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Transmission measurements through three-port microwave graphs are performed, in analogy to three-terminal
voltage drop devices with orthogonal, unitary, and symplectic symmetry. The terminal used as a probe is
symmetrically located between two chaotic subgraphs, and each graph is connected to one port, the input
and the output, respectively. The analysis of the experimental data clearly exhibits the weak localization and
antilocalization phenomena. We find a good agreement with theoretical predictions, provided that the effects of
dissipation and imperfect coupling to the ports are taken into account.
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I. INTRODUCTION

The wave origin of quantum interference in many physi-
cal phenomena opens the possibility that analogous classical
wave systems may emulate quantum devices [1]. For exam-
ple, classical wave systems have been used as auxiliary tools
to understand transport properties of multiterminal quantum
systems. The dissipation that occurs in classical wave systems
and the imperfect coupling to the leads that feed the system
have not been disadvantageous but interesting phenomena
deserving to be studied to analyze their effects in transport
properties [2–5].

An opportunity to study many electrical or thermal con-
duction properties of solid state physics by classical wave
systems has been opened once the problem of electrical or
thermal conduction is reduced to a scattering problem. For
instance, the Landauer formula states that the electrical con-
ductance is proportional to the transmission coefficient [6];
an equivalent Landauer formula is valid for thermal con-
ductance [7]. Therefore, much research has been devoted
to the study of conduction through two-terminal configura-
tions from the theoretical and experimental points of view,
using quantum mechanics [8–12] as well as classical wave
physics [2,3,13,14].

Electrical conduction through multiterminal quantum de-
vices has also been studied in [15–23]. Among them
three-terminal systems have been considered in which the
voltage drop along the system is another observable of inter-
est [24–27], apart from the conductance coefficients. While
two of the terminals are connected to fixed electronic reser-
voirs to feed the system, the third one is used as a probe that
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tunes the voltage drop. The voltage drop along a disordered
wire was analyzed for the one-channel case [25,26]. It has
been shown theoretically that the value of the voltage drop
lies between those on the two terminals; in fact, it consists of
the average of the voltages in the terminals and a deviation
term, which contains specific information about the system
through the transmission coefficients from the terminals to
the probe. This dimensionless voltage drop deviation term,
f , is an important quantity in the study of the voltage drop
reducing the problem to a scattering problem. It has been
shown that f fluctuates from sample to sample, and its statis-
tical distribution has a completely different shape for metallic
and insulating regimes [25,26]. The same quantity was also
considered for a chaotic system, numerically simulated using
random matrix theory (RMT) [27].

Again, once the problem of electrical conduction is re-
duced to a scattering problem, classical wave systems may
help in the understanding of the voltage drop along a quantum
resistor. More recently, an experiment with microwave graphs
has been performed for an asymmetric configuration, where
the probe is located on one side of a chaotic graph [28].
Analytical and numerical procedures were carried out to com-
pute f . Remarkably, the results show significant differences
with respect to the corresponding disordered case. Here we
deepen the understanding of the voltage drop by proposing
an experiment with microwave graphs but locating the probe
between two chaotic graphs, as shown in Fig. 1, that is, in
a symmetric configuration. Our proposal is accompanied by
analytical predictions.

The paper is organized as follows. In the next section
we obtain the analytical expressions for the voltage drop
for a measurement at the middle of two scattering devices.
It is written in terms of the scattering matrices of the in-
dividual devices. In Sec. III the analytical procedure, using
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FIG. 1. Schematic representation of the three-terminal system
for measuring the voltage drop in a symmetric configuration through
the third terminal located between two chaotic devices.

RMT calculations for the scattering matrices, is developed
for the statistical distribution of the deviation f assuming
chaotic scattering devices. The experimental realization with
microwave graphs is explained in Sec. IV, where we compare
experimental results with theoretical predictions. Finally, we
present our conclusions in Sec. V.

