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Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain
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This paper investigates evanescent waves in one-dimensional nonlinear monatomic chains using a first-order
Lindstedt-Poincaré approach. Perturbation approaches applied to traveling waves in similar chains have predicted
weakly nonlinear phenomena such as dispersion shifts and amplitude-dependent stability. However, nonlinear
evanescent waves have received sparse attention, even though they are expected to serve a critical role in
nonlinear interface problems. To aid in their analysis, the nonlinear evanescent waves are categorized herein
as either complete or transitional evanescent waves. Complete evanescent waves, including linear evanescent
waves, attenuate to zero amplitude in the far field. Transitional evanescent waves, only occurring in softening
systems, attenuate to a nontrivial amplitude in the far field, regardless of the initial amplitude, resulting in a
saturation effect. For both cases, the presented perturbation approach reveals that the imaginary wave number in
the evanescent field is a function of space, rather than a constant value as in its linear counterpart. It also reveals
that hardening and softening nonlinearity slow and accelerate the near-field decay, respectively. The predictions
obtained from the perturbation approach are verified using numerical simulations with both initial-condition and

boundary-continuous excitation, documenting strong agreement.
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I. INTRODUCTION

The study of wave propagation in linear periodic structures
has a long history due to its relevance in a wide range of
physical systems [1,2] and broad applications in science and
engineering [3-7]. Recently, extensive research has focused
on nonlinear periodic structures as nonlinearity can introduce
amplitude dependency, PT-symmetry breaking, bifurcation
phenomena, extra-harmonic generation, subharmonic band
gaps, and other behavior missing from linear systems [8—13].
A signature behavior of nonlinear periodic structures is
amplitude-dependent dispersion and frequency corrections (or
“shifts”), usually discussed in relation to nonlinear band struc-
ture. Nonlinear band structure for propagating waves in a
variety of systems has been computed using the harmonic
balance method [14—16], homotopy analysis [17,18], and a
variety of perturbation approaches [19-25]. In weakly non-
linear systems, perturbation approaches are preferred since
they yield closed-form, analytical expressions for the band
structure. Using the Lindstedt-Poincaré and multiple scales
methods to uncover amplitude-dependent band structure in
discrete systems, researchers have uncovered the same fre-
quency corrections using either method [20-22]; however, the
multiple scales method enables solution of a broader class
of problems, including propagation of multiple plane waves
and their time-dependent interactions [21,26,27]. Very re-
cently, Jiao and Gonella [28] showed that for boundary excited
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waves the dispersion shift occurs for both frequency and wave
number.

Compared to numerous studies on nonlinear dispersion
and band structure associated with traveling waves, sparse
attention has been paid to nonlinear evanescent waves.
Narisetti et al. [20] briefly considered nonlinear evanescent
waves in a larger study on propagating waves and used the
propagating solutions to inform an approximate frequency
correction for evanescent waves. Khajehtourian and Hussein
[29] employed a transfer matrix method and plotted the
amplitude-dependent band structure for both traveling and
evanescent waves. In addition, Chakraborty and Mallik [30]
documented a wave-form transition phenomenon in a soft-
ening nonlinear system, where an evanescent wave evolves
into a traveling wave. The majority of these research efforts
emphasize the nonlinear effect as shifted dispersion curves in
the imaginary wave-number domain and only provide quali-
tative predictions on the attenuation envelope. These features
are, however, vital to certain problems such as wave propaga-
tion through linear-nonlinear and nonlinear-nonlinear material
interfaces, where evanescent waves are needed to match the
displacement and stress at interfaces [31].

Motivated by the need for a rigorous analytical treatment
of nonlinear evanescent waves, for use in the aforementioned
interface problems and others, we develop an evanescent-
specific perturbation approach for predicting amplitude-
dependent imaginary wave numbers and attenuation en-
velopes focusing firstly on weakly nonlinear monatomic
chains. We employ the Lindstedt-Poincaré method to the first
order, and we describe the imaginary wave number as a
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FIG. 1. The schematic of the studied nonlinear monatomic system.

function of space (vis-a-vis a constant). Hence, we show that
in lieu of the conventional dispersion diagram, tracking the
spatially dependent imaginary wave numbers and attenuation
envelopes accurately predicts the spatial profile of nonlinear
evanescent waves. Based on their frequency location relative
to nonlinear and linear stopband, we categorize the non-
linear evanescent waves as one of two types: (i) complete
evanescent waves and (ii) transitional evanescent waves. For
transitional evanescent waves, we analyze the wave transition
phenomenon and discover an amplitude-saturation effect. We
then conduct numerical simulations to verify the analytical
results. Lastly, we discuss the effect of different excitation
methods (initial versus boundary excitation) on the resultant
evanescent waves and document the saturation amplitude dif-
ference induced by the wave-number band-clipping effect.

