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more sophisticated. Moreover, the main practical interest of
ferrites is that they propagate microwaves [27,28]. On the
contrary, from the viewpoint of applied physics, the short-
wave-type approximation is much more relevant to available
experiments than the former one.

Since Kraenkel et al. first proposed the short-wave model
[29], quite a few related nonlinear evolution equations have
been derived, which belong to the Kraenkel-Manna-Merle
(KMM) system [22,23,30–32]. Some significant works have
been devoted to searching and explaining different excita-
tion patterns of ferromagnetic insulators. As for the (1 +
1)-dimensional KMM system, the existence of multival-
ued waveguide channel solutions has been verified, and
the nonlinear interaction properties were investigated be-
tween the localized waves alongside the depiction of their
energy densities [22]. By applying the Hirota bilinear trans-
formation method, the one- and two-soliton solutions were
constructed while studying in detail the solitons scattering
properties [23]. This system is also solvable using the in-
verse scattering method [25]. It is noteworthy that this system
possesses the loop-soliton and spikelike soliton [33,34], and
the magnetic loop-soliton dynamics have been extensively
studied [35–37]. The propagation of electromagnetic waves
in higher-dimensional ideal ferromagnets has also been stud-
ied, corresponding to the (2 + 1)-dimensional KMM system
[26,31,38,39]. The analytical one-line-soliton solution as well
as its transverse stability have been reported [26]. It has been
shown that these structures were stable under certain condi-
tions.

On the other hand, most previous studies have only fo-
cused on the propagation of MS in ideal ferrites, which
means some important properties of the magnetic material
were neglected. The main reason is that the nonlinear wave
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FIG. 1. Ferrite film under consideration. The sample is magne-
tized to saturation by long strong magnetic field H∞

0 applied in
the z direction. The x direction of the short-wave propagation is
perpendicular to the direction of static magnetization.

equation describing the propagation of electromagnetic waves
in nonideal ferromagnetic materials is no longer integrable.
However, the Gilbert damping and inhomogeneous exchange
effects are essential features in a real ferromagnetic film, and
their connection with MS motion is an important issue that has
not been explored so far. In this paper, we aim to investigate
theoretically and numerically the dynamics of the MS in a fer-
romagnetic film including damping and the inhomogeneous
exchange effect. The rest of this paper is organized as follows.
In Sec. II, we review the physical background and derive
a new (2 + 1)-dimensional short-wave asymptotic model in
ferromagnetic media. In Sec. III, the bilinearlike form of the
reduced system is constructed and the analytical MS solutions
are acquired. In Sec. IV, the transmission stability of the mag-
netic soliton is numerically explored. The results show that
an unstable MS will split to some magnetic lumps by a small
perturbation. The motions of these lumps under the influence
of damping and inhomogeneous exchange are analyzed in
detail. We end this work in Sec. V with a brief conclusion
and perspectives.

II. PHYSICAL BACKGROUND

A. Basic equations

The physical system under consideration is a saturated
magnetized ferrite film lying in the x-y plane, as shown
in Fig. 1. Different from Ref. [32], we consider the exter-
nal field H∞

0 perpendicular to the film, i.e., M0 = (0, 0, m).
So the transverse drift is avoided. The typical thickness
of the film is about 0.5 mm, and the width is approxi-
mately 10 mm. We assume the propagation distance is large
enough with regard to the wavelength, say more than 50 cm.

The evolution of the magnetic field H and the magneti-
zation density M is governed by the Maxwell equations
coupled with the Landau-Lifschitz-Gilbert equation, which
read as

−∇(∇ · H) + �H = 1

c2

∂2

∂t2
(H + M), (1a)

∂

∂t
M = −γμ0M × Heff + σ

Ms
M × ∂

∂t
M,

(1b)

where c = 1/
√

μ0ε̃ is the speed of light with the scalar per-
mittivity ε̃ of the medium, γ is the gyromagnetic ratio, μ0

being the magnetic permeability of the vacuum, σ is the
damping constant, and Ms is the saturation magnetization. The
effective field Heff is given by [30]

Heff = H − βn(n · M) + α�M. (2)

Here α and β are the constants of the inhomogeneous
exchange and the magnet anisotropy (β > 0 corresponds to
the easy-plane case), respectively. For a simple tractability, the
unit vector n of the anisotropy axis is assumed to be along the
z axis (i.e., n ≡ ez). In order to transform the above systems
to a dimensionless equation, we rescale the quantities M, H,
and t into μ0γ M/c, μ0γ H/c, and ct . Thus, the constants
μ0γ /c and c in Eqs. (2) and (3) are replaced by 1, Ms by
m = μ0γ Ms/c, and σ by σ̃ = σ/μ0γ [30].