II. VOLTAGE DROP REDUCED TO A SCATTERING
PROBLEM

A. Voltage drop in a symmetric configuration of measurement

To measure the voltage drop along a quantum wire in the
simplest configuration, a three-terminal system is needed in
which one of the ports is used as a probe by tuning its voltage
to zero current. By symmetric configuration of measurement
we mean the one in which the probe is located between two
quantum devices, as is schematically shown in Fig. 1. In the
experiment the two devices are realized in terms of microwave
graphs belonging to the same symmetry class with the same
mean density of states, i.e., the same total length but different
geometries. We are interested in the one-channel situation of
the leads connecting the system, for which the zero current in
the probe implies that [6]

μ3 = 1
2 (μ1 + μ2) + 1

2 (μ1 − μ2) f , (1)

where μi is the chemical potential of the ith electronic reser-
voir and

f = T31 − T32

T31 + T32
, (2)

with Ti j the transmission coefficient from terminal j to ter-
minal i. Equation (1) is appealing since it allows us to
discriminate the part of the voltage drop that comes from
the fixed potentials, μ1 and μ2, and the one that comes from
the scattering process in the system. For instance, if the two
devices are clean (free of impurities) straight waveguides,
T31 = T32, such that f = 0 and μ3 reduces to the average
value between μ1 and μ2. But, if T32 = 0, which means that
device 2 is blocked, f = 1 and μ3 becomes equal to μ1. On
the other hand, if device 1 is blocked, T31 = 0 and f = −1,
in which case μ3 = μ2. In general, f takes values in the
interval [−1, 1] and says to which of the fixed potentials μ3

is closer; its expression in Eq. (2) resembles that of the degree
of polarization of light [29, p. 211, Eq. (6.40)]. Therefore, we
will refer to f as the dimensionless voltage drop deviation.

B. Voltage drop deviation f in terms of scattering elements

Since the voltage drop is an observable in electrical con-
duction, it has no meaning in classical wave systems, but

it can be addressed through the quantity f indirectly. Equa-
tion (2) is equivalent to the dimensionless conductance but for
three-terminal devices. Analogously to the conductance, the
problem of the voltage drop in electronic devices is reduced
to a scattering problem through the quantity f . It is clear that
f contains all the information about the system by means
of the transmission coefficients Ti j . Let us assume that the
scattering properties of each device are known through their
scattering matrices, S1 for device 1 and S2 for device 2. The
general structure of these matrices depends on the symmetry
properties of the problem, namely,

S j =
(

r jJ t ′
jD j

t jDR
j r′

jJ

)
, j = 1, 2, (3)

where r j (r′
j) and t j (t ′

j) are the reflection and transmission
amplitudes for incidence from the left (right) of device j.
Unitarity is the only requirement on Sj in absence of any
symmetry; this case is known as the unitary symmetry and
is labeled by β = 2 in Dyson’s scheme. In addition, in the
presence of time reversal invariance Sj is unitary and sym-
metric, which corresponds to the orthogonal symmetry and
is labeled by β = 1; for both cases Dj = DR

j = J = 1. Fur-
thermore, in the presence of time-reversal invariance but no
spin-rotation symmetry, the symmetry of the system is the
symplectic one, labeled by β = 4, and Sj becomes a 4 × 4
self-dual matrix [30] in which case J is the 2 × 2 identity
matrix, J = 1, and DR

j is the dual matrix of the 2 × 2 matrix
Dj , defined by [31]

DR
j = −ZDT

j Z, (4)

where

Z =
(

0 −1
1 0

)
, (5)

and DT
j is the transposed matrix of Dj with the form Dj =

UjV R
j , where V R

j is the dual of Vj , with Uj and Vj being 2 × 2
matrices that belong to the SU(2) group.

The dependence of Ti j on S1 and S2 can be obtained ex-
plicitly. The scattering matrix of the three-terminal symmetric
configuration is given by [27]

S = SPP + SPQ(S0 − SQQ)−1SQP, (6)

where S0 is the scattering matrix of the junction that accounts
for the coupling to the probe. In fact, S0 can be obtained from
the experiment [28,32]; it reads as

S0 = 1

3

⎛
⎝−J 2J 2J

2J −J 2J
2J 2J −J

⎞
⎠. (7)

In Eq. (6) SPP represents the reflections to the terminals,
and SQP and SPQ represent the transmissions from the termi-
nals to the inner part of the system and from the inner part
to the terminals; SQQ represents the internal reflections and
(S0 − SQQ)−1 accounts for the multiple scattering between the
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devices and the junction. Explicitly, they are

SPP =
⎛
⎝r1J 0 0

0 r′
2J 0

0 0 0

⎞
⎠, SPQ =

⎛
⎝t ′

1D1 0 0
0 t2DR

2 0
0 0 J

⎞
⎠,

SQP =
⎛
⎝t1DR

1 0 0
0 t ′

2D2 0
0 0 J

⎞
⎠, SQQ =

⎛
⎝r′

1J 0 0
0 r2J 0
0 0 0

⎞
⎠.

