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Stochastic radiative transfer in random media. II. Coupling of radiation to material
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We study the mechanism of the impact of random media on the stochastic radiation transport based on a
one-dimensional (1D) planar model. To this end, we use a random sampling of mixtures combined with a
deterministic solution of the time-dependent radiation transport equation coupled to a material temperature
equation. Compared to purely absorbing cases [C.-Z. Gao et al., Phys. Rev. E 102, 022111 (2020)], we find that
material temperatures can significantly suppress the impact of mixing distribution and size, which is understood
from the analysis of energy transport channels. By developing a steady-state stochastic transport model, it is
found that the mechanism of transmission of radiation is distance dependent, which is closely related to the mean
free path of photons lp. Furthermore, we suggest that it is the relationship between lp and L (the width of random
medium) that determines the impact of random media on the stochastic radiation transport, which is further
corroborated by additional simulations. Most importantly, combining the proposed simple relationship and 1D
simulations, we resolve the existing disputable issue of the impact of random media in previous multidimensional
works, showing that multidimensional results are essentially consistent and the observed weak or remarkable
impact of random media is mainly due to the distinctly different relationship between lp and L. Our results may
have practical implications in relevant experiments of stochastic radiative transfer.
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I. INTRODUCTION

In recent decades, the interest in studying the transport of
radiation in random media [1] has been persistently growing
in a broad range of research fields such as astrophysics [2–4],
plasma physics [5–7], reactor physics [8–11], and atmospheric
science [12–14]; for reviews, see Refs. [15–17]. The reso-
lution of radiation transport in random media in principle
requires dealing with stochastic radiation transport equations,
since the composition of random media is only known sta-
tistically by the volume fraction (or mixing probability) at a
specified position at any time [18]. The statistical nature of
random media’s geometry adds more degrees of freedom (i.e.,
mixing distribution, size, and probability) to the background
material with which photons interact, which enormously com-
plicates the analysis of radiation transport process, in contrast
to that in a homogeneous medium where the transport coef-
ficients are typically deterministic and constant [18–20], i.e.,
independent of the spatial variable.

Among the extensive studies on this subject, a major-
ity of theoretical works have focused on steady-state or
time-independent stochastic radiative transfer [21–31], par-
ticularly in a binary random medium of two immiscible
materials stochastically admixed, and a wealth of bench-
mark results have been presented in one-dimensional (1D)
rod and planar geometries [24,26–29,31]. Recently, Larmier
et al. [32–34] provided intense benchmark results for two- and
three-dimensional cases. However, almost all of them have
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treated the problem with nonparticipating materials, i.e., in
the absence of material temperature, and the results may be
inapplicable in the case of strong radiation heating the random
media up to appreciable temperatures, which are typically
the physical scenario in related practical applications. For
example, in inertial confinement fusion (ICF) mixed layers of
very different materials (e.g., low-Z gas admixed with ablator
materials doped by high-Z dopants) interact intensively with
driving energetic x rays in the phase of implosion and com-
pression [35–37]. Under such circumstances, the radiation is
strong enough and the random mixtures remain hot and dense,
thus necessitating modeling the radiation transport in random
media, taking into account the coupling of strong radiation to
hot matter, which might be instructive in ICF simulations [5].

In relation to stochastic radiative transfer in participat-
ing random media (i.e., feedback due to the material is
considered in radiation transport), a number of theoretical
studies have been reported in both time-independent and
time-dependent domains. In the time-independent condition,
Vanderhaegen [22] considered the stochastic radiative transfer
in a heterogeneous two-temperature medium, in which the
temperature of respective materials was assumed to be known
and unchanged by the radiation. For infinitely large distances
with zero incident radiation, Vanderhaegen presented an an-
alytical expression of the ensemble-averaged transmission,
which was further simplified to a more compact form by
assuming that the correlation length converged to zero. Nev-
ertheless, Vanderhaegen also claimed that the model might be
invalid in nonequilibrium situations.

In the time-dependent condition, Miller et al. [38] reported
benchmark calculations for transport of radiation coupled
to material in one-dimensional (1D) planar geometry bi-
nary random media using Markov mixing statistics, which

2470-0045/2022/105(1)/014131(14) 014131-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4196-7069
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.014131&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1103/PhysRevE.102.022111
https://doi.org/10.1103/PhysRevE.105.014131


CONG-ZHANG GAO et al. PHYSICAL REVIEW E 105, 014131 (2022)

have been explicitly compared to three approximate mod-
els by varying mixing sizes. Their numerical results showed
that the Su-Pomraning model [39] was superior to both
the Levermore-Pomraning and atomic mix models [18]. In
a subsequent work, Prinja and Olson [40] developed re-
duced transport models for the ensemble-averaged radiation
intensity and material energy density, which excluded the
stochasticity of random geometry; the validity of these models
has been carefully verified in numerical calculations over a
wide range of model parameters. In recent decades, radiative
transfer in participating random media has been extended to
more sophisticated situations [41–47], i.e., in two and three
dimensions, which have significantly improved our under-
standing of stochastic radiative transfer in realistic physical
scenarios. From a comparative analysis of the aforementioned
studies, it can readily be seen that more attention has been
paid to establish approximate deterministic models via ef-
fective opacities or more accurate closures and to develop
an efficient numerical algorithm to fully simulate stochastic
radiation transport than to the influence of the random medium
itself on radiation transport.

From a practical point of view, the knowledge of the impact
of the properties of random media on stochastic radiation
transport is crucial to manipulating the radiation flux through
the random media. For instance, previous radiation trans-
port experiments in inhomogeneous foam-Au plasmas [6,7]
showed that the size of random mixtures can strongly af-
fect the propagation of radiation-driven heat. Therefore, it is
important, from a theoretical perspective, to elucidate the de-
pendence of stochastic radiation transport on random media.
In this context, based on a low-order angular approximation
to radiation transport equations (the so-called P1/3 equations),
Olson carried out 2D simulations [41] and found that dif-
ferent mixing sizes weakly affected the radiation flux. By
comparing the constant mixing distributions with exponential
ones, a similar weak dependence on mixing distributions was
also observed. When coupled to the material equation, Olson
obtained nearly identical results for very different mixing
distributions and sizes. Moreover, in a follow-up study in three
dimensions, Olson [44] again confirmed different mixing dis-
tributions having little effect on radiation energy densities.
Additionally, Brantley and Martos studied the same problem
but without material temperature coupling in three dimensions
using a Monte Carlo technique [48]. Basically, they found a
remarkable dependence of the radiation of transmission and
reflection on the mixing sizes and probabilities and a weak ef-
fect of mixing distributions. In Ref. [48] Brantley and Martos
also claimed that their benchmark results were to some extent
in contrast to those reported by Olson [41]. In other words,
there is far from conclusive agreement on whether or not the
properties of random media considerably affect the radiation
transport, not to mention the underlying mechanism.