II. SYSTEM DESCRIPTION

We consider a one-dimensional monatomic chain with ad-
jacent masses coupled by an elastic spring with linear k;
and cubic k3 stiffness, as depicted in Fig. 1. The equation of
motion is given as

miij + ki (2uj —uj—y — ujq1)

+eks(u; —uj_1) + eks(u;j —ujy1)* =0, (1)

where j is the index of an arbitrary mass and u; is its displace-
ment. The parameter € represents a small quantity denoting
weak nonlinearity, which also serves as a bookkeeping device
[32] in the subsequent perturbation approach. A positive coef-
ficient k3 corresponds to a hardening nonlinear system, while
a negative one corresponds to a softening one. Note that the
quadratic nonlinearity is not considered in this study since its
effect on dispersion shifts does not occur until higher orders
in the analysis [24].

The monatomic system we study herein not only serves as a
cornerstone to understand the nonlinear evanescent field, but
arises in a multitude of physical systems at varying scales.
In anharmonic three-dimensional crystals, the monatomic
system represents acoustic wave propagation in the [100],
[110], and [111] directions. In electromagnetics, the nonlinear
monatomic system governs waves in macroscale media where
cubic terms arise from the Kerr nonlinearity [22,33,34] and in
acoustics where weak cubic stiffness can arise from material
or geometric nonlinearity [35,36].

III. PERTURBATION ANALYSIS

We briefly review the nonlinear dispersion shift for trav-
eling waves in the monatomic chain and then present the
analysis for nonlinear complete evanescent waves and tran-
sitional evanescent waves.

Introducing the nondimensional time t = wt, the linear
natural frequency w, = /k;/m, and the normalized cubic
stiffness I' = k3 /k;, Eq. (1) can be rewritten as

d*u;
_2d 21+(2uj Wj_1 — Ujyq)
+el(uj —uj-1)’ + €M —uj1)’ =0, (2)

where @ = w/w, denotes the nondimensional frequency.

According to the Lindstedt-Poincaré approach [32], we
introduce asymptotic expansions for the displacement and
frequency,

uj = M;O) + eu_(,-l) + 0(e?), 3)
D= wy + €w + 0(€?). 4)

Updating Eq. (2) yields an expanded equation of motion,

d2 (0) d’u (1) d2u©®
o) +e (a)o + 2w001 —= )

d2 d2 dz?

— ) ) 0) (1) (1) (1)
= _(2"‘j —Uuiy ”j+1) - 6(2”' B S ”j+1)

0 ) \3 o _,0 2
—eT[(u;” —u;2))" + ()" = j+1) J+oE)=o.
)
We next separate the expanded equation into orders of € up to
the second order,

el
d2 50) 0) 0) ©0)
a)O 722 + (Zuj L qu) =0, (6)
d2 (1)
o + (2 i, )
d’u (0)
2 P )+ — )]

@)

A. Traveling waves

For traveling waves, with real wave number pu, the zeroth-
order equation, Eq. (6), admits a plane-wave solution

A
) _ inj ,—it
u; = Ee’”e +c.c., )
where herein c.c denotes the complex conjugate of all pre-
ceding terms, and A denotes the complex wave amplitude.
Substituting Eq. (8) into Eq. (6) yields the zeroth-order
(linear) dispersion relation

wy = /2 — 2cos(i). O]

Next, updating the first-order equation, Eq. (7), with
the zeroth-order solution, and eliminating secular terms
on the right-hand side, yields an expression for the cor-
rected frequency w; and, ultimately, the nonlinear dispersion
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FIG. 2. Nonlinearly shifted dispersion for propagating waves
(i.e., real wave numbers) in a monatomic chain, with amplitude |A| =
0.5. Blue, red, and yellow curves represent the linear, hardening,
and softening nonlinear dispersions, respectively. The corresponding
cutoff frequencies are marked on the vertical axis. The nonlinear
passband extension (NPE) and nonlinear stopband extension (NSE)
are indicated to the right. Three example signal frequencies and
their corresponding wave forms in each system are presented in the
embedded table.