(8)

By substituting Eqs. (7) and (8) into Eq. (6), the scattering ma-
trix elements S31 and S32 are obtained, from which Ti j = |Si j |2
for β = 1, 2, while Ti j = 1

2 tr(Si jS
†
i j ) for β = 4, and therefore

Eq. (2) reduces to

f = |t1|2|1 + r2|2 − |t ′
2|2|1 + r′

1|2
|t1|2|1 + r2|2 + |t ′

2|2|1 + r′
1|2

. (9)

Note that S31, S32, and f depend only on the elements of the
individual scattering matrices that describe the devices.

III. CHAOTIC SCATTERING FOR THE VOLTAGE DROP
DEVIATION

Of particular interest are the transport properties through
chaotic devices, quantum or classical. The disordered three-
terminal system was previously considered in Ref. [26]. In
any case the scattering quantities, like the transmission coef-
ficients through each device, fluctuate with respect to a tuning

parameter, like the energy of the incident particles in the
quantum case or the frequency in the classical wave situation,
or from sample to sample. Therefore, it is the distribution of
f that becomes more important rather than a particular value
of f .

For a chaotic cavity, the statistical fluctuations of the scat-
tering matrix are described by RMT. There S j is uniformly
distributed according to the invariant measure dμβ (S j ) that
defines the circular ensemble for the symmetry class β: the
circular orthogonal ensemble for β = 1, the circular unitary
ensemble for β = 2, and the circular symplectic ensemble for
β = 4. Hence, the statistical distribution of f can be calcu-
lated from the definition

Pβ ( f ) =
∫

δ
(

f − T31 − T32

T31 + T32

)
dμβ (S1) dμβ (S2), (10)

where δ is the Dirac delta function.

A. Statistical distribution of the voltage drop deviation f

A useful parametrization for scattering matrices is the polar
form

S j =
[
−√

1 − τ je
i(φ j+φ′

j )J
√

τ je
i(φ j+ψ ′

j )Dj√
τ je

i(ψ j+φ′
j )DR

j

√
1 − τ je

i(ψ j+ψ ′
j )J

]
, (11)

where 0 � τ j � 1 and φ j , φ′
j , ψ j , ψ ′

j lie in the interval
[0, 2π ]; φ j = φ′

j and ψ j = ψ ′
j for β = 1, 4, and J , Dj , and

DR
j are as defined in Sec. II B.
For this parametrization, the normalized invariant measure

of S j is given by

dμβ (S j ) = pβ (τ j ) dτ j
dφ j

2π

dψ j

2π
×

⎧⎪⎨
⎪⎩

1 for β = 1
dφ′

j

2π

dψ ′
j

2π
for β = 2

dμ(Uj ) dμ(Vj ) for β = 4

, where pβ (τ j ) = β

2
τ

β/2−1
j (12)

and dμ(Uj ) and dμ(Vj ) are the invariant measures of Uj and Vj , respectively. As we will see below, f does depend on neither
Uj nor Vj such that we do not need to know explicitly the expressions for dμ(Uj ) and dμ(Vj ).

In terms of the parametrization of Eq. (11) the voltage drop deviation, given in Eq. (9), can be written as

f = 1 + τ1τ2 − 2τ2 − 2τ2
√

1 − τ1 cos (ψ1 + ψ ′
1)

τ1 + τ2 − τ1τ2 − τ1
√

1 − τ2 cos (φ2 + φ′
2) + τ2

√
1 − τ1 cos (ψ1 + ψ ′

1)
. (13)

Since f does not depend on either Uj or Vj , the integration over dμ(Uj ) and dμ(Vj ) in Eq. (10) gives just 1 for β = 4; except
for variables τ1 and τ2, the resulting expression for Pβ ( f ) reduces to one similar to that for β = 1 in the remaining variables.
The integration of dφ1/2π , dφ′