In order to better understand the discrepancy in multidi-
mensions, in this paper we employ the 1D slab geometry
model to perform a comprehensive and thorough study. One
may argue that results obtained from the 1D slab geometry
are different from those in multidimensions [41], but the rel-
ative magnitude of the impact of the properties of random
media may not be strongly dependent on the dimensionality
of stochastic mixtures. Compared to 2D and 3D calculations,

the 1D slab geometry in the present study is simple enough,
but photon transport does occur in three dimensions by as-
suming translational invariance in the x and y dimensions.
On the other hand, as we use the simplest nontrivial model
for radiation transport, it is possible to establish the analytic
physical model to interpret the numerical data, which may be
difficult for multidimensional simulations. Most importantly,
a systematic study on radiation transport in two and three
dimensions in a wide range of parameters is computationally
demanding, but it is more feasible in one dimension in the
present work.

In this work, our goal is to figure out the mechanism of
the impact of random media on stochastic radiation trans-
port using a 1D slab model. We start by showing how the
ensemble-averaged observables, e.g., the transmission of ra-
diation, are systematically affected by random media in the
presence of radiation-material coupling and examining to
what extent the findings observed in pure absorbing cases [31]
are applicable. Then we analyze the role of material tempera-
ture in stochastic radiative transfer by building a steady-state
stochastic transport model and discuss the underlying mecha-
nism of the impact of random media. Finally, we combine the
proposed mechanism and 1D simulations to interpret previous
multidimensional results, aiming to resolve the existing dis-
putable issue of the impact of a random medium in previous
works. As such, the present study can also be considered
as an extension of our recent work in the regime of pure
absorbing [31] into the time domain and participating random
media.

The organization of the article is as follows. Section II
presents a description of the theoretical model and key param-
eters. The present models are explicitly validated by previous
benchmark results. Systematic results are presented in Sec. III,
followed by a discussion of the role of material temperature
and an analysis of the mechanism of the impact of random
media in Sec. IV. Based on the proposed mechanism and 1D
simulations, we interpret self-consistently previous multidi-
mensional results in Sec. V. We summarize, draw conclusions,
and offer perspective for future work in Sec. VI.

II. THEORETICAL METHOD

In order to obtain reliable and robust results on radiation
transport through a layered binary stochastic mixture, we use
a benchmark procedure involving three main steps to evaluate
the ensemble-averaged transport results of interest, as de-
scribed in Refs. [24,26,27,29,31]. First, a number of physical
realizations of the layered stochastic mixture are randomly
sampled from the mixing distribution for the given mixing
probabilities. Second, in each sample the radiation transport
equations coupled to the material temperature equations are
deterministically solved and the transport results are recorded.
Third, ensemble-averaged results are naturally obtained.

A. Model description

Figure 1 schematically shows a typical physical realiza-
tion (side view), which occupies the spatial domain {−∞ <

x < ∞,−∞ < y < ∞, 0 � z � L}. It consists of alternating
materials 1 and 2 with random thicknesses in the z direction,
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FIG. 1. Schematic of a physical realization of a binary random
medium in the planar geometry. Materials 1 and 2 are labeled by
different patterns. The total width of the random medium is denoted
by L. The isotropic radiation source is placed at the left material
surface.

which is also referred to as the slab geometry [19,49,50]. The
algorithm of the random sampling of such stochastic mixtures,
based on the chord length distribution (CLD), can be found
in Refs. [24,26,27,29,31]. An isotropic radiation source at
the given temperature presents at z = 0 (the left boundary)
and zero incident intensity is considered at z = L (the right
boundary), which constitutes the initial boundary condition of
the problem.

Once the sampling of mixtures is completed, the determin-
istic method is applied for the given physical realization to
solve the radiation-material coupled transport equations and
to average the transport quantities of interest over a number of
random samplings. Conventionally, photon transport occurs
in three dimensions in any physical realization of mixtures,
which can be described by three spatial variables (x, y, and
z), one energy variable (E ), two angular variables (a polar
angle θ and an azimuthal angle φ), and one temporal variable
(t) [18,19]. In the present work, we assume that the physical
parameters such as opacity are spatially uniform, i.e., inde-
pendent of x and y. With appropriate initial and boundary
conditions that are only z dependent, it is thus reduced to a 1D
problem depending on the z coordinate. For the slab geom-
etry, we consider here the monoenergetic, purely absorbing,
source-free photon transport coupled to material temperature;
therefore, a standard description [18,51] for the specific radi-
ation intensity ψ requires one temporal (t), one spatial (z),
and one angular (θ ) variable, and for the material energy
density it necessitates one temporal (t) and one spatial (z)
variable. In this context, the coupled equations can be written
as [18]

1

c

∂

∂t
ψ (t, z, μ) + μ

∂

∂z
ψ (t, z, μ) + σaψ (t, z, μ)

= cσa

2
φ(t, z), (1)

∂

∂t
φ(t, z) = −cσaφ(t, z) + σa

∫ 1

−1
dμ′ψ (t, z, μ′),

where ψ (t, z, μ) denotes the time- and angle-dependent
specific radiation intensity and φ(t, z) the time-dependent ma-
terial energy density, given that it is at position z. The speed of
light in vacuum is denoted by c (=2.9979 × 10−2 cm/ps), and
μ signifies the cosine of the angle between the z axis and the
photon propagation direction, i.e., μ = cos θ . In addition, σa

is the absorption opacity in units of cm−1, which is invariable
in time but not in space for a binary stochastic mixture. For

simplicity, the value of absorption opacity is fixed and thus
we will not be considering temperature-dependent opacities
in this work.

Equations (1) can be briefly explained as follows. (a) It
should be emphasized that we have used φ(t, z) = aT 4(t, z),
where T is the time-varying local material’s temperature
at position z in units of keV and a is the radiation con-
stant (=1.37 × 10−5 J cm−3 eV−4), which allows us to obtain
two coupled but linear equations. (b) Equations (1) describe
the absorption-emission process of photon transport through
stochastic mixtures. Inclusion of the photons’ scattering is
straightforward, but we have purposely ignored it, since the
existence of the scattering term will certainly complicate the
analysis. (c) For a fixed point z in a given physical realiza-
tion, the same material is found for all times, i.e., material
transitions are neglected in time, and this assumption has
been widely used in previous benchmark studies of stochastic
radiative transfer [24,26–29,31,38].