relationship,
@(;A) = /2[1 — cos(u)]
3T |A[*[cos(2u) — 4 cos(i) + 3] 2
te 42T = cosG)] + O,
(10)

where the second term on the right-hand side captures the
amplitude-dependent nonlinear correction (or shift). Further
derivation details can be found in Ref. [20]. We note that at
small amplitudes the cutoff frequency of the nonlinear pass-
band is given by

Bcuott = @( = 1) =2+ 3eT|A%. (11)

As illustrated in Fig. 2, a hardening nonlinearity broad-
ens the passband by shifting dispersion branches upwards,
resulting in a nonlinear passband extension, while a softening
one lessens the passband by shifting branches downwards,
resulting in a nonlinear stopband extension (NSE). Note
that the shifts in the schematic are amplified for graphical
illustration. Above the (nonlinear) cutoff frequency, the wave
number contains an imaginary component which generates
an amplitude-decaying evanescent field. In a linear system,
this imaginary component is only a function of frequency and
remains constant as the wave propagates [37]. However, in a
nonlinear system, the amplitude attenuation will generate a
spatially dependent dispersion correction, which in turn will
influence the local attenuation.

We categorize two types of evanescent waves, namely,
complete evanescent waves and transitional evanescent waves.
The former, to include linear evanescent waves, denotes an
evanescent wave which asymptotically approaches zero am-
plitude in the far field, while the latter denotes a nonlinear

wave-form transition resulting in a finite amplitude in the far
field. As suggested in Fig. 2’s embedded table, a complete
evanescent wave occurs when a signal’s frequency is above
both linear and nonlinear cutoff frequencies, whereas a tran-
sitional evanescent wave only occurs in softening systems,
when the frequency falls in the NSE, below the linear cutoff
frequency. These two types of evanescent waves are discussed
in detail in the following two subsections.

B. Complete evanescent waves

First we discuss complete evanescent waves resulting from
excitations in the mutual band gap of linear and nonlinear
systems.

Without loss of generality, we study an arbitrary section of
the evanescent field composed of three consecutive masses.
Assuming the amplitude attenuation in this section is rela-
tively small such that the imaginary wave number does not
vary locally, we again seek a plane-wave solution satisfying
Eq. (6),

u% = %‘eiw-fl +ce, k=-1,0,1, (12)
where = u, + in; denotes the complex wave number at
the considered section, and the complex amplitude A is as-
sociated with the jth mass. Note that Eq. (12) is identical to
Eq. (8) for the three masses considered with the exception of
a complex wave number. Substituting Eq. (12) into Eq. (6)
yields the complete evanescent wave’s zeroth-order dispersion
relationship,

wo = /2 — eilting _ g=ilu i), (13)

To ensure the frequency is real, the real component
must equal either O or 7. For the monatomic chain’s acoustic
branch, p, equates to 7 at the right edge of the Brillouin zone
and maintains this value throughout the band gap [37]. Thus,
Eq. (13) can be rewritten as

00 = 2T Zoosh(). (14)

Note that if a grounded monatomic chain, or a chain with
multiple degrees of freedom per unit cell, is considered, the
real wave-number component may take on the value of 0 in at
least one of the band gaps.

Next, we update Eq. (7) with the zeroth-order solution and
eliminate secular terms, yielding
3TAA ( 3 3

N
W@ — —— ze‘“' + Ee_z“‘ + ¢ i 4]

3 3 1
+§er + 5(32“" + E(33“") =0. (15

The first-order frequency correction term then follows,

_ 3TJAPR(E + 1) (et + 1)

8wpe3Hi

w1 (16)

The nonlinear frequency correction is an even function
of imaginary wave number pu;, indicating reciprocity due
to geometric symmetry. Note that the obtained solution is
fundamentally different from the results one might obtain

014203-3



LEZHENG FANG AND MICHAEL J. LEAMY

PHYSICAL REVIEW E 105, 014203 (2022)

oo oo o (b
(a)o6 5—0o—e—6—6—6—6 ()0.8“
° O Nonlinear y;
Ui 04 o 32 Linear z,
0.2? o g
02 S0 000 -0
0 0
(©) (d S
g 041 e
203} S
020 b S8
o1l il AR
0 ==
0 2 4 6 8 10 0 2 4 6 8 10