B. Linear analysis

To study the linear regime we look at a small perturbation
of a given solution. Equations (1) are linearized about the
steady state:

M0 = (0, 0, m), H0 = μM0, (3)

where μ is the strength of the internal magnetic field. Before
proceeding further, we assume that the ferromagnetic mate-
rials have weak damping σ̄ ∼ εσ̃ . The exchange interaction
parameter α and anisotropy parameter β are of order ε2 and
ε3, respectively (i.e., ᾱ = ε2α, β̄ = ε3β). Let us seek for the
plane-wave perturbation solution propagating along the x di-
rection such as

M = M0 + εm exp[i(kx + ly − ωt )],

H = H0 + εh exp[i(kx + ly − ωt )],
(4)

where k and l are the wave numbers in the x and y directions,
and ω is the frequency. Vectors m = (mx, my, mz ) and h =
(hx, hy, hz ) are arbitrary real scalar quantities.

Substituting Eq. (4) into (1) and (2) in the linear limit, it is
reduced to

⎛
⎜⎜⎜⎜⎜⎝

ω2 0 0 ω2 − l2 kl 0
0 ω2 0 kl ω2 − k2 0
0 0 ω2 0 0 ω2 − k2 − l2

−iω mμ 0 0 −m 0
−mμ −iω 0 m 0 0

0 0 −iω 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

mx

my

mz

hx

hy

hz

⎞
⎟⎟⎟⎟⎟⎠

= 0.
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Then we obtain the following dispersion relation:

m2(μ+1)[μ(k2 + l2 − ω2) − ω2] − ω2(k2 + l2 − ω2) = 0.

(5)

Note that we focus on studying the short-wave approximation
k → ∞ [2]. It comes to k0 ∼ ε−1 through a small parameter
ε � 1 linked to the magnitude of the wavelength. Conse-
quently, the frequency expands accordingly as

ω = ω−1ε
−1 + ω1ε + ω3ε

3 + · · · . (6)

This assumption guarantees the phase velocity ω(k)/k and the
group velocity ∂ω/∂k are always bounded [3]. Now, replacing
Eq. (6) into the dispersion relation above, we obtain a set of
equations:

(1) At order of ε−4: ω−1 = ±k0.
(2) At order of ε−2: ω1 = [(μ + 1)m2 + l2]/2k0.
(3) Higher order equations which determine ω3, ω5, . . . .
The direction of the wave propagation is assumed to be

close to the x axis, thus the y variable gives only account of
a slow transverse deviation [40,41]. Therefore l is assumed
to be very small with respect to k and we write l = l0 of
order 0 with respect to ε. The phase up to order ε is thus
(x − t )/ε + l0y − εω1t, which motivates the introduction of
new variables:

ζ = 1

ε
(x − V t ), y = y, τ = εt . (7)

The variable ζ describes the shape of the wave propagating at
speed V ; it assumes a short wavelength about 1/ε. The slow
time variable τ accounts for the propagation during very long
time on very large distances with regard to the wavelength.
The transverse variable y has an intermediate scale, as in
Kadomtsev-Petviashvili (KP)-type expansions [26,41].

C. Multiple scale approach

In order to derive the nonlinear model, fields M and H are
expanded in power series of ε as

M = M0 + εM1 + ε2M2 + ε3M3 + . . . ,

H = H0 + εH1 + ε2H2 + ε3H3 + . . . .
(8)

where M0, H0, M1, H1, . . . are functions of (ζ , y, τ ).
We consider the boundary conditions limζ→−∞ M0 =
(0, 0, m), limζ→−∞ M j = limζ→−∞ H j = 0, ( j �= 0). We
derive the following expressions by substituting expansions
(8) into Eq. (1):

(1) At order ε−2:
M 0 is a constant vector M0 = (0, 0, m).
(2) At order ε−1:
Hx

0 = 0, My
1 = 0, Mz

1 = 0.
(3) At order ε0:
Mx

1ζ = mHy
0 ,

Mx
2ζ ζ = −Hx

2ζ ζ − Hy
1ζ τ ,

My
2ζ ζ = −Hx

1ζy + Hx
0ζy,

Mz
2ζ ζ = Hz

2ζ τ + Hz
yy.

(4) At order ε1:
Mx

2ζ = −mHy
1 ,

My
2ζ = mᾱMx

1ζ ζ + σ̄M1ζ x − Mx
1Hz

0 + mHx
1 ,

Mz
2ζ = Mx

1Hy
0 .

Let us introduce some independent variables X and T
defined as X = −mζ/2, Y = my, T = mτ .