To simulate a binary stochastic mixture, we build a large
ensemble of physical realizations (M), and the ensemble-
averaged reflection R and transmission J of radiation are
evaluated [24],

〈R(t, z)〉 = 1

M

M∑
i=1

∫ 0

−1
|μ|ψi(t, z, μ)dμ, (2a)

〈J (t, z)〉 = 1

M

M∑
i=1

∫ 1

0
μψi(t, z, μ)dμ. (2b)

Other physical observables of interest can readily be com-
puted, e.g., the ensemble-averaged specific radiation intensity
〈ψ (t, z, μ)〉, material energy density 〈φ(t, z)〉, radiation den-
sity 〈E (t, z)〉, and radiation flux 〈F (t, z)〉. Here we are mainly
concerned with the reflection from the incident edge z = 0,
i.e., 〈R(t, 0)〉, and the transmission and material energy den-
sity at the outgoing edge z = L, i.e., 〈J (t, L)〉 and 〈φ(t, L)〉.
Occasionally, transmission and reflection probabilities will be
involved, which are defined by the ratio of calculated values
to incident radiation flux.

B. Numerical setups

We developed a parallel program [52] to generate the
binary stochastic mixture and efficiently solve the time-
dependent coupled transport equations (1). More details of
numerical implementation can be found in Appendix A. In
this work, we describe the binary stochastic mixture by us-
ing the variants of model parameters previously utilized in
Ref. [38]: The mean chord lengths (λi, i = 1, 2) of materials
1 and 2 are λ1 = 5.6 × 10−3 cm and λ2 = 5.0 × 10−2 cm,
which result in mixing probabilities of p1 = 10% and p2 =
90%. The absorption opacities are σa,1 = 1000 cm−1 and
σa,2 = 5 cm−1, which differ by at least two orders of magni-
tude. The total length of the stochastic mixture is set equal to
L = 0.15 cm. Here the parametrization results in a spatially
homogeneous stochastic mixture statistically mixed by two
distinct materials, e.g., a small amount of material 1 randomly
distributed in material 2. The physical scenario is consistent
with relevant experiments where a fraction of gold particles
are admixed with a large amount of hydrocarbon foam [6,7],
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TABLE I. Model parameters of the binary stochastic mixture and
numerical parameters used in simulations.

Label Parameters

Material 1 λ1 = 5.6 × 10−3 cm, p1 = 0.1,
σa,1 = 103 cm−1

Material 2 λ2 = 5.0 × 10−2 cm, p2 = 0.9,
σa,2 = 5 cm−1

Total length L = 0.15 cm
Initial temperature T m

0 = 0.005 keV
Radiation source T r

0 = 0.5 keV
Angular direction N = 32
Simulation time τ = 500 ps
Time step 	τ = 1 ps
Cell coefficient f = 0.2
Convergent value ε = 10−6

Realizations M = 105

in the sense that the gold particles’ absorption opacity is
typically much higher than that of hydrocarbon foam by sev-
eral orders of magnitude. In ICF simulations, it may describe
a locally small volume in a large numerical area, which is
occupied by materials randomly evolving in time between two
distinct materials.

A source of radiation temperature at 0.5 keV presents at
z = 0 and the materials’ temperature is initially 0.005 keV.
In other words, the present study deals with a cold stochastic
mixture (i.e., a small amount of initial thermal energy) driven
by a high-energy radiation source such as x rays. Angular
variables are discretized into 32 directions, i.e., N = 32. A
total simulation time of τ = 500 ps is employed with a time
step of 	τ = 1 ps and the cell coefficient f = 0.2. The max-
imum cell size is 9.35 × 10−6 cm. The discretized cells are
N1 × N2 × N3 = 500 × 16 044 × 32. The convergent value is
sufficiently small, i.e., ε = 10−6, and a number of physical re-
alizations M = 105 are sampled. For each mixture realization,
identical parameters are applied, which are listed in Table I.
It should be noted that, by using these parameters, energy
conservation is automatically guaranteed (see Table III of the
Supplemental Material [53]).

Moreover, we have explicitly performed a number of test
calculations to validate the present numerical implementa-
tions, in order to increase the reliability of numerical results
(see the first section in [53]). It is clear that our calculated
results can quantitatively reproduce a variety of benchmark
results reported in Refs. [29,38]. The consistency with the
reported results establishes our confidence, allowing us to
carry out the following study.

III. IMPACT OF RANDOM MEDIA

A. Mixing distribution

In the 1D slab model, the CLD is used to randomly sample
the slab thickness of materials; thus various forms of CLDs
result in different mixing distributions of random media. For
the given mean chord length λi in Table I, we analyze the
influence of the mixing distributions, based on five typical
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FIG. 2. (a) Ensemble-averaged transmission at the outgoing edge
(z = L) as a function of time for five typical mixing distributions.
(b) Same as (a) but for the reflection at the incident edge (z = 0). To
better visualize the variance among the mixing distributions consid-
ered, the logarithmic scale is utilized for the horizontal axis.

CLDs [31,54] presented as

fi(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
λi

e−ξ/λi , ξ > 0 (Markov)
1

2λi
, 0 < ξ � 2λi (box)

λi+(ξ−λi )[2�(λi−ξ )−1]
λ2

i
, 0 < ξ � 2λi (tent)

8ξ

9λ2
i
, 0 < ξ � 1.5λi (ramp)

δ(ξ − λi ), ξ > 0, (period).

(3)

In all cases, the chord length ξ is defined as positive. The
Heaviside function � is introduced into the tent mixing to
obtain a compact form. It should be noted that the CLDs
considered are normalized to unity.

Figure 2 presents the ensemble-averaged transmission at
the outgoing edge (z = L) and the reflection at the incident
edge (z = 0). It is found that 〈J (t, L)〉 increases rapidly within
100 ps and stabilizes until 200 ps, which is true for all mixing
distributions considered. It is not surprising that it imprints a
similar tendency in 〈φ(t, L)〉, and the Markov mixing distri-
bution attains the strongest transmission and highest material
energy density. Compared to the magnitude of the transmis-
sion, the reflection of radiation is more pronounced and it
grows much faster during the nonequilibrium process, but its
dependence on the mixing distribution is reversed. At steady-
state times, the sum of the channels of the transmission and
reflection amounts to the incident radiation flux due to energy
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pating random media, (a) independently of time and at (b) t = 5 ps,
(c) t = 20 ps, and (d) t = 200 ps.

conservation (see [53] for more details) and the corresponding
probabilities are 7.9%–14.2% and 85.8%–92.1%.