Mass Index Mass Index

FIG. 3. Results for nonlinear and linear complete evanescent
waves. The top row depicts the evolution of the imaginary wave num-
ber along the downstream direction, while the bottom row translates
the imaginary wave number into a discrete attenuation envelope; the
left column corresponds to a hardening nonlinear system, and the
right column corresponds to a softening system.

by inserting i = u, + iy; into the traveling-wave solution,
Eq. (10), as done in Ref. [20] to obtain an approximate evanes-
cent solution. Such an approach conflicts with an assumption
made early in the perturbation analysis that the wave number
is strictly real (since the focus was on traveling waves) and
thus the complex conjugate of e/* is e~*, which is violated
for complex w.

Combining Eqgs. (16) and (14) yields the full expres-
sion of the first-order perturbation result for the complete
evanescent wave,

) 3TIAP (e + (et + 1)
=2+2 h(u;) + . 17
@ cosh(ui) + € 82 + 2 cosh(u;)e3 17

This equation specifies the frequency for a given amplitude
and imaginary wave-number component at the jth mass.

Alternatively, for a given frequency and amplitude,
Eq. (17) provides the imaginary wave-number component at
the section of interest, such that Eq. (12) can then be employed
to find the amplitudes of the neighboring masses (i.e., for
k = —1 and 1). We pursue this approach to compute the entire
evanescent wave field, as follows. Once the neighboring mass
amplitudes are determined, we shift the section location by
one unit, such that, for example, the neighboring mass, j + 1,
becomes the center of the new section. The amplitude of the
Jj + 2 mass is computed using Eqs. (17) and (12) with A
now representing the amplitude of the j + 1 mass. Repeating
this procedure yields the entire attenuation envelope. Due
to the validity of the perturbation approach requiring small
amplitudes, we only follow this procedure in the evanescent
(or downstream) direction since the opposite direction yields
monotonically increasing amplitudes. We present results from
this procedure next.

In Fig. 3 we compare evanescent quantities for nonlinear
monatomic systems, corresponding to hardening and soften-
ing nonlinearity, with those for a linear monatomic chain.
Figures 3(a) and 3(c) feature a hardening nonlinearity (e[" =
0.1) with an excitation amplitude of 0.5 operating at a fre-
quency of 2.1, above the nonlinear cutoff frequency specified
by Eq. (11). This frequency choice is represented by “Excita-

tion Frequency A” in Fig. 2. Figures 3(b) and 3(d) consider a
softening nonlinearity (eI = —0.1) with the same excitation
amplitude as the hardening case but at a frequency of 2.01 to
ensure small initial attenuation. This frequency choice is rep-
resented by “Excitation Frequency B” in Fig. 2. In both cases,
the linear system’s imaginary wave-number components are
positive constants indicated by red straight lines in Figs. 3(a)
and 3(b), resulting in exponentially decaying dash-line en-
velopes in Figs. 3(c) and 3(d). In contrast, as the nonlinear
systems’ evanescent waves (blue lines) progress along the
chain, as expected, their amplitudes decrease and their imagi-
nary wave-number components gradually approach the linear
system’s constant value. Since the frequencies considered in
both hardening and softening systems are above the linear
cutoff frequency, the imaginary wave-number components
approach nonzero, constant values, resulting in complete am-
plitude decay in the far field. Hence, we choose to term these
“complete evanescent waves.”

The presence of nonlinearities fundamentally alters the
evanescent wave dynamics. As seen in Figs. 3(a) and 3(c),
the nonlinear imaginary component of the wave number in a
hardening system begins with a lower value, and thus a slower
amplitude decay in the near field, compared to its linear coun-
terpart. The softening nonlinear system, as seen in Figs. 3(b)
and 3(d), results in an initial imaginary wave-number compo-
nent higher than that of its linear counterpart, which induces
a rapid drop in the near-field amplitude. We note further that
the attenuation envelope of a nonlinear complete evanescent
wave deviates from an exponential.

C. Transitional evanescent waves

In addition to complete evanescent waves, softening sys-
tems exhibit a second evanescent wave for frequencies lying
in the NSE. This type of evanescent wave attenuates in the
near field, but maintains a finite amplitude in the far field. We,
therefore, choose to term it a “transitional evanescent wave.”