1/2π , dψ2/2π , and dψ ′
2/2π gives 1 for β = 2. Therefore, once we perform the integration with

respect to φ2 and φ′
2, making the appropriate change of variables for each symmetry class, and then with respect to the remaining

phases ψ1 and ψ ′
1, we arrive at

Pβ ( f ) =
∫ 1

0
dτ1

∫ 1

0
dτ2 pβ (τ1) pβ (τ2) p( f |τ1, τ2), (14)

where p( f |τ1, τ2) can be interpreted as the conditional probability distribution of f given τ1 and τ2, and it is given by

p( f |τ1, τ1) = 1

π2(1 − f 2)
√

1 − τ1

∫
L

2 − τ1 + 2
√

1 − τ1 x√
(α+ − x)(x − α−)(1 − x2)

dx, (15)

where L ∈ (−1, 1) ∩ (α−, α+) with

α± = (τ1 − τ2) − (τ1 + τ2 − τ1τ2) f ± (1 − f )τ1
√

1 − τ2

(1 + f )τ2
√

1 − τ1
. (16)
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The integration in the domain L is not a trivial problem because it depends on the variables τ1, τ2, and f through α± in a
complicated way, but we can give a further step in the integration by looking for the limits of integration once the value of f is
fixed (see Appendix A for details). The integral over x in Eq. (15) can be expressed in terms of complete elliptic integrals. The
result for Pβ ( f ) can be expressed as

Pβ ( f ) = 1

π2(1 − f 2)

[∫ 1

0
dτ1

pβ (τ1)√
1 − τ1

∫ u(τ1 )

0
dτ2 pβ (τ2) I1

−1( f ; τ1, τ2) +
∫ 1

0
dτ2 pβ (τ2)

∫ w(τ2 )

0
dτ1

pβ (τ1)√
1 − τ1

Iα+
α− ( f ; τ1, τ2)

+ H ( f ) H (1 − f )
∫ 1

0
dτ1

pβ (τ1)√
1 − τ1

∫ v(τ1 )

u(τ1 )
dτ2 pβ (τ2) Iα+

−1 ( f ; τ1, τ2) + H (− f ) H ( f + 1)
∫ 1

0
dτ1

pβ (τ1)√
1 − τ1

×
∫ v(τ1 )

u(τ1 )
dτ2 pβ (τ2) I1

α− ( f ; τ1, τ2)

]
, (17)

where H (x) is the Heaviside step function and the limits are

u(τ1) = r(2s− − r)

s2−
, v(τ1) = r(2s+ − r)

s2+
, and w(τ2) = r′(2s′ − r′)

s′2 , (18)

where r′ = r(τ1 → τ2) and s′ = s−(τ1 → τ2) with

r(τ1) = (1 − f )τ1 and s±(τ1) = 1 + (1 − τ1) f ± (1 + f )
√

1 − τ1. (19)

In Eq. (17),

I1
−1( f ; τ1, τ2) = 2√

(α+ + 1)(1 − α−)

[
(A + Bα−)K (k1) − (1 + α−)B 	

(
r2

1 , k1
)]

, (20)

Iα+
α− ( f ; τ1, τ2) = 2√

(α+ + 1)(1 − α−)

[
(A − B)K (k1) + (1 + α−)B 	

(
r′

1
2
, k1

)]
, (21)

Iα+
−1 ( f ; τ1, τ2) =

√
2√

α+ − α−

[
(A + Bα−)K (k2) − (1 + α−)B 	

(
r′

2
2
, k2

)]
, (22)

and

I1
α− ( f ; τ1, τ2) =

√
2√

α+ − α−

[
(A − B)K (k2) + (1 + α−)B 	

(
r2

2, k2
)]

, (23)

where A = 2 − τ1 and B = 2
√

1 − τ1; K (k) and 	(r2, k) are complete elliptic integrals of the first and third kinds, respectively,
and

k2
1 = 2(α+ − α−)

(α+ + 1)(1 − α−)
, r2

1 = 2

1 − α−
, and r′

1
2 = α+ − α−

α+ + 1
; (24)

k2
2 = 1

k2
1

, r2
2 = 1

r2
1

, and r′
2

2 = 1

r′
1

2 . (25)

The remaining integrals with respect to τ1 and τ2 can be
performed numerically. In order to verify our results, in Fig. 2
we compare them with the statistical distributions obtained
from numerical simulations using Eqs. (11)–(13). An excel-
lent agreement is observed.