To facilitate the comparison among various mixing distri-
butions, we simply define the enhanced factor as the ratio of
the transmission from Markov mixing statistics to that from
period mixing. For the nonparticipating random media, i.e., in
the absence of material energy coupling, Fig. 3(a) shows that
the enhanced factor of 〈J (L)〉 differs by about five orders of
magnitude, which is entirely consistent with the observation
in Ref. [31]. For the participating random media, the im-
pact of mixing distributions depends sensitively on time [see
Figs. 3(b)–3(d)]. As can be seen, the enhanced factor develops
from one order of magnitude at 5 ps to ∼1.8 at steady-state
times (t = 500 ps) in Fig. 2(a). The remarkable discrepancy
is mostly due to the effect of material temperature. In the
case of nonparticipating random media, the absorption and
transmission of radiation are the only two channels of energy
transport, which is dominated by the absorption of radiation,
e.g., more than 97.9% energy has been absorbed; thereby the
transmission is strongly sensitive to the distribution of the
mixed materials, as observed in Fig. 3(a). However, when the
material temperature is coupled to radiation, two additional
energy transport channels emerge [53], i.e., radiation emission
and reflection, and it is found that a large portion of incident
radiation energy has been transported into the reflection chan-
nel [see Fig. 2(b)]. In other words, thermal radiation emission
plays a key role in this case; thereby the transmission is
closely related to the material temperature, which significantly
suppresses the effect of the mixing distribution.

Furthermore, the radiation flux of various channels (i.e.,
absorption, emission, reflection, and transmission of radia-
tion) is analyzed and we find that the reflection dominates
over the other channels in all cases. At early times, radiation
and material remain in the nonequilibrium state, resulting in
more radiation absorbed than emitted, which is more notable
for material 1 here. The situation is changed until 200 ps, at
which time the absorption of radiation is nearly balanced by
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FIG. 4. Same as Fig. 2 but for (a) varying the mixture size using
a Markov mixing distribution for p1 = 10%. Numbers indicated in
the legend are λ2 in units of cm.

the emission, and the transmission is less than 15%, regard-
less of mixing distributions. These results may suggest that
thermal random media, as a source of radiation, can consid-
erably weaken the impact of the stochastic mixtures’ mixing
distributions. To summarize, with the coupling of radiation to
material, the variation of transmission at steady-state times is
limited to less than a factor of 2 when varying the mixing
distributions using the present parameters, which significantly
deviates from that in purely absorbing cases.

B. Mixing size

Figures 4 and 5 show the impact of mixing size, when the
size of the binary stochastic mixture is varied over a span of
three orders of magnitude, i.e., from 0.5 to 0.0005 cm, within
the Markov mixing distribution. By decreasing the mixing
size, the ensemble-averaged transmission at the outgoing edge
decreases for all times [see Fig. 4(a)]; specifically for steady-
state times it is reduced by a factor of ∼5.63, i.e., the enhanced
factor. This observation is also true for the ensemble-averaged
material energy density. Conversely, the ensemble-averaged
reflection from the incident edge is enhanced at steady-state
times by a factor of ∼1.63 when decreasing the mixing size
from 0.5 to 0.0005 cm. Clearly, the mixing size effect can be
observed in both the transmission and reflection from very
early times. Quantitatively, with the present parameters it
seems that the impact of the mixing size is more impressive
than that of the mixing distribution in Fig. 2. In this regard,
it is somewhat in accordance with that in purely absorbing
cases [31].
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Figure 5 depicts the size-dependent ensemble-averaged
transmission at the outgoing edge for a sequence of times.
Note that the results of nonparticipating random media
are shown to facilitate the analysis. For the mixing size
considered, the ensemble-averaged transmission through
nonparticipating random media is varied among seven or-
ders of magnitude, i.e., a very notable mixing size effect. In
contrast, for participating random medium cases, the impact
of the mixing size strongly depends on the time associated
with the instantaneous material temperatures, resulting in the
variation being limited, e.g., it attains nearly one, two, and
three orders of magnitude at 100, 20, and 5 ps, respectively.
At 500 ps, it is reduced to a factor of 5.63, which is much
lower than that in nonparticipating random media (black solid
curve). On the other hand, it is obvious that the steplike shape
in the transmission in a range of 10−3–10−1 cm has been
softened with time evolving for participating random media,
which is evidence that the mixing size effect can be restrained
by thermal random media due to coupling of radiation to
material.

Approaching the steady states, the reflection probabili-
ties are about 56.7%–92.3% for the mixing sizes considered,
which restricts the variation of the transmission of radia-
tion with the mixing size less than one order of magnitude
due to energy conservation [53]. In the case of nonpartic-
ipating random media, the physical scenario is changed as
analyzed before, for which only absorption of radiation and
transmission occur. In this situation, a large variation of trans-
mission over the mixing size is not surprising, since pure
absorption of radiation is sensitively dependent on the mixing
size [31].

C. Mixing probability

Figure 6 presents results by varying the mixing probability
of material 1 from 0.01 to 0.5, covering the range more than
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FIG. 6. Same as Fig. 2 but for (a) varying the mixture probability
of material 1.

one order of magnitude. As can be seen in Fig. 6(a), the trans-
mission decreases monotonically while increasing the mixing
probability, and at steady state the case of p1 = 0.01 leads
to the strongest transmission, larger than that of p1 = 0.1
and 0.5 by factors of 2.83 and 10.36, respectively. From an
analysis of the radiation flux of various channels, we find that
absorption of radiation is totally dominated by the amount of
constituent material that has higher opacity; for instance, at
steady-state times the absorption for a mixing probability of
50% of material 1 is larger than that for 1% by a factor of
∼30, and the contribution of material 1 to the respective ab-
sorption of radiation accounts for 99.5% and 66.7%. With the
coupling of radiation to material, the absorption and emission
of radiation undergo a nonequilibrium to equilibrium process,
and the more material 1 is mixed, the more the emission of
radiation is enhanced, which results in stronger reflections.
This analysis is consistent with the observation of the reflec-
tion in Fig. 6(b). Compared to the influence of the mixing
distribution and size analyzed in previous sections, it is found
that the stochastic radiation transport is the most sensitive to
the mixing probability, suggesting that the physical scenario
of radiation transport through participating random media is
much different from that in nonparticipating stochastic mix-
tures [24,26–29,31].

Figure 7 compares the ensemble-averaged transmissions
from several typical times with that in nonparticipating
random medium calculations. Regardless of time, the mixing
probabilities in the considered range always result in the
transmission varying within an order of magnitude, indicating
that the relation of the transmission to the mixing probability
is rather stable against time, which is different from the
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observation in Figs. 3 and 5. In addition, quantitative
deviations appear in the calculations of nonpartic-

ipating random media, e.g., the transmissions for
p1 = 0.01 and 0.5 are lower than the steady-state
values (i.e, t = 500 ps) by factors of 4.26 and
4.32, respectively. However, the transmission has a similar
shape, agreeing particularly well with those values at 10 ps,
which is again distinct from similar comparisons when vary-
ing the mixing distribution and size.