A transitional evanescent wave occurs at frequencies in
the NSE, as represented by “Excitation Frequency C” in
Fig. 2. In the near field, such a wave attenuates due to its
location in the nonlinear band gap. However, as the wave
amplitude decreases, the corresponding nonlinear shift of the
traveling-wave dispersion also decreases such that the dis-
persion curve rises from its initially shifted position. In this
process, the NSE region shrinks until the lower boundary of
the NSE aligns with the excitation frequency or, equivalently,
the excitation frequency intersects the traveling-wave disper-
sion curve at the right edge of the Brillouin zone. At this
diminished wave amplitude, which we term the “saturation
amplitude,” the imaginary wave-number component reaches
zero, and therefore the wave maintains its amplitude from this
location onward.

For a given monatomic chain, the saturation amplitude
Agy 1s a sole function of the excitation frequency and is in-
dependent of the excitation amplitude. It can be calculated
by equating the nonlinear cutoff frequency to the excitation
frequency, weyoff = @, in Eq. (11),

w—2
3¢l

A = (18)
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Note that the saturation amplitude is only valid in softening
systems (i.e., €I" < 0).

For the saturation envelope, the perturbation result in
Eq. (17) yields accurate results for the transitional evanescent
wave when the saturation amplitude is small [see Figs. 7(a)
and 7(b) in the Appendix]. When the saturation amplitude
is considerably larger, however, the imaginary wave-number
component changes rapidly in the near field such that the
local imaginary component of the wave number, u;, cannot
be treated as a constant for three consecutive masses, as
done earlier. Consequently, Eq. (17) generates overestimated
imaginary wave numbers, such that the amplitude of the next
neighboring mass may drop below the saturation value [see
Figs. 7(c)-7(h) in the Appendix].

To address this issue, we modify the zeroth-order solution
form such that the wave amplitude admits a local exponential
decay in any three consecutive masses considered. We thus
seek a solution ansatz of the form Eq. (19),

), = SOAl = Aw)e ™ + Agle ™t e,
k=-1,0,1, (19)

J

1 3r
n=_[—2|A
¢ \/|A|(' et Dt A AT e T B

where

@ = (|Al= Aw)e’ + A, (22)

B = (|Al- Asat)e_g + Asat. (23)

Similar to Sec. III B, at a given signal frequency @ and
starting amplitude A, we find the local decay factor ¢ via
inversion of Eq. (21). Once the local decay factor ¢ is obtained
for the initial triplet of masses, we compute the amplitude
of the downstream neighboring mass in Eq. (19) and shift
the section location by one unit. The computed neighboring
mass’s amplitude is now at the center of the new section where
we calculate its corresponding local decay factor ¢ . Repeating
this procedure yields the entire transitional evanescent wave
envelope in the downstream direction.

We present the results for an example transitional evanes-
cent wave in Figs. 4(a) and 4(b) where the initial amplitude
equals 0.5 and the frequency @ equals 1.95. For numerical
reference, the saturation amplitude at this frequency is Ag =
0.408 according to Eq. (18). To assist in interpreting the
nonlinear behavior, we derive an equivalent imaginary wave-
number component at each mass by comparing its amplitude
to its downstream neighbor, 1;1(j) = In( Ag(i)l) ), and also plot
it in Fig. 4(a).

In Fig. 4(a), we observe the decay factor ¢ and the equiv-
alent imaginary component of the wave number ;" steadily
decrease as the wave progresses. Compared to the slow de-
crease in ¢, ufq experiences a rapid decrease. It is this rapid
change that necessitated the need to modify the zeroth-order
solution approach. Further, we observe the local decay factor
¢ converges to a constant value in the far field. This con-

R2IAP +3JA1* (@ + B) + 3Al(e? + B*) + o + B°],

where ¢ denotes the local decay factor at the section centered
at the jth mass, and the complex amplitude A is expressed in
the polar form |A|e. This ansatz ensures the wave amplitude
in the field is strictly greater than the saturation amplitude.
We determine ¢ after the nonlinear dispersion expression is
derived. We note that the zeroth-order solution sought for
complete evanescent waves [i.e., Eq. (12) in Sec. III B] can
be treated as a special case of Eq. (19) by setting A, to zero
and ¢ to u;.