We can observe in Fig. 2 that the distribution of f is
symmetric with respect to f = 0, which is due to the sym-
metric configuration of measurement. Moreover, it diverges
at f = ±1 for β = 1, a clear effect of the weak localization
that does not occur for β = 2, which shows finite peaks at
f = ±1. For β = 4 the distribution becomes zero at f = ±1
due to the weak antilocalization phenomenon. Each of these
effects is better understood from Eq. (9), which captures the
symmetry properties of the conductance of each device. The
differences found in the Pβ ( f ) between the symmetry classes
are important signatures of the chaotic setup we consider here
since in the equivalent disordered configuration no differences
were found [26].

IV. EXPERIMENTAL REALIZATIONS
WITH MICROWAVE GRAPHS

Since the voltage drop deviation depends only on the
scattering properties of the devices, it can be emulated in
classical wave systems. To experimentally realize devices 1
and 2, we use microwave graphs. Since the seminal paper
by Kottos and Smilansky [34] it has been well known that
the statistical properties of eigenvalues for closed graphs as
well as their scattering properties for open graphs can be
described by RMT and the effective Hamiltonian approach
if the quantum graphs are sufficiently “complex” [35–37].
Microwave networks have been proven to be an excellent
experimental playground starting with a first realization of
the Gaussian orthogonal ensemble (GOE) [38,39] as well as
realizing the unitary (GUE) [40,41] and symplectic ensembles
(GSE) [32,33]. Even though deviations from RMT predic-
tions in small graphs are known, they contribute mainly to
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FIG. 2. Comparison between the analytical results (continuous
lines) with random matrix simulations (histograms) for Pβ ( f ):
(a) β = 1, (b) β = 2, and (c) β = 4.

long-range correlations [42] and have only small effects on
the transmissions. Thus microwave networks give us the pos-
sibility to realize all three ensembles (GOE, GUE, GSE) and
investigate experimentally the voltage drop deviation f . An-
other experimental realization for the orthogonal case based
on microwave cavities (chaotic wave billiard) is given in Ap-
pendix B.

Figure 3(a) shows a photograph of the experimental setup
for the case of time-reversal invariance (β = 1). The devices
consist of chaotic microwave networks formed by coaxial
semirigid cables (Huber & Suhner EZ-141) with SMA con-
nectors, coupled by T junctions at the nodes. One microwave

FIG. 3. (a) Photograph of the three-port experimental setup for
the case of time-reversal symmetry (β = 1). For the realization of
a violation of time-reversal symmetry (β = 2) one T junction in
each of the subgraphs is replaced by a circulator. Both subgraphs are
geometrically different but have the same total length, i. e., the mean
level density is the same. (b) Sketch of the graph for β = 1 (GOE)
and β = 2 (GUE), where for β = 1 the circulators are replaced by
ordinary T junctions (indicated by the blue arrows). For a realization
of β = 4 (GSE) each GUE subgraph is complemented by another
geometrically identical one but with an opposite sense of rotation
of the circulators (gray). The two respective copies are connected
by pairs of bonds with length differences corresponding to a phase
difference of π for the propagating waves (see Refs. [32,33] for
details, where also a photograph of a single GSE graph can be found).
The photograph shown in (a) corresponds to the graph sketched in
red.

port attached to the left subgraph acts as the input, another
one on the right as the output, and a third port attached to the
connecting cable between the two subgraphs as the probe. To
implement the violation of time-reversal invariance (β = 2),
in each of the two subgraphs one of the T junctions is re-
placed by a circulator (Aerotek I70-1FFF) with an operating
frequency range from 6 to 12 GHz. A circulator introduces
directionality, waves entering via port 1 leave via port 2.
The transmission intensities T31 and T32 were measured by an
Agilent 8720ES vector network analyzer (VNA).