IV. MODELING THE ENSEMBLE-AVERAGED
TRANSMISSION OF RADIATION

A. Role of material temperature revisited

In the preceding section, we have seen how the impact of
a random medium on the stochastic radiation transport can be
substantially changed by material temperatures. Typically, it
is known that the material itself is a temperature-dependent
source of radiation [49]; however, in a binary stochastic mix-
ture, an in-depth understanding of the contribution of material
temperature to the transmission of radiation has not yet been
explicitly attained. For this purpose, we built a steady-state
stochastic transport model for a specified direction μ, which
allows us to include material temperatures as a source of
emission. Fortunately, with multiple algebraic manipulations
(see Appendix B for more details), the ensemble-averaged
specific radiation intensity for the direction μ can be analyti-
cally solved as

〈ψμ(z)〉︸ ︷︷ ︸
I

≈ ψ0[weε+z + (1 − w)eε−z]︸ ︷︷ ︸
II

+〈B(z)〉1 + 〈σa(z)B(z)〉/σa,1σa,2λc〈B(z)〉
1 + 〈σa(z)〉/σa,1σa,2λc

{1 − [weε+z + (1 − w)eε−z]}
︸ ︷︷ ︸

III

, (4)

where ψ0 specifies the incident radiation intensity at z = 0, w

and ε± are fractional weights and exponential factors of purely
absorbing cases, respectively, which can be analytically com-
puted by stochastic the mixtures’ parameters [21,22], and B(z)
is the Planck function determined by the local material tem-
perature T (z). Detailed explanations of the derived parameters
can be found in Appendix B. Integrating over the forward
directions, the ensemble-averaged transmission is given as

〈J (z)〉 =
∫ 1

0
μ〈ψμ(z)〉dμ. (5)

In the steady-state stochastic transport model, the
ensemble-averaged intensity (term I) can be simply factor-
ized into two terms: Term II describes radiation transport
through nonparticipating random media, i.e., independently
of temperature, and term III considers thermal emissions
weighted by the probability of unabsorbed photons. With this
model, the ensemble-averaged transmission through partici-
pating random media is simply that through nonparticipating
random media augmented by a term related to material tem-
perature, which is plausible. For a given direction μ, term
II is independent of temperature, while term III implic-
itly depends on the material temperature which is involved
in B(z).

Although the derivation of Eq. (4) neglects the time deriva-
tive, it still makes sense to see to what extent the analytical

and simulated results can be compared, for photon transport
in stochastic mixtures. To obtain the analytical transmission,
the ensemble-averaged material temperature and its statistical
correlation are calculated for all cells at each time step in
simulations based on the parameters in Table I. We first show
the comparison of normalized transmissions as functions of
time and space in Fig. 8. Generally, the analytical results agree
satisfactorily with simulated data, e.g., a time-varying profile
of the ensemble-averaged transmission is well reproduced,

FIG. 8. Ensemble-averaged transmission: (a) numeric results
calculated by solving Eqs. (1) over 105 physical realizations and
(b) analytic results (term I) based on Eq. (4). The color bars are
normalized. Dashed lines roughly label the steady states.
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of times: (a) 8 ps, (b) 20 ps, (c) 50 ps, and (d) 200 ps.

especially both the steady-state magnitude (labeled by dashed
lines) and the relaxation time.

Figure 9 explicitly evaluates the steady-state stochastic
transport model by comparing it to numerical results at four
typical times. At 8 ps, the transmission is dominated by the
radiation absorption through nonparticipating random media
(term 2) everywhere, which is larger than thermal emission
(term 3) by nearly an order of magnitude. At 20 ps, the
radiation absorption only prevails at short distances, i.e., z �
0.06 cm, beyond which the contribution of thermal emission
is comparable. At 50 and 200 ps, thermal emission grows
into the leading agent at intermediate to large distances (e.g.,
z � 0.04 cm). Interestingly, the intersection of the pure ab-
sorbing and thermal emission curves at final times happens to
emerge in the vicinity of the photons’ mean free path (MFP)
through a nonparticipating random medium [22,31,54], i.e.,
lp = 0.042 cm. In all cases, analytic results (dashed curves)
predict the numerical ones (solid curves) very well.

We further show the contributions of the radiation absorp-
tion and thermal emission to ensemble-averaged transmission
in Fig. 10. It is obvious that the mechanism of transmission
of radiation is distance dependent, which is determined by
the thermal emission. Pure radiation absorption is dominated
in the regime of z � 0.04 cm and thermal emission is fairly
important in the other regime. It is apparent that the transition

FIG. 10. Separate contributions of ensemble-averaged transmis-
sion in Eq. (4): (a) term II and (b) term III.

from nonequilibrium to the equilibrium state in the transmis-
sion is mainly dictated by thermal emissions [see Fig. 10(b)].
Note that we have also evaluated the applicability of the
steady-state stochastic transport model in the cases displayed
in Sec. III, which is in accordance with the observation here.
A systematic analysis reveals that the regime of two different
contributions is somehow correlated to the MFP of photons
in nonparticipating random media. All in all, the analytic
model is able to capture the essentials of the nonequilibrium
radiation transport process, and it makes sense provided that
the material temperature is well measured.

B. Mechanism of the impact of random media

Based on the steady-state stochastic transport model above,
the ensemble-averaged transmission at the outgoing edge
(z = L) can be largely affected by the material temperature,
which competes with pure radiation absorption in a certain
region; therefore, the length (lp) distinguishing these two
physical processes is extremely crucial. It can be speculated
that if lp < L, the material temperature plays a key role in the
determination of the transmission, and a pronounced depen-
dence of the transmission on the random media may result
from the variation of the value of lp when varying the prop-
erties of random media. In contrast, if lp � L, it is dominated
by pure absorption of radiation, which does not depend on
the microscopic properties of random media (e.g., mixing
distribution and size) at short distances [27,31] (see Fig. 3).