Substituting Eq. (19) into Eq. (6) with u, = & yields the
zeroth-order dispersion relationship for transitional evanes-
cent waves,

%[IAI + Agat + cosh(£)(JA] — Aga)]-

We next update Eq. (7) with Egs. (19) and (20). By elim-
inating the secular terms in this updated equation, we can
derive the nonlinear correction w; as a function of the ampli-
tude |A| and the decay factor ¢, such that the full expression
of the first-order perturbation result for transitional evanescent
waves is

wy = (20)

2L

(

vergence indicates that when the wave amplitude approaches
the saturation value, as plotted in Fig. 4(b), the local decay
factor can be treated as a constant, and the attenuation is
essentially an exponential decay to the saturation amplitude.
This convergence value can be derived by introducing a small

() (©)

Attenuation Envelope
— — — Saturation Amplitude

0 5 10

Mass Index

FIG. 4. Perturbation results for transitional evanescent waves.
(a) The evolution of the local decay factor ¢ and the equivalent
imaginary wave-number component x;? in the downstream direction.
(b) The nonlinear attenuation envelope and the saturation amplitude.
(c) Attenuation envelopes initiated at varying amplitudes. The solid
and dashed curves represent envelopes obtained from a spatially
varying ¢ and a uniform exponential index ¢* computed from the
convergence, respectively.
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perturbation to the amplitude in Eq. (21) such that it lies just
above the saturation amplitude, i.e., |A| = Ag + 6, where &
denotes a small positive perturbation. Taylor expanding the
updated Eq. (20) around § yields

2cosh(¢) —2

w = 2 + 36FAsal + ( 4Asat

L 3AceTe 4 (5% + 66 +5)

5 )8 +0(8%). (24)

We note that Eq. (18) allows us to eliminate the zeroth-order
terms of the expansion and the left hand-side of Eq. (24).
Thus, we can further simplify the expression to
2cosh(¢) =2 3Agele™4(5¢% + 6¢° +5) s
4Agn 8

+0(8%) = 0. (25)

For this expression to hold to the leading order in §, the
coefficient of the first-order term must equal zero, yielding
the convergence value,

o = n [ A/ AT — 645, (D) +2 — 945 (1)
= 1542, (eT) + 2 '

(26)

For the chosen parameter set, ¢ * is found to be 0.664, agreeing
closely with the results in Fig. 4(a) (i.e., at approximately
mass index 7 and beyond). Therefore, one may approximate
a transitional wave’s envelope via an exponential-decay en-
velope with a uniform index ¢* and offset Agy if the wave
amplitude is close to the saturation value.

In Fig. 4(c), we present attenuation envelopes initiated at
varying amplitudes starting at the first mass, and we compare
the envelopes obtained via a spatially varying decay factor ¢
found using Eq. (21) to those via a constant decay factor ¢*
from Eq. (26). We observe that, at initial amplitudes close
to the saturation amplitude, the approximation using a ¢*
envelope is highly accurate.

IV. NUMERICAL VERIFICATION

To numerically verify the attenuation envelopes for the two
types of nonlinear evanescent waves identified, we construct a
sufficiently long monatomic chain and simulate the dynamics
using scripts written in MATLAB. Solutions to the governing
equation, Eq. (2), are computed via direct numerical inte-
gration using the MATLAB function ODE45. Two types of
excitation are considered: initial-condition (IC) excitation and
boundary-continuous (BC) excitation. The former excitation
specifies the initial displacement and velocity for each mass
based on values derived from the perturbation solution. The
latter excites a quiescent system by prescribing continuous
harmonic oscillation at the boundary mass identified by j = 0.

We first consider the IC excitation, with the initial condi-
tions of each mass, j > 1, following Eq. (27),

uj = A(j)sinCig),
uj = A(j)ocos(ju,), 27
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FIG. 5. Numerical verification of complete and transitional
evanescent waves for initial-condition excitation. (a), (c), and (e)
Comparison between perturbation-predicted (red dashed line), nu-
merically simulated (blue solid line), and linear (green dash-dotted
line) amplitude envelopes for hardening nonlinearity (& = 2.1),
softening nonlinearity (@ = 2.01), and softening nonlinearity (& =
1.95) with saturation effect. The numerical time responses of the first
five masses in the system are plotted on the right in panels (b), (d),
and (f). The color of each curve in panels (b), (d), and (f) is associated
with the color of the mass identified on the left.

where A(j) denotes the amplitude of the jth mass according to
the predicted attenuation envelope. The boundary mass j = 0
has a prescribed displacement A sin(wt) to remove the edge
effect of the finite system. We confine our attention to the
time evolution of the wave near the boundary j = 0. If the
wave form specified by the initial conditions persists for ten
periods, we confirm the perturbation-predicted result is a valid
and stable solution to the problem.

