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We consider an interacting collective spin model known as coupled top (CT), exhibiting a rich variety of
phenomena related to quantum transitions, ergodicity, and formation of quantum scars, discussed in our previous
work [Mondal, Sinha, and Sinha, Phys. Rev. E 102, 020101(R) (2020)]. In this work, we present a detailed
analysis of the different type of transitions in the CT model, and find their connection with the underlying
collective spin dynamics. Apart from the quantum scarring phenomena, we also identify another source of
deviation from ergodicity due to the presence of nonergodic multifractal states. The degree of ergodicity of the
eigenstates across the energy band is quantified from the relative entanglement entropy as well as multifractal
dimensions, which can be probed from nonequilibrium dynamics. Finally, we discuss the detection of nonergodic
behavior and different types of quantum scars using “out-of-time-order correlators,” which has relevance in the
recent experiments.
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I. INTRODUCTION

The study of the ground state, as well as excited states
of interacting quantum systems, has become important for
understanding various phenomena such as quantum phase
transition (QPT), entanglement properties, and, more impor-
tantly, their ergodic behavior in nonequilibrium dynamics
[1–5]. The QPT across a critical point leads to the ordering of
the ground state, which is also reflected from the critical be-
havior of physical quantities at zero temperature [1]. In recent
years, another type of quantum transition has been observed
in collective models, where the excited states change their
characteristics at a critical energy density corresponding to the
singularities of density of states. Such transition is termed as
excited state quantum phase transition (ESQPT) [6–12], how-
ever, its connection with thermodynamic behavior of physical
quantities deserves further attention [6,11]. The nonequilib-
rium dynamics of a closed quantum system reveals various
interesting phenomena related to ergodicity of the system,
where the excited states also play a crucial role [4,13]. In re-
cent years, the ultracold atomic system has become a test bed
to study the nonequilibrium properties of quantum many body
systems [14,15]. Certain many body systems after a quench
evolve to a steady state corresponding to a generalized thermal
distribution [16–21]. To understand thermalization of closed
quantum systems, the eigenstate thermalization hypothesis
(ETH) has been proposed, which attempts to explain ergod-
icity at the level of individual eigenstates [22,23]. Moreover,
its connection with random matrix theory (RMT) has been
extensively explored in different quantum systems [3,24,25].

On the contrary, there are examples where thermalization
is absent, such as systems exhibiting many body localization
(MBL) [26–28]. Apart from MBL, the presence of noner-
godic multifractal states [29–31] can also lead to the deviation
from ergodicity and anomalous thermalization [32]. Tuning
the parameters of quantum many body systems can change
the nature of eigenstates, which in turn leads to the transition

from MBL to ergodic or nonergodic phases [33–39]. Recently,
such nonergodic and ergodic evolution has also been studied
in quantum circuits [40,41].

Aside from the above mentioned cases, there are other
sources of deviation from ergodicity, such as many body
quantum scarring phenomena, which has recently been ob-
served in an experiment on a chain of ultracold Rydberg
atoms [42]. It has been found that a special choice of ini-
tial state exhibits periodic revival phenomenon and fails to
thermalize, which has been attributed to many body quan-
tum scar (MBQS) [43–48]. Such phenomena have also been
analyzed theoretically in other interacting quantum models
[49–60]. Originally, quantum scars in noninteracting quantum
systems were identified as reminiscence of unstable classical
orbits in a chaotic stadium [61]. However, such connection
of unstable dynamics with MBQS in an interacting quan-
tum system is not obvious and deserves further attention
[46,47,59,60].

Unlike the classical systems, the route to ergodicity and its
deviation in closed quantum systems remains a challenging
issue. In a classical system, the ergodicity due to phase space
mixing arises from irregular behavior of chaotic trajectories,
whereas such picture is unclear in a quantum system due to the
absence of phase space trajectories. However, the connection
between ergodicity and underlying chaotic dynamics of its
classical counterpart has been explored in certain systems
[62–64]. Moreover, the underlying dynamical instability in
a quantum system can be detected by a newly developed
tool known as “out-of-time-order correlator” (OTOC), which
allows us to investigate the route to ergodicity and its con-
nection with underlying chaos [65–81]. In this context, it is
also important to explore the connection between formation of
MBQS in an interacting many body system and the underlying
unstable dynamics, which has not been properly established.
Such correspondence with classical description can eluci-
date the ergodic behavior of closed quantum systems and its
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deviation due to the formation of quantum scars, which is one
of the main objectives of this work.