Within the above propositions, the findings in Sec. III, i.e.,
the impact of the mixing probability on the transmission is the
most pronounced, followed by the mixing size, and the mixing
distribution has a very limited influence, can be understood
as follows. By varying the mixing distributions considered, lp

is varied from 0.04 cm (Markov) to 0.02 cm (period), which
are always much smaller than the total width of a random
medium L = 0.15 cm. In this case, the transmission is domi-
nated by material temperatures, which do not have significant
deviations between Markov and period mixing distributions,
since lp is quite close in both cases. This can explain the
weak dependence on the mixing statistics in Fig. 2(a). By
decreasing the mixing sizes used, lp is tuned from 0.13 cm
to 0.01 cm, which ranges from the region comparable to L
to that much lower than L. In this situation, the transmission
of large mixing sizes (high lp) is dominated by pure radiation
absorption, while for small mixing sizes (low lp) the material
temperature effect is remarkable. Altogether these result in a
moderate dependence on the mixing size in Fig. 4(a). When
increasing the mixing probability, lp is changed from 0.09 cm
to 0.02 cm, which are smaller than L. In all cases, material
temperatures are the essential factor. As the redistribution of
thermal radiations decays exponentially with increasing dis-
tance, it is not surprising that the mixing probability acquires
the most noticeable effect on the transmission.

To further verify our explanations, we have performed sys-
tematic calculations for a variety of L using the parameters
in Table I. For clarity, we only compare the enhanced factor
when tuning the properties of random media, i.e., the ratio
of the highest ensemble-averaged transmission to the lowest
value at 500 ps. Simulated results are shown in Fig. 11(a).
It can be seen that for L � 0.01 cm, the enhanced factor in
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FIG. 11. Enhanced factor due to the variation of the properties
of random media as a function of L for (a) σa,i, (b) σa,i/10, and
(c) σa,i/100. (a) The opacities are σa,1 = 103 cm−1 and σa,2 = 5
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(a) by one order of magnitude. (c) Same as (b) but lower than those
in (a) by two orders of magnitude. Vertical lines label the position of
L = 0.15 cm used in Table I. Symbols are connected by solid lines to
guide the eyes and the gray dashed lines indicate no enhancements.

all cases is close to 1, i.e., random media can hardly affect the
stochastic radiation transport in this regime. Note that L in this
range is small enough compared to the minimal lp (=0.02 cm).
With increasing L, the enhanced factor of the mixing size
and probability is rapidly growing, while for the mixing dis-
tribution it stays near the regime of no enhancements (gray
dashed lines). Basically, for a given L the enhanced factor
is invariably the highest for the mixing probability, which
supports the findings in Sec. III. Obviously, the observation
in Fig. 11(a) is consistent with the above propositions.

According to Refs. [22,31,54], lp is associated with the
constituent materials’ opacities, which may impact the sen-
sitivity of the transmission to the properties of random media
relative to L. To illustrate it, we have decreased the opacities
used in Fig. 11(a) by one and two orders of magnitude, re-
spectively, and the results are shown in Figs. 11(b) and 11(c).
Compared to Fig. 11(a), the development of the enhanced
factor is visibly shifted to larger L, which is because lp is
considerably increased by decreasing the opacities of binary
stochastic mixtures. For instance, for the mixing probability
in Fig. 11(b), lp ranges between 0.69 cm (p1 = 0.01) and
0.04 cm (p1 = 0.5), and for that in Fig. 11(c), lp is varied be-
tween 6.76 and 0.22 cm. For these two cases, if the total width
of a random medium identical to that widely used in Sec. III,
i.e., L = 0.15 cm, it goes from lp > L to lp < L in Fig. 11(b)
by decreasing p1, which results in a suppressed mixing prob-

ability effect, while in Fig. 11(c) it satisfies lp � L for any
p1 considered, leading to a marginal effect of the mixing
probability. Quantitatively, by varying the mixing distribution,
size, and probability in the range studied, the enhanced factor
is ordered as 1.79, 5.63, and 10.36 in Fig. 11(a), 1.14, 1.65,
and 4.14 in Fig. 11(b), and 1.00, 1.04, and 1.52 Fig. 11(c).

Overall, the results in Fig. 11 confirm the fact that the
impact of random media on the stochastic radiation transport
is mainly determined by the relationship between lp and L, and
only the width of the random medium sufficiently larger than
lp can yield a remarkable dependence of radiation transport on
the random media.

V. SELF-CONSISTENT ANALYSIS OF REPORTED
MULTIDIMENSIONAL RESULTS

As it was disputable in previous multidimensional simu-
lations [41,44,48] whether or not the properties of random
media can considerably affect the radiation transport (see the
Introduction), here we attempt to address this issue by com-
bining the aforementioned simple relationship and 1D slab
simulations. Although it was argued that 1D slab results are
fundamentally different from 2D and 3D solutions [41], basic
features of the dependence of transmission on the random
media’s properties in 1D cases may be similar to those in
multidimensions.

In Ref. [41] Olson performed 2D simulations of stochastic
radiative transfer in participating random media and claimed
that “[the] results do not strongly depend on the details of
the stochastic medium . . .. Very different disk/sphere sizes
give similar results as long as the fraction of the area/volume
occupied is the same.” To understand those results, we have
performed 1D calculations using identical parameters (see Ta-
ble 1 in Ref. [41]). Similarly, the enhanced factor of radiation
flux is defined to quantify the influence of random media. We
find that the present enhanced factor for L = 1.0 (the width
used by Olson [41]) nearly approaches 1.0 by varying the
properties of random media, which is fully understandable in
the following. For the parameters investigated, lp is restricted
to 1.0–2.03, which invariably fulfills the relation of lp � L =
1.0. According to the mechanism of the impact of random
media proposed in Sec. IV B and the results in Fig. 11, it is
not surprising that the radiation flux is not sensitively depen-
dent on the properties of the random medium. At this point,
our 1D results are entirely consistent with the observation in
Ref. [41]. In addition, a similar analysis in Ref. [44] based
on 1D simulations revealed that the mixing distribution can
indeed hardly affect the radiation flux.

In Ref. [48] Brantley and Martos reported results for non-
participating random media and stated that “[their] benchmark
results exhibit a significant dependence of the ensemble-
averaged fiducial tallies on both sphere mean chord length
and sphere volume fraction . . . [and] a weaker dependence on
the distribution describing the sphere radii.” To interpret this,
we have again made 1D calculations based on the parameters
used in the original work [48], which are summarized in
Fig. 12. Note that Brantley and Martos utilized L = 10.0 in
their study. We find that the calculated enhanced factors for
mixing distributions, sizes, and probabilities are 10.42, 2.55,
and 153 940, respectively, which generally agree with the 3D
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results reported by Brantley and Martos [48]. The discrepancy
might be attributed to the effect of dimensionality, which
requires more calculations. For the parameters considered,
lp ranges from 0.44 to 3.41, which satisfies the condition
lp 	 L = 10.0. Within the proposition in Sec. IV B, the pro-
nounced dependence on the random medium’s properties can
be understood reasonably well.