Figure 5 depicts numerical results for the IC excitation
for both complete evanescent waves [Figs. 5(a)-5(d)] and
transitional evanescent waves [Figs. 5(e) and 5(f)]. The tran-
sitional evanescent wave solution here adopts the perturbation
results in Eq. (21) with a spatially varying ¢. Note that the
character of these solutions differ significantly from linear
evanescent waves (i.e., the zeroth-order solutions), which have
exponentially decaying envelopes. Overall, we observe good
agreement between the qualitative shape and the quantitative
predictions of the perturbation results and numerical simula-
tions for hardening and softening complete evanescent waves
in Figs. 5(a) and 5(c). The saturation effect shown in Fig. 5(e)
also matches closely with the numerical results. Despite the
transient behavior at the start of Fig. 5(b), the three time-
history responses [Figs. 5(b), 5(d), and 5(f)] converge to their
initial states, illustrating that the perturbation results on the
left are sufficiently close to those generated by the governing
equations.

We note that, compared to the linear amplitude envelope
(green), the perturbation results (red) correctly predict the
direction of the nonlinear shift. The small quantitative dif-
ferences between perturbation results (blue) and numerical
simulations (red) in Figs. 5(a) and 5(c) mainly arise from the
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FIG. 6. Numerical verification with boundary-continuous excita-
tion. (a) Numerical attenuation envelopes of a complete evanescent
wave in a hardening system resulting from BC and IC excitation.
(b) The numerical attenuation envelopes of a complete evanescent
wave in a softening system resulting from BC and IC excitation.
(c) The numerical attenuation envelope with selected simulation time
(measured in excitation period 7') for amplitude A = 0.5. The blue
and red dashed lines indicate the saturation amplitude predicted from
initial-condition excitation and boundary-continuous excitation, re-
spectively. (d) Time responses of selected masses for A = 0.5. (e)
Band-clipping effect on the studied system for A = 0.3. The green
dashed line in the zoomed-in view denotes the excitation frequency.

amplitude assumption in Eq. (12), where the imaginary wave-
number component is considered uniform across the triplet of
masses—this assumption is relaxed in Fig. 5(e), where perfor-
mance improves. As observed in the figures, this assumption
provides very good approximations in the far field, but may
generate small errors at the initial amplitude in the near field.
Near-field improvements can likely be achieved by carrying
out the perturbation analysis to higher orders.

For practical applications, the boundary-continuous exci-
tation may be more appropriate as it appears in a large class
of physical systems, such as thoe encountered when studying
interface problems. In Fig. 6 we present numerical simula-
tion results using a BC excitation. For complete evanescent
waves, the BC excitation results in roughly the same atten-
uation envelope as the IC excitation, depicted in Figs. 6(a)
and 6(b). Therefore, we confirm the perturbation solutions are
capable of predicting complete evanescent waves excited from

the boundary. For transitional evanescent waves, however, we
observe a strong time dependency on the attenuation envelope
and a lower saturation amplitude in Figs. 6(c) and 6(d).

In Fig. 6(c), the attenuation envelope rises in amplitude as
the simulation time increases, and the rise is more pronounced
in the far field than in the near field. This phenomena is due
to the small group velocity at the excitation frequency close
to the edge of the Brillouin zone. A small group velocity
suggests a slow energy propagation and thus a longer time for
energy to accumulate at each mass. In fact, the time to achieve
the steady-state envelope increases for masses further away
from the boundary excitation, as depicted in Fig. 6(d). Despite
the strong time dependency, we observe a clear convergence
tendency for the attenuation envelope in Fig. 6(c). The con-
verging saturation amplitude is approximately A = 0.3, as
highlighted by the red dashed line.