For the realization of the β = 4 (GSE) case two GSE
graphs are needed. Since each GSE graph is composed of
two GUE subgraphs, representing the spin-up and spin-down
components [33], we need a total of four subgraphs. Fig-
ure 3(b) shows a sketch of the three-terminal GSE graph used
to measure the scattering matrix. An essential ingredient of the
setup is two pairs of bonds with length differences 
l corre-
sponding to phase differences of 
ϕ = π for the propagating
waves. In the experiment we took many spectra for fixed 
l ,
which can be realized using phase shifters allowing one to
change the length of one connecting bond automatically. Now
the condition for the GSE symmetry of 
ϕ = π is fulfilled
only at specific 
l and k values, where k is the wave number.
Therefore, we rescaled the spectra taken for constant 
l to
new spectra for 
ϕ constant, using 
ϕ = k
l , and chose
for the GSE realization the spectra where 
ϕ = π . Further
details can be found in Refs. [32,33]. The ports now appear
in pairs 1, 1̄, 2, 2̄, 3, 3̄, and the scattering matrix elements turn
into 2 × 2 matrices

Si j =
(

Si j Si j̄

Sī j Sī j̄

)
. (26)

In the spirit of the spin analogy, Si j and Si j̄ correspond
to transmissions without and with spin flip, respectively.
Si j can be written in terms of quaternions as Si j = S0

i j1 +
iSx

i jσx + iSy
i jσy + iSz

i jσz, where for a symplectic symmetry all
coefficients S0

i j , Sx
i j , etc., are real numbers and σ j is the corre-

sponding Pauli matrix j. As a consequence Si jS
†
i j is a multiple

of the unit matrix which allows for a simple check of the qual-
ity of the realization of the setup with symplectic symmetry.
In our experiments S31 and S32 were found to be quaternion
real within an error of 4.10% and 3.61%, respectively. The
mentioned multiple is nothing but the transmission coefficient,
hence T31 = 1

2 tr(S31S†
31) and T32 = 1

2 tr(S32S†
32).

The experimental distribution of f is shown in Fig. 4 as
histograms for the three symmetry classes β, where it is com-
pared with the theoretical result given by Eq. (17). As can
be observed there is a qualitatively good agreement for all β.
Despite the fact that there is a quantitative difference between
theory and experiment, which is due to the phenomena of
dissipation and imperfect coupling between the graphs and
ports, this difference is not so large. In Fig. 4 we also show
the corrected distributions obtained from RMT simulations,
using the Heidelberg approach (see below), once these two
phenomena, dissipation and imperfect coupling, are taken into
account.

The dissipation and imperfect coupling can be quantified
by two parameters: T1 for the coupling strength and γ for
the dissipation. The coupling between the graphs and ports T1
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FIG. 4. Experimental voltage drop deviation f as a function of
frequency is shown in the upper panels for the three symmetry
classes. Their corresponding statistical distributions are shown as
histograms. The continuous (blue) lines in the lower panels corre-
spond to the theoretical result shown in Fig. 2, while the dashed
(orange) lines are the RMT simulations which take into account the
dissipation and imperfect coupling: β = 1 (left), β = 2 (middle),
and β = 4 (right). For comparison purposes, in the insets in the
lower panels we show the difference between the numerical and
the experimental distribution δPβ ( f ) = Pβ ( f )num − Pβ ( f )expt. For
the statistical analysis we used an ensemble of 5 × 104 realizations.

is extracted from the experimental data as T1 = 1 − |〈S11〉|2,
where 〈S11〉 is the average (with respect to the frequency)
of the scattering matrix element 11. Here we obtained T1 =
0.872 for β = 1, T1 = 0.872 for β = 2, and T1 = 0.847 for
β = 4. The effect of dissipation is clearly observed in the
experimental transmission intensities T31 and T32. Their fluc-
tuations as a function of the frequency are shown in Fig. 5,
where we observe that they do not reach the value 1. The
dissipation parameter γ can be quantified by fitting the auto-
correlation function C11(t ) of the 11 element of the scattering
matrix [4,28,43]

C11(t )

T 2
1

=

⎧⎪⎪⎨
⎪⎪⎩

[
3

(1+2T1t )3 − b1,2(t )
(1+T1t )4

]
e−γ t for β = 1,[

2
(1+T1t )4 − 26b2,2(t )

(2+T1t )6

]
e−γ t for β = 2,[

6
(1+T1t )6 − 212b4,2(t )

(2+T1t )10

]
e−2γ t for β = 4,

(27)

where bβ,2(t ) is the two-level form factor [44] and T1, γ , and
t are given in dimensionless units. The best fit achieved for
C11(t ), for t < 1, is shown in Fig. 5 for all symmetry classes,
from which we obtain γ = 2.6 for β = 1, γ = 2.0 for β = 2,
and γ = 1.8 for β = 4. Note that for the determination of γ

the previously determined coupling parameter T1 are used,
and Fig. 5 shows nicely the convergence of the C11(t = 0)
to the corresponding values of 2T1 for the GOE and GSE
cases and T1 for the GUE. The dips observed for β = 1 at
5.4 and 16 GHz have their origin in the open-terminated T
junctions present in all bonds of the graphs; see Fig. 5. These
T junctions had been incorporated to allow for an easy change
of the position of the connecting bonds. At the mentioned
frequencies standing waves in the short dead end of the T
junctions lead to a reduction of the transmission.