In this work, we consider an interacting collective spin
model known as the coupled top (CT) model, exhibiting a
variety of rich phenomena, which includes different types
of quantum transitions, ergodic behavior, and formation of
quantum scars. We discuss the above mentioned phenomena
in details and explore their connection with the underlying
classical dynamics. The CT model undergoes a QPT at a
critical coupling, above which the onset of chaos occurs in
an intermediate range of coupling strength, where its ergodic
behavior is investigated in details. Even in the chaotic regime,
we identify the sources of deviation from ergodicity due to
the presence of nonergodic multifractal states and quantum
scars, which can be detected from their dynamical signatures.
Moreover, we elucidate the mechanism behind the formation
of quantum scars arising from the unstable fixed points and
periodic orbits. This work is an extension of our previous work
[60], where we present an elaborate discussion and results re-
lated to quantum transitions, ergodic properties, and quantum
scarring phenomena in the CT model.

The paper is organized as follows. In Sec. II, we describe
the coupled top (CT) model and analyze it classically to ob-
tain the steady states and their stability. Next, we study the
various types of quantum transitions exhibited by this model
and discuss their connection with the classical steady states
in Sec. III. It undergoes a quantum phase transition (QPT) as
well as a dynamical transition at a critical coupling, which
is discussed in Sec. III A, and the occurrence of excited state
quantum phase transition (ESQPT) above the critical coupling
is discussed in Sec. III B. In Sec. IV, we investigate the onset
of chaos both classically as well quantum mechanically, which
are presented in Secs. IV A and IV B, respectively. Next, we
investigate the ergodic properties of the eigenstates in Sec. V
and discuss their multifractal behavior in Sec. V A. The quan-
tum dynamics of the CT model is presented in Sec. VI, and its
classical quantum correspondence is explored in Sec. VI A.
The manifestation of degree of ergodicity in nonequilibrium
dynamics and its detection by using the out-of-time-order
correlators (OTOC), are discussed in secs. VI B and VI C,
respectively. The quantum scarring phenomena in the CT
model is investigated in Sec. VII, where we identify the two
types of scars arising from unstable steady states and unstable
periodic orbits, which are presented in Secs. VII A and VII B.
In sec. VII C, we discuss the detection of quantum scars from
their dynamical signature using OTOC technique. Finally,
we summarize the results and conclude in Sec. VIII. In Ap-
pendix A, we outline the Holstein-Primakoff approximation
to obtain the excitation energies and spin fluctuations at QPT.
In Appendix B, we derive the effective potential correspond-
ing to the CT model, describing the QPT and ESQPT. The
signature of QPT from multifractal dimensions is presented in
Appendix C. The integrability of the CT model at an extreme
coupling strength is discussed in Appendix D.

II. MODEL AND CLASSICAL ANALYSIS

The coupled top (CT) model [60,82–86] describes the dy-
namics of two large spins of equal magnitude S interacting
ferromagnetically with each other, analogous to transverse

field Ising model [87]. This collective model is described by
the following Hamiltonian:

Ĥ = −h̄ ω0 (Ŝ1x + Ŝ2x ) − μ

S
Ŝ1z Ŝ2z, (1)

where Ŝia (a = x, y, z) represent the spin operators corre-
sponding to two spins (i = 1, 2). The first term in Eq. (1)
describes the precession of two noninteracting spins around
the x axis with angular frequency ω0, while the second term
denotes ferromagnetic interaction between them with cou-
pling strength μ. In rest of the paper, we scale energy (time)
by ω0(1/ω0) and set h̄ = 1, unless otherwise mentioned.

The collective nature of the spins, in the limit S → ∞,
allows us to study the model classically. In this limit, the
quantity ŝia = Ŝia/S can be written in terms of the classical
spin vector

�si ≡ (six, siy, siz ) = (sin θi cos φi, sin θi sin φi, cos θi ), (2)

where φi and θi represent the orientation of the spins. Alter-
natively, the dynamics can be studied in phase space using
the canonically conjugate variables {φi, zi = cos θi} and in
terms of these collective variables {z1, φ1, z2, φ2}, the classical
Hamiltonian can be rewritten as

Hcl = −
√

1 − z1
2 cos φ1 −

√
1 − z2

2 cos φ2 − μ z1z2, (3)

where the Hamiltonian Hcl and the classical energy E are
scaled by spin magnitude S, therefore becoming an intensive
quantity, independent of S. In general, we denote the col-
lective variables as X = {z1, φ1, z2, φ2}, which represents the
phase space point. The classical dynamics is described by the
following equations of motion (EOM):

φ̇i = zi cos φi√
1 − zi

2
− μzī, (4a)

żi = −
√

1 − zi
2 sin φi, (4b)

where ī �= i. To capture the overall dynamical behavior, we
first analyze the fixed points (FP) and their stability, varying
the coupling strength μ. The FPs describe the steady states,
which can be obtained by equating the left-hand side of Eq. (4)
to zero and are denoted by {z∗