Based on our 1D slab results, we find that the multidi-
mensional results of Olson [41] and Brantley and Martos [48]
are essentially consistent in terms of the relationship between
lp and L. In the case of Olson [41], the enhanced factor is
limited to less than a factor of 2 even if the L is increased to
large values, e.g., L = 7.0, mostly probably due to a narrow
variation of lp. It should be noted that the ensemble-averaged
opacity is always set equal to 1.0 when varying the properties
of a random medium in Ref. [41], while in the case of Brantley
and Martos [48] one may see a very weak impact of a random
medium if the L is dropped to small values, e.g., L = 0.1,
which is much smaller than the minimal lp (see Fig. 12). In
addition, the notable impact of the random medium observed
by Brantley and Martos [48] can also be suppressed to some
degree when the coupling of radiation to material is included,
as widely discussed in Sec. III.

VI. CONCLUSION

By using a random sampling of mixtures combined with a
deterministic solution of the time-dependent radiation trans-
port equation coupled to a material temperature equation, we
have systematically studied stochastic radiative transfer in
binary random media in the planar geometry. First, we have
systematically shown and analyzed the impact of the mixing
distribution, size, and probability of binary stochastic mix-
tures on the radiation transport. By comparing these results
with those in purely absorbing cases, we found that only the
influence of mixing probability is similar to that in purely ab-
sorbing cases, while the impact of the mixing distribution and

size is significantly suppressed by introducing the radiation
coupled to the material temperature, which is understood by
the analysis of energy transport channels.

Second, the role of material temperature in stochastic
radiative transfer in binary random media was analyzed by de-
riving a steady-state stochastic transport model. It was found
that analytical ensemble-averaged transmissions agree very
well with numerical simulations. The mechanism of trans-
mission of radiation is distance dependent, which is closely
related to the mean free path of photons lp. For z � lp, pure
absorption is dominant, and beyond this regime thermal radia-
tion emission is gradually growing into the leading factor with
increasing time. Only with inclusion of material temperature
coupling can it well describe the transition from nonequilib-
rium to the equilibrium state.

A remarkable finding in this work is that the mechanism of
the impact of random media on the stochastic radiation trans-
port is mainly determined by the relationship between lp and
L. For lp < L, a pronounced dependence of the transmission
on the random media results from a variation of the value of lp

by varying the properties of random media, while for lp � L,
pure absorption of radiation plays a role, resulting in nearly
identical radiation flux for various mixing distributions and
sizes, since at short distances it is insensitive to the micro-
scopic properties of random media. This proposition was fur-
ther confirmed by more calculations with the constituent ma-
terials’ opacities reduced by one and two orders of magnitude.

Most importantly, combining this simple relationship and
1D simulations, we have resolved the disputable issue of
the impact of random medium in previous multidimensional
simulations. It was found that the existing multidimensional
results of Olson [41] and Brantley and Martos [48] are basi-
cally consistent and the observed weak or remarkable impact
of random media is mainly due to a distinctly different rela-
tionship between lp and L. By tuning the L, one can enhance
or suppress the impact of random media on the stochastic
radiation transport, provided lp can be varied in a relatively
wide range for the parameters studied. Our results may also
find applications in relevant experiments to test models of
stochastic radiative transfer, in which the length of the tube
containing the stochastic mixture is a crucial parameter to
determine the impact of random medium.

Additionally, there are some limitations of present work.
First of all, temperature-dependent opacity is neglected, but
could readily be implemented. In this situation, the mean
free path will be updated at each time step, resulting in its
relationship with the width of the random medium compli-
cated. Second, our study lacks the multigroup effect, which
may affect the magnitude of radiation flux. Finally, a direct
comparison of radiation flux with configurations in more than
one dimension is absent.

The simulation code and data of relevance in this study
are available from the corresponding authors upon reasonable
request.
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APPENDIX A: NUMERICAL IMPLEMENTATION

In practical implementation, ψ is discretized into nu-
merical cells as ψ (tn, zk, μm), in which tn, zk , and
μm denote discrete variables with n = 1, 2, . . . , N1; k =
1/2, 3/2, . . . , (2N2 − 1)/2; and m = 1, 2, . . . , N3, where N1,
N2, and N3 correspond to the total number of cells discretized
for each variable. Meanwhile, φ is numerically represented
by φ(tn, z j ) with j = 1, 2, . . . , N2 − 1. Typically, temporal
and spatial discretizations are realized by a staggered cell
with ψ at the faces of the cells and φ at the centers of
the cells, respectively. Regarding the numerical algorithms,
we employed the diamond difference method for spatial dis-
cretization of the differential operator [55], the implicit time
discretization for the radiation intensity and material energy
density derivatives, and the discrete ordinate method (SN ) for
the angular discretization [55]. At each time step in simu-
lations, we used the source iteration approach to update the
ψ and φ simultaneously until the maximal relative differ-
ence of the radiation intensity and material energy density
between the successive iteration steps was equivalent to or
lower than the convergent criterion ε. Test calculations show
that the present discretization strategy can quantitatively re-
produce the benchmark results reported in previous stochastic
radiative transfer studies [24,27,29,38] (see the first section
in [53]).

The assumed nonrandom initial and boundary conditions
are given as follows. It is assumed that initially the stochastic
mixture is cold with a homogeneous temperature of T m

0 , and
thus for any cell zk and any direction μm the initial conditions
are

φ(t = 0, zk ) = a
(
T m

0

)4
, ψ (t = 0, zk, μm) = σSB

(
T m

0

)4
,

(A1)

where σSB is the Stefan-Boltzmann constant (equal to 1.03 ×
10−7 J cm−2 eV−4 ps−1). In the presence of a radiation source
at z = 0, i.e., an initial radiation temperature of T r

0 , the pho-
tons impinge perpendicularly upon the left surface of the
stochastic mixture and propagate forward (μm > 0), while at
the other edge z = L the radiation source is absent, which
means that the source of the photons’ backward propagation
(μm < 0) is vanishing; accordingly, the boundary conditions
are set equal to

ψ (t, z = 0, μm > 0) = 2σSB
(
T r

0

)4
, (A2a)

ψ (t, z = L, μm < 0) = 0. (A2b)

In addition, the convergence of numerical parameters has
been evaluated. Taking the transmission at the outgoing edge
at steady-state times as an example, it is found that upon vary-
ing the total number of realizations M between 105 and 107,
the relative error is smaller than 0.3%; varying the quadrature
ordinates N between 16 and 128, it is lower than 0.08%;
varying the time step 	τ between 0.001 and 1 ps, it is lower
than 0.4%; varying the random number used in the sam-

pling of the stochastic mixture, the relative error is limited to
∼0.3%. It should be noted that the cell size 	zk is dependent
on the N and 	τ in our calculations, so its impact on the
results has already been included when modifying relevant
parameters. As a result, the parameters in Table I are ade-
quate to supply the present analysis, which can ensure a good
balance between the computational expense and numerical
accuracy.