After eliminating H2 and M2, we finally obtain the (2 + 1)-
dimensional KMM equation:

CXT = −BBX + CYY ,

BXT = BCX + BYY − sBX + ρBXX ,
(9)

where observables B,C and constants s, ρ are defined by

C = −X −
∫ X (

Hz
0/m

)
dX, B = Mx

1/2m,

s = −σ̄ /2, ρ = ᾱm2/4. (10)

This equation describes the evolution of magnetization field
M and magnetic field H within a ferrite film in the presence
of Gilbert damping and inhomogeneous exchange. The quan-
tities H0 and M1 refer to the zeroth- and first-order expansion
coefficients of the external magnetic field and the magneti-
zation, respectively. For some simplicity, in the next section,
the independent variables X , Y , and T will be rewritten as
lowercase x, y, and t , respectively.

III. HIROTA’S BILINEARIZATION AND SOLITON
SOLUTIONS OF THE (2 + 1)-DIMENSIONAL

KMM EQUATION

To explore soliton solutions for the (2 + 1)-dimensional
KMM equation (9), we consider a specific dependent variable
transformation

B = G

F
, C = δx − 2(ln F )t − 2(ln F )y, (11)

where δ is an arbitrary constant. Consequently, the bilinear-
like forms of the (2 + 1)-dimensional KMM equation can be
derived as follows:

F (DxDt + sDx − D2
y )GF + G(DxDy + D2

y )FF = δF 2G.

(12a)

∂x

[
G2

2F 2
− (DyDt + D2

t )FF

F 2

]
+∂y

[
(DyDt +D2

t )FF

F 2

]
= 0,

(12b)

where G, F are all differential functions of (x, y, t ) to be
determined. The symbols Dx and Dt refer to the Hirota’s
operators with respect to the variables x and t , respectively.
In order to construct the solitary wave solutions of Eq. (6), we
expand G and F with respect to a formal expansion parameter
as G = εG1 + ε3G3 + ε5G5 + . . . , F = 1 + ε2F2 + ε4F4 +
ε6F6 + . . . , in which ε is a perturbation parameter and func-
tions Gi, Fi (i=1, 2, 3, . . .) are expansion coefficients of the
above series. The one-soliton solution could be constructed by
truncating the perturbation expansion of G and F as follows:

G = eη1 , F = 1 + k2A2

16δ2
e2η1 . (13)

Substituting these expressions into Eq. (9) and solving the
bilinear system recursively, in the absence of damping, the an-
alytical one-soliton solution of the (2 + 1)-dimensional KMM
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equation can be transformed into

B = 2δ

k
sech(η1 + η0), C = δx − 2δ

k
[tanh(η1+η0)+1],

(14)
where η1 =kx + ly + [(l2 − kl )/2k]t , η0 = ln(k/4δ), k and l
are arbitrary real constants. It should be noted that this soliton
solution exists only when the damping is neglected (s = 0).
Similar to the procedure for constructing a one-soliton so-
lution, the two-soliton solution can be given by treating the
truncated perturbation expansions of G and F as

G = A1eξ1 +A2eξ2 +C12eξ1+2ξ2 +C21e2ξ1+ξ2 , (15a)

F = 1+B11e2ξ1 +B22e2ξ2 +B12eξ1+ξ2 +E12e2ξ1+2ξ2 , (15b)

where A1, A2, k1, k2 are real constants, ξi = kix + liy + [(l2
i +

δ)/ki]t (i = 1, 2), and the remaining parameters have the fol-
lowing forms:

Bii = A2
i k2

i

16δ2
, B12 = A1A2

2δ2

k2
1k2

2

k2+
, k1l2 = k2l1,

Ci j = AiA2
j

16δ2

k2
j k

2
−

k2+
, E12 = A2

1A2
2

256δ4

k2
1k2

2k4
−

k4+
,

(16)

where k+ = k1 + k2, k− = k1 − k2. Parameters Ai, Aj , ki, k j ,
and li (i = 1, 2, j = 3 − i) are arbitrary real constants.

IV. NUMERICAL INVESTIGATION OF LINE-SOLITON
AND MAGNETIC LUMPS

A. Unstable MS splits into lumps

We now turn to the stability and interactions between MSs
in a ferromagnetic film. The initial data is a MS perturbed
by some position-dependent Gaussian wave packets with the
following expression:

f = b exp

[
−

(x − x0

xr

)2

−
(

y

yr

)2]
, (17)

where b, xr , and yr correspond to the shape of the wave packet
and x0 is related to the perturbation position.