Of note in Fig. 6(c) is a discrepancy between the saturation
amplitude observed in numerical simulations (red dashed line)
versus that predicted by the perturbation analysis (blue dashed
line). This discrepancy arises only in transitional evanescent
waves under boundary-continuous excitation (and not un-
der initial-condition excitation) and can be explained via the
wave-number-space band-clipping phenomenon identified in
Ref. [28] for nonlinear traveling waves excited at a bound-
ary. Specifically, they noted that a boundary-excited harmonic
wave in a weakly nonlinear system generates both a fre-
quency shift and a wave-number clipping near the edge of the
Brillouin zone, as reproduced in Fig. 6(e). This plot of travel-
ing waves is generated using their iteration-based method at
the observed saturation amplitude A = 0.3. In the zoomed-
in view, we focus on the region near the cutoff frequency
where the two nonlinear dispersion curves of traveling waves
detach. We observe the dispersion curve from BC excitation
(yellow) ends before reaching u = m and exhibits a lower
cutoff frequency than that of the IC excitation dispersion (red).
As discussed in Sec. III C, at a saturation amplitude, the exci-
tation frequency meets the cutoff frequency of the system. In
Fig. 6(e), we observe the excitation frequency (green dashed
line) lies close to the end of the BC excitation dispersion,
which suggests the saturation amplitude for the system is ap-
proximately 0.3 with the wave-number band-clipping effect,
agreeing with the numerical simulation results in Fig. 6(c).
Since the system has softening nonlinearity, a larger amplitude
is required to shift the IC excitation dispersion curve down-
wards to intersect the excitation frequency at u = 7, which
indicates a higher saturation amplitude for the IC excitation.
Hence, we illustrate that the BC excitation results in a lower
saturation amplitude and that this value can be calculated
using the presented perturbation approach together with the
band-clipping method proposed in Ref. [28].

V. CONCLUDING REMARKS

We investigated nonlinear evanescent waves in a cubic
weakly nonlinear monatomic chain via a first-order Lindstedt-
Poincaré perturbation approach. The perturbation results
reveal that the wave-number’s imaginary component is as
a function of space. For frequencies higher than the linear
cutoff frequency, the perturbation solutions predict a com-
plete evanescent wave with a slower (hardening system) or
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faster (softening system) decay rate than found in the linear
system. For frequencies located in the NSE of a soften-
ing system, a transitional evanescent wave emerges with an
amplitude saturation phenomenon—i.e., regardless of initial
amplitude, the far-field amplitude converges to a finite value.
The perturbation solution also suggests the envelope of such
a system can be modeled as an exponential decay with a
saturation amplitude offset. Direct numerical simulation of
the governing equations verify the perturbation results and
the saturation effect. We show that initial-condition excitation
and boundary-continuous excitation lead to the same results
for complete evanescent waves, but different saturation am-
plitudes for transitional evanescent waves. This phenomenon
is qualitatively explained by a wave-number band-clipping
phenomenon.

While the presented method generates quantitative results
agreeing with numerical simulations, it also has restrictions
inherent in the Lindstedt-Poincaré method. The method limits
the analysis to a frequency shift and does not yield evolution
equations for amplitude and phase, such as those found in
averaging and multiple scales analysis. For the special case of
BC-excited waves excited near the edge of the Brillouin zone,
the presented analysis cannot directly capture clipping in the
wave-number domain. Follow-on work is suggested which
uses more advanced analysis tools to directly analyze these
special cases. Lastly, we note that the developed perturbation

analysis is broadly applicable and can be employed to study
evanescent waves in a variety of discrete, nonlinear periodic
structures.
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APPENDIX

We present in Fig. 7 the imaginary wave number and at-
tenuation envelopes derived from the perturbation solution,
Eq. (17), and the modified solution, Eq. (21). We observe that
when the saturation amplitude is low, as shown in Figs. 7(a)
and 7(b), the standard and modified solutions yield similar
imaginary wave-number components and attenuation. How-
ever, as the saturation amplitude increases, the perturbation
approach initially developed for complete evanescent waves
predicts overestimated imaginary wave-number components
that decrease the wave amplitude below the saturation am-
plitude. In addition, the higher the saturation amplitude, the
less accurate this perturbation solution becomes. In the last
column, Figs. 7(g) and 7(h), Eq. (17) predicts an overesti-
mated imaginary wave-number component four times larger
than that predicted by Eq. (21).
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