Actually, the numerical approach we used here proves
more than adequate to provide relatively accurate results.
Readers interested in the development of a different sampling
method of generating the stochastic mixture and/or other nu-
merical schemes to solve the coupled transport equations are
referred to Refs. [56–59].

APPENDIX B: STEADY-STATE STOCHASTIC
TRANSPORT MODEL

For the process of radiation absorption and emission in the
time-independent condition, the transport of radiation for a
specified direction μ in a 1D planar binary random mixture is
described by the equation [24]

μ
∂

∂z
ψ (z, μ) + σa(z)ψ (z, μ) = S(z), (B1)

where σa(z) and S(z) are the absorption opacity and emis-
sion source, respectively; both are material dependent, i.e.,
σa(z) = σa,1 and S(z) = σa,1B(T1) if material 1 appears at z
and otherwise σa(z) = σa,2 and S(z) = σa,2B(T2), where the
radiation emission follows Kirchoff’s law. Material 1 (2) is
assumed to have a temperature of T1 (T2), which may depend
on the spatial position.

A direction-independent equation can be established by
dividing μ in Eq. (B1), giving

∂

∂z
ψ (z, μ) + σ ′

a(z)ψ (z, μ) = S′(z),

σ ′
a(z) = σa(z)

μ
, S′(z) = S(z)

μ
= σ ′

a(z)B(T ). (B2)

For simplicity, we will ignore the symbols with superscripts
and μ in ψ ; thereby the stochastic radiation transport equa-
tion can be formally expressed as

∂

∂z
ψ (z) + σa(z)ψ (z) = S(z). (B3)

Within the Markov mixing distribution, it has been shown
that the stochastic equation (B3) can be converted to a set of
two coupled deterministic equations involving the ensemble-
averaged radiation intensity 〈ψ〉 [54],

d〈ψ〉
dz

+ 〈σa〉〈ψ〉 + γχ = 〈S〉, (B4a)

dχ

dz
+ γ 〈ψ〉 + σ̂aχ = T, (B4b)

where χ is the other unknown variable which is related to
the material-dependent radiation intensity ψi (i = 1, 2), i.e.,
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χ = √
p1 p2(ψ1 − ψ2), and the other parameters are defined

by

〈S〉 = p1S1 + p2S2, T = √
p1 p2(S1 − S2),

〈σa〉 = p1σa,1 + p2σa,2, γ = √
p1 p2(σa,1 − σa,2),

σ̂a = p2σa,1 + p1σa,2 + 1

λc
. (B5)

It is clear that Eq. (B4) is analytically tractable, which can be
decomposed into two parts as

〈ψ (z)〉 = 〈ψ (z)〉homo + 〈ψ (z)〉nonhomo, (B6)

where 〈ψ (z)〉homo is the homogeneous solution in the purely
absorbing case, i.e., neglecting 〈S〉 and T , and 〈ψ (z)〉nonhomo

is the solution of equations that discard the differential opera-
tors. With multiple mathematical manipulations, the solution
of the homogeneous equations [21,22] is

〈ψ (z)〉homo = A[w exp(ε+z) + (1 − w) exp(ε−z)], (B7)

with the parameters defined as

ε± = −(〈σa〉 + σ̂a) ± √
	

2
, (B8a)

w = 1

2
− 〈σa〉 − σ̂a

2
√

	
, (B8b)

	 = (〈σa〉 − σ̂a)2 + 4γ 2. (B8c)

It should be mentioned that the exponential factors ε± are
always negative and the weight w is a fraction of unity. Here
A is an unknown coefficient to be determined in the following.

The solution of the nonhomogeneous equation can be read-
ily written as

〈ψ (z)〉nonhomo = 1

|M| [σ̂a〈S(z)〉 − γ T (z)], (B9)

with M in the matrix form

M =
(−〈σa〉 −γ

−γ −σ̂a

)
. (B10)

To determine the coefficient A, we utilize the initial condition
of the problem. Suppose the incident radiation intensity is ψ0

(nonstochastic) at z = 0; combined with Eqs. (B6)–(B10), we
have

〈ψ (0)〉 = ψ0 = A + 1

|M| [σ̂a〈S(0)〉 − γ T (0)]. (B11)

Substituting Eqs. (B7), (B9), and (B11) into Eq. (B6) and
making proper arrangements for similar terms, we arrive

at

〈ψ (z)〉 ≈ ψ0[w exp(ε+z) + (1 − w) exp(ε−z)]

+ 1

|M| [σ̂a〈S(z)〉 − γ T (z)]

× {1 − [w exp(ε+z) + (1 − w) exp(ε−z)]}. (B12)

The approximation is made by assuming that related source
terms 〈S〉 and T are weakly dependent on spatial coordinates,
which may be invalid for stochastic mixtures with large L. In a
dynamical radiation-emission process, materials at finite tem-
peratures at arbitrary positions can be regarded as initial point
sources of thermal radiation with respect to the transmission
at the exiting edge. It remains to work out the expressions of
|M| and σ̂a〈S〉 − γ T ,

|M| = 〈σa〉σ̂a − γ 2

= 〈σa〉
(

σa,1 + σa,2 − 〈σa〉 + 1

λc

)
− p1 p2(σa,1 − σa,2)2

= p2
1σ

2
a,1 + 2p1 p2σa,1σa,2 + p2

2σ
2
a,2

+ σa,1σa,2 − 〈σa〉2 + 〈σa〉 1

λc

= σa,1σa,2 + 〈σa〉 1

λc
(B13)

and

σ̂a〈S〉 − γ T

=
(

p1σa,2 + p2σa,1 + 1

λc

)
(p1σa,1B1 + p2σa,2B2)

− p1 p2(σa,1 − σa,2)(σa,1B1 − σa,2B2)

= σa,1σa,2〈B〉 + 〈σaB〉 1

λc
, (B14)

which can be further inserted into Eq. (B12) to obtain

〈ψ (z)〉 ≈ ψ0[w exp(ε+z) + (1 − w) exp(ε−z)]

+〈B(z)〉1 + 〈σa(z)B(z)〉/σa,1σa,2λc〈B(z)〉
1 + 〈σa(z)〉/σa,1σa,2λc

×{1 − [w exp(ε+z) + (1 − w) exp(ε−z)]}, (B15)

which is the formula presented in Eq. (4). To evaluate the
ensemble-averaged transmission in the forward directions
(μ > 0), one has to take into account the direction modified
absorption opacity in Eq. (B2) and numerically integrate the
direction of the weighted ensemble-averaged intensity over all
forward directions [see Eq. (5)].
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