1, φ
∗
1 , z∗

2, φ
∗
2 }. To understand the

stability of the steady states, we perform the linear stability
analysis in the presence of small fluctuations around the FPs,
which evolves as δX(t ) = δX(0)eiωt . The frequency ω of the
small amplitude oscillation is given by

ω2
± = 1

2

(
A1 + A2 ±

√
(A1 − A2)2 + 4μ2

cos φ∗
1 cos φ∗

2√
A1A2

)
,

(5)

where ω± are the frequencies of two collective modes and
Ai = 1/(1 − zi

∗2) for i = 1, 2. The only possible stable FPs
in these Hamiltonian (conservative) systems are “centers” and
their stability is ensured if the oscillation frequencies are real,
equivalently λI = Im(ω) = 0. On the other hand, the unstable
FPs correspond to “saddles,” which arise when λI �= 0 [88].

The steady states and their nature with increasing coupling
strength are summarized in Fig. 1(a), where we observe a
characteristic change at a critical coupling strength μc = 1.
The nature of the FPs can be characterized by the Ising
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FIG. 1. (a) Various steady states with different energies as a function of μ. Solid (dotted) lines represent stable (unstable) branches and
vertical pink dashed line indicates the critical coupling μc. (b) Small amplitude oscillation frequency ω as a function μ of the steady states
corresponding to ground state (black solid line) and highest excited state (red circles), where vanishing of ω at μc = 1 signifies QPT and
dynamical transition. (c) Schematic diagram of spin configuration for different steady states. Phase portraits [(d) and (e)] and trajectories on
Bloch sphere [(f) and (g)] exhibiting QPT and dynamical transition, respectively. For (d), (f) μ = 0.5 < μc and (e), (g) μ = 1.5 > μc

symmetry of the Hamiltonian, which remains invariant under
siz → −siz. For μ < μc, we find the following symmetry un-
broken stable FPs, which are represented by

(I) : z∗
1 = 0, φ∗

1 = 0; z∗
2 = 0, φ∗

2 = 0, (6)

(II) : z∗
1 = 0, φ∗

1 = π ; z∗
2 = 0, φ∗

2 = π. (7)

For FP-I (FP-II), both spins are aligned to positive (negative)
x axis, and have zero magnetization along the z axis, with
energy E = ∓2. Both FP-I and FP-II become unstable at
μ = μc and undergo pitchfork bifurcation, giving rise to two
pairs of stable symmetry broken steady states, which are given
by

(III) : z∗
1 = z∗

2 = ±
√

1 − 1/μ2, φ∗
1 = φ∗

2 = 0, (8)

(IV) : z∗
1 = −z∗

2 = ±
√

1 − 1/μ2, φ∗
1 = φ∗

2 = π, (9)

where (FP-IV) FP-III represents (anti)ferromagnetic state
with energy E = ±(μ + 1/μ), which corresponds to the max-
imum (minimum) energy of the classical Hamiltonian in
Eq. (3). Both above and below the critical coupling μc, the
stable FPs corresponding to maximum and minimum energy
states yield the same frequencies of small amplitude oscil-
lations, although their spin configurations are different. The
oscillation frequencies for symmetry unbroken (FP-I, FP-II)
and broken (FP-III, FP-IV) states are given by

ω± =
{√

1 ± μ for μ < μc,√
μ2 ± 1 for μ � μc.

(10)

It is interesting to note that the oscillation frequency ω− of the
lower mode vanishes at μc for both the bifurcations, as shown
in Fig. 1(b)).

In addition, there exists another degenerate pair of unstable
FPs represented by (V) {z∗

1 = z∗
2 = 0, φ∗

1 = π, φ∗
2 = 0} and

{z∗
1 = z∗

2 = 0, φ∗
1 = 0, φ∗

2 = π} with energy E = 0. We de-

note this as the “π mode” since the relative angle between the
spins is π . The instability exponent λI of the π mode (FP-V)
is given by

λI =
√

(μ2 + 1)
1
2 − 1

2
(11)

which increases with the coupling strength μ.
The schematic, explaining the spin configurations corre-

sponding to the above FPs, is given in Fig. 1(c). To clearly
visualize the fixed point structure and its bifurcation, we ob-
tain the dynamics by solving the EOM given in Eq. (4) and
plot it over phase portrait in the z1-φ1 plane and Bloch sphere
[see Figs. 1(d)–1(g)]. It can be observed from Figs. 1(d)
and 1(f), for small coupling strength μ < μc, regular phase
space trajectories are formed around the symmetry unbroken
phases, whereas, above the critical point, the phase portrait
contains regular trajectories around the symmetry broken FPs.
However, the intermediate region of phase space is filled with
irregular trajectories [see Fig. 1(e)], indicating the onset of
chaos, which is discussed in Sec. IV.