FIG. 5. Experimental transmission intensities T31 and T32 as a
function of frequency are shown in upper and middle panels for the
three symmetry classes. The lower panels show the autocorrelation
function: the fluctuations are the experimental measurements, and the
dashed lines are the best fits of Eq. (27) to the data for t < 1.

Once these parameters are determined, T1 and γ , RMT
simulations can be performed for the scattering matrix of
each graph, assumed as quantum systems. In the Heidelberg
approach the scattering matrix of a graph can be generated
as [9]

Sg = 1 − 2π iW † 1

E − H + iπWW †
W, (28)

where E represents the energy of the incoming wave and W
is the matrix that couples the open modes in the ports to the
internal modes of the system. H is an effective Hamiltonian
that includes the dissipation γ , Hμν = Hμν − iδμνγ
/4π ,
with 
 the mean level spacing. The imperfect coupling can
be modeled by adding identical barriers, with transmission in-
tensity T1, between graph 1 and port 1, between the graphs and
the T junction, and between graph 2 and port 2. The numerical
simulations of the three-terminal system, with the obtained
values of T1 and γ , lead us to the result shown in Fig. 4 for
the distribution of f ; see the orange dashed lines in the lower
panels. A good agreement is found for the GOE (β = 1), but
for the GUE and GSE we see stronger deviations. In the latter
cases only a smaller frequency range was available due to
the operating range of the circulators, resulting in a reduced
spectral averaging.

V. CONCLUSIONS

Once classical wave systems have been widely shown to be
good tools in the description of coherent quantum transport,
by means of the conductance in two terminal configurations,
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we proposed a three-terminal wave system to indirectly study
the voltage drop along a resistor as an alternative transport
property. It consists of two microwave graphs to measure the
dimensionless voltage drop between the graphs for the three
symmetry classes in the Dyson scheme. One port was used
as an input, a second port as an exit, and a third port as a
probe. The statistical distribution of the quantity f , which
accounts for the deviation from the mean value of the po-
tentials in the quantum case, was determined analytically in
terms of quadratures that were solved numerically. Also the
fluctuations were numerically simulated using the scattering
approach of random matrix theory. Qualitatively, we found
that the distribution of f is symmetric with respect to zero,
which is due to the symmetric configuration of measurement.
In this sense, our results extend the ones that were obtained
previously for an asymmetric configuration of measurement.
Also we found that the shape of the distribution of f is quite
similar to the one obtained in the disordered case, in the insu-
lating regime, but with an important difference, which is the
effect of weak localization and antilocalization phenomena,
not found in the disordered case. Therefore, the effect of the
symmetries present in the system is clearly observed in the
quantity f , as happens for the conductance in two terminal
configurations. A more accurate description is obtained when
dissipation and imperfect coupling between the ports and
graphs are taken into account. Finally, since the experimental
realization of symplectic symmetries is still quite new, there is
an interest on its own in a joint study of all symmetry classes.
The trouble-free control of the frequency dependence of the
quantity f makes the voltage drop an attractive transport prop-
erty rather than the conductance, which usually requires one
to restrict the data analysis to small frequency windows. We
expect that our findings could motivate further investigations
in the subject.
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APPENDIX A: LIMITS OF INTEGRATION IN Eq. (15)

The integration with respect to x ∈ (−1, 1) in Eq. (15)
should be performed in the interval L, which is the intersection
of the intervals (−1, 1) and (α−, α+). Since α+ and α− depend
on the values of τ1, τ2, and f , the values of τ1 and τ2 may be
affected by that intersection for fixed f . This leads to integrals
of the form

Ib
a ( f , τ1, τ2) =

∫ b

a

(A + Bx) dx√
(α+ − x)(x − α−)(1 + x)(1 − x)