The time evolution results clearly show the instability of
the MS. For small bi, the MS will break up and eventually
evolve into some stable two-dimensionally localized lumps, as
displayed in Figs. 2(a) and 2(b). We observe that most of the
energy is always propagated as a lump, even if its speed may
differ from the input. Such a magnetic lump is a solitary wave
packet that maintains its shape and speed during propagation
or collision.

A complete single lump of magnetic field component Hz

(component Hy) is circled in red (black) in Fig. 2. The en-
larged views [see Figs. 2(c) and 2(d)] provide a clear picture
of the shape and contour map of the lump. It can be found that
component Hz is a dipole-mode lump, whereas component
Hy is a standard KP lump. We also show the vector field
of the magnetic lump in Fig. 3(a). Note that magnetic field
component Hx is zero, and the magnetic field is always in the
y-z plane, hence the lump can be regarded as a 360◦ domain
wall localized in the x and y directions. Figure 3(b) presents
the magnetic field along y=0. The blue and red arrows cor-
respond to the magnetic field intensity of components Hz and

FIG. 2. Propagation of MS perturbed by a Gaussian disturbance.
(a) Component Hz, (b) component Hy, and (c) and (d) are enlarged
views of the indicated areas circled in red and black, respectively.
The parameters are chosen as A1 = A2 = 1, δ = −1, l1 = l2 =
0, k1 = 1, k2 = 2, x0 = −29, b = 0.1, xr = 1.5, yr = 2.5 in (16)
and (17).

Hy, respectively. The rest of this work is concerned with the
propagation and interaction behavior of these lumps in ferrite
medium.

B. Lump motion in ferromagnets with damping
or inhomogeneous exchange effects

The evolution behavior of the magnetic lump in the ideal
ferrite is quite simple and imaginable. Each lump maintains
its shape while it travels at a constant speed. However, in
most of real ferromagnetic materials, we have to take the
Gilbert damping into account. For instance, the dimensionless
damping constant s ranges from 0.048 to about 0.385 in garnet
ferrite films. Here we are going to study the dynamics of
magnetic lump in a damped ferrite film. The typical ferromag-
netic film under consideration is a garnet ferrite film with the
dimensionless damping constant s = 0.1. For a clearer view of
the change in shape of the lump, we define H and W as the

FIG. 3. (a) The vector field of the magnetic lump. (b) The mag-
netic lump along y = 0. The blue and red arrows correspond to the
magnetic field intensity of components Hz and Hy, respectively.
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FIG. 4. Three-dimensional projections of lump at t = 0; H and
W represent the definitions of lump height and width, respectively.

height and width of the lump, which are the vertical distance
between the highest point and the lowest point and the hori-
zontal distance along the propagation direction, respectively.
All of these are summarized in Fig. 4.

The propagation of a lump on the garnet ferrite film is
presented in Fig. 5. As shown in Fig. 5(a), the lump travels
forward a visible distance in the damped ferrite. Beyond that,
comparing the profiles of lump between t =0 and t =10, we
evidently observe that the lump becomes smaller and nar-
rower. Figure 5(b) shows the lump height and width exhibit
a tendency of exponential decay. The solid blue line is the ex-
ponential fitting curve to H (t ), with the function expression
being H (t ) = A0e−st . We confirm the above-mentioned am-
plitude attenuation law is universal by simulating the motion
of lump in ferrites with virous damping factors. Moreover, a
definite relationship between the amplitude and the localiza-
tion region of solitons is important for the soliton excitations.
We analyze different sizes of numerical lumps and mark the
width and height of lumps in the phase diagram [see Fig. 5(c)].
The results show that for a magnetic lump excitation, its
width and height meet a linear relationship within the error

range (W /H ∼ 0.305). So the lump excitation, upon decay,
retains a soliton form. Therefore, in this system, the Gilbert
damping plays a role of dissipating energy during the motion
of magnetic lumps and it is characterized by decreasing the
amplitude and width of lump.

The inhomogeneities otherwise referred to as deformities
are inevitable in real magnetic materials, and can be caused
by either external fields or the presence of defects, voids, and
gaps in the material. It has already been reported that the
MS may be deformed by the presence of inhomogeneities,
in particular its structure and speed [35,42]. In this present
system, the inhomogeneous exchange process is unignorable
when the wavelength of lump is comparable to the character-
istic exchange length.