III. QUANTUM TRANSITIONS IN THE
COUPLED TOP MODEL

In this section, we discuss different types of quantum tran-
sitions exhibited by the CT model and identify their signature
from the behavior of different physical quantities. The con-
nection between these transitions with the fixed point structure
and their bifurcation, obtained from classical analysis, is also
studied.

A. Quantum phase transition and dynamical transition

As seen from the classical analysis, the bifurcation of the
steady state FP-I to FP-III breaks the Ising symmetry, which
gives rise to a ferromagnetic ordering of spins in the ground
state (GS). Such bifurcation of the minimum energy steady
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FIG. 2. Signature of QPT and dynamical transition: Variation of
(a) ground state energy EGS, (b) 〈Ŝ1x/S〉, (c) 〈Ŝ1zŜ2z/S2〉 as a function
of coupling strength μ. The second column (d)–(f) represents varia-
tion of same physical quantities as in (a)–(c) with μ, corresponding
to highest excited state, exhibiting dynamical transition. The black
solid line in all the figures denote the classically obtained analytical
result of the respective quantities.

state is identified as quantum phase transition (QPT) leading
to the ordering of GS. Similarly, the bifurcation of FP-II to
FP-IV corresponds to a dynamical transition associated with
the highest energy excited state, acquiring an antiferromag-
netic ordering. Such type of dynamical transition has also
been observed in Bose-Josephson junction [89,90]. Quantum
mechanically, both the QPT and dynamical transition can be
identified from the changes in the relevant physical quantities
computed for the GS and highest excited state, respectively,
which are obtained by diagonalizing the Hamiltonian given in
Eq. (1). It is interesting to note that both QPT and dynamical
transition are related since the transformation Ŝx → −Ŝx and
μ → −μ changes the ground state of ferromagnetic coupled
top to the excited state of the same model with antiferro-
magnetic interaction, which explains the antiferromagnetic
ordering of the excited state after dynamical transition. Both
QPT and dynamical transition can be captured by the char-
acteristic changes in different physical quantities obtained
for GS and excited state, respectively, across μ = μc (see
Fig. 2). As a consequence of the symmetry between the GS
and excited state, the complementary behavior of the physical
quantities (as shown in Fig. 2) can be observed for QPT
and dynamical transition, particularly, from the expectation
value of Ŝ1zŜ2z/S2, which captures the ferromagnetic and an-
tiferromagnetic ordering due to the respective transitions [see
Figs. 2(c) and 2(f)].

In the S → ∞ limit, the QPT can be analyzed within
Holstein-Primakoff (HP) approximation [91], which has been
discussed in details in Appendix A. The lowest excitation
energy obtained from the HP method is in agreement with the
small amplitude oscillation frequency [as shown in Fig. 1(b)],
which vanishes as ∼√|μ − μc|, signifying the mean-field-like
behavior of QPT. As a consequence, the spin fluctuation di-
verges at the critical point, which can also be captured from
the HP approximation. Moreover, within such semiclassical
description, the spin system can equivalently be described
in terms of the effective potential, which is discussed in
Appendix B. For μ < μc, the effective potential has a sin-
gle minima corresponding to the symmetry unbroken phase,
which changes its shape to a double well structure, clearly
exhibiting the symmetry breaking across the critical point.

Unlike the HP approximation (with S → ∞), for full quan-
tum mechanical computation with finite size Hilbert space, the
true phase transition with symmetry broken phase is absent.
However, after the transition, the energy gap between the
consecutive even-odd parity eigenstates (symmetry preserved)
is suppressed exponentially with system size. Although the
finite size effect masks the sharp changes of the physical quan-
tities at the critical point (however, with increasing S), they
approach the classically obtained analytical results, exhibiting
such sharp features, as depicted in Fig. 2. For comparison
of the numerical results with the classical ones in Fig. 2,
we have appropriately scaled the different physical quantities
and quantum mechanical energies Eν by S, to make them
intensive in nature. Note that the classical energy is equivalent
to quantum mechanical energy density (E ≡ Eν/S).

B. Excited state quantum phase transition

Apart from QPT and dynamical transition, the CT model
exhibits another kind of transition known as excited state
quantum phase transition (ESQPT) [6–12], which describes
the characteristic change in the nature of excited eigenstates
across certain critical energy density. Both QPT and dynam-
ical transition are accompanied by ESQPT, which occurs
above critical coupling strength μc, at a critical energy den-
sity Ec = ∓2, corresponding to unstable symmetry unbroken
steady states FP-I and -II, respectively. The essential feature of
ESQPT is the singular behavior of density of states (DOS) at
the critical energy density Ec. From the classical Hamiltonian
Hcl [Eq. (3)], DOS can be written as

ρ(E ) = C
4π2

∫ 1

−1

∫ 1

−1

∫ 2π

0

∫ 2π