,

(A1)

FIG. 6. (a) Intervals of integration for x which imply restric-
tions on τ1 and τ2 (shaded regions): for | f | = 0.6 (b) τ2 ∈ (0, u(τ1))
with τ1 ∈ (0, 1); (c) τ1 ∈ (0, w(τ2)) with τ2 ∈ (0, 1); (d) τ2 ∈
(u(τ1), v(τ1)) for f > 0 and τ2 ∈ (v(τ1), u(τ1)) for f < 0, with τ1 ∈
(0, 1). The functions u(τ ), v(τ ), and w(τ ) are defined in Eq. (18).

which gives rise to complete elliptic integrals of the first and
third kinds.

Four conditions arise, as illustrated in Fig. 6(a). Restric-
tions on τ1 and τ2 are obtained for a fixed value of f . These
restrictions lead to the several regions in the plane τ1 − τ2, as
can be seen in Fig. 6.

a. ConditionC1 : α− � −1 and 1 � α+. Under these condi-
tions x runs over its full domain, x ∈ (−1, 1). Conditions over
α+ and α− impose different validity regions for τ2. There-
fore, we take the intersection between such regions and then

FIG. 7. (a) Sketch of the three-port microwave billiard in the
presence of β = 1 symmetry. The ports are labeled as 1, 2, and 3,
where port 3 is used as a probe. The experimental transmission inten-
sities T31 and T32 are measured between ports 1 and 3, and between
ports 2 and 3, respectively. (b) Distribution P1( f ): the continuous
(black) line corresponds to the theoretical result shown in Fig. 2, the
dashed (red) line is the RMT simulation which takes into account
dissipation and imperfect coupling, while the histogram corresponds
to the experimental result.
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τ2 ∈ (0, u(τ1)), where τ1 ∈ (0, 1) and u(τ1) is given by the
first equation in (18).

b. Condition C2 : −1 � α− � α+ � 1. For these condi-
tions x belongs to the interval (α−, α+) and similarly to
condition C1 we found a restriction over τ1. Thus, τ1 ∈
(0,w(τ2)), where τ2 ∈ (0, 1) and w(τ2) is given by the third
equation in (18).

c. Condition C3 : α− � −1 and −1 � α+ � 1. In this
case x belongs to the interval (−1, α+). Due to the con-
ditions over α+ and α− we have restrictions over τ1 or
τ2, and we can choose one of them. We choose the re-
strictions over τ2 such that τ2 ∈ (u(τ1), v(τ1)) with f > 0,
where τ1 ∈ (0, 1) and v(τ1) is given by the second equation
in (18).

d. Condition C4 : −1 � α− � 1 and 1 � α+. Here x be-
longs to the interval (α−, 1). Similarly to condition C3 we
choose the restrictions over τ2 such that τ2 ∈ (u(τ1), v(τ1))
with f < 0 and τ1 ∈ (0, 1).

To apply these conditions to the integral of Eq. (A1) we use
the equations 254.00, 254.10, 336.01, 336.60, and 340.04 of
Ref. [45], and then we integrate with respect to τ1 and τ2, and
finally we arrive at Eq. (17).

APPENDIX B: THREE-PORT MICROWAVE BILLIARD
EXPERIMENT

For the β = 1 case, in addition to the microwave graph
experiments an experiment in a billiard setup has been per-
formed. A sketch is shown in Fig. 7(a). The billiard is
constructed on an aluminum plate with two subbilliards of the
same shape separated by a central bar. The mirror symmetry is
broken by two semicircular obstacles, attached to the bottom
boundary. The ports are labeled as 1, 2, and 3, where port 3
is used as a probe. The experimental transmission intensities
T31 and T32 have been measured between port 1 and port 3,
and between port 2 and port 3, respectively, for frequencies
from 1 to 17 GHz. With a distance of d = 8 mm between top
and bottom plates the billiard is quasi-two-dimensional in the
whole frequency range.

In Fig. 7(b) we show as histogram the experimental dis-
tribution of P1( f ) obtained from the billiard setting. The
analytical result is shown in the continuous (black) line, while
the RMT simulation, which take into account the dissipation
and imperfect coupling, is shown in (red) dashed line. Again,
a good agreement between experiment and theory is found
for P1( f ).
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