We now move to study the lump motion in the presence of
inhomogeneous exchange effect. The initial data is the stable
magnetic lump shown in Fig. 5. As can be observed from
Figs. 6(a) and 6(b), in ferrite without exchange interaction,
the lump solution propagates at a constant speed and along
the previous path. We then consider the nonequilibrium dy-
namics of lump by performing a sudden interaction quench.
The pictures of component Hy at dimensionless times t =2
and t =4.5 are shown in Figs. 6(c) and 6(d). As we see, for
a quench from the noninteracting to strong inhomogeneous
exchange ferrite film, the lump oscillates rapidly and diffracts
along the propagation direction. A two-dimensional shock
wave is generated and propagates forward. The shock wave
front continues to propagate in the negative direction along
the x axis. Finally, the energy of the lump will be dissipated
into numberless tiny waves. Accordingly, considering that the
lump would be destroyed by the inhomogeneous exchange
process, one has to consider keeping its wavelength away
from the characteristic exchange length in the lump-based
microwave applications.

C. Some examples of excitations and interactions

The evolution pattern given in Fig. 2 reveals that the lump
moves at a larger velocity than the broken MS in the prop-
agation. The reason is that the velocity of soliton solution is

FIG. 5. Evolution of a magnetic lump in a damped ferrite film with dimensionless damping constant s=0.1. (a) Comparison picture of a
lump wave at t =0 and t =10. (b) The variation of lump height H , lump width W , and velocity V . (c) Numerical relationship between the
width and height of a magnetic lump.
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FIG. 6. Propagation of a lump with and without the inhomoge-
neous interaction, respectively.

proportional to the soliton amplitude. During the formation of
the lump, the original MS will be destroyed, and most of the
energy is concentrated in some certain centers, which causes
the amplitude (and velocity) of the lump to be greater than that
of MS. These lumps with various speeds enable us to explore

the interaction between lump and soliton, as well as between
two lumps.

A typical example of lump-MS collision is shown in
Fig. 7(a). The MS begins to break up at around t = 4. Sub-
sequently, the splitting lump is going to catch up and collide
with the front MS. After the collision, the front MS is de-
stroyed and broken into several lumps with various sizes. It
is remarkable that the lump keeps its localized form before
and after the collision almost unchanged. This phenomenon
implies such two-component lumps are natural results from
this nonlinear propagation equation. Further simulation shows
these lump structures could be generated by a MS with ran-
dom disturbance. Figure 7(b) depicts a characteristic inelastic
collision between two lumps. We initially generate two ad-
joining lumps. They are emitted by MS at dimensionless time
t = 6.5. The merging process can be performed as follows.
From t = 7.5 to t = 9.5, two lumps merge simultaneously
together and give birth to a new lump whose amplitude is
significantly greater than the amplitude of previous lumps.
Obviously there is a weak attraction between two lumps which
results in their fusion. In addition to the fusion of the two
lumps, we also observed an extraordinary peak at a specific
moment (about t = 9.5), which looks like a second-order
rogue wave. It appears to be the result of the interaction be-
tween the ripples surrounding the two lumps. After the fusion,
the rogue wavelike structure disappears and the dynamics of
the output is determined mainly by a single high-amplitude
lump.

V. CONCLUSION

As a conclusion, the nonlinear propagation of MS in a
saturation magnetized ferromagnetic thick film is studied in
detail. In the starting point, we derive the (2 + 1)-dimensional

FIG. 7. (a) Collision between lump and MS. (b) Mergence of two lumps and the formation of a second-order rogue wavelike structure.
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KMM system that governs the evolution of short MS waves in
a saturated ferromagnetic film. The bilinear form of the KMM
system is constructed and the MS solutions are obtained ana-
lytically.

After that, numerical simulations are performed to analyze
the evolution behaviors of MS. A significant observation is
that the unstable MS can be destroyed by Gaussian pertur-
bation and broken into some stable magnetic lumps. These
lumps exhibit high stability during the propagation. Fur-
thermore, some examples are given to analyze the collision
behaviors between lump and MS, and the interaction between
two lumps. It is found that the lump keeps its shape and speed
in the collision with MS. The results confirm that the lump is a
stable propagation mode in this system and, more to the point,
the velocity of the lump can be adjusted by its amplitude.
Their robustness and controllability provide the possibility for
future information memory and logic devices. We also study
the propagation of such a lump in ferrites subjected to the
influence of damping and inhomogeneous exchange effects.

When the Gilbert damping of ferrite is considered, the lumps
undergo the following changes: the amplitude and the speed
of the lump are decreased, and the width of the lump along
the propagation direction is getting narrow. It would cause
a strong diffraction of the lump if we quench the interaction
strength.

We hope our work will invoke follow-up experimental
studies of lump-based microwave applications. Additionally,
since only one- and two-line-solitons are obtained, the inte-
grability of the (2 + 1)-dimensional system KMM remains an
open issue. The existence of the higher-dimensional evolution
system as well as the bulk polariton solution is an intriguing
avenue for future exploration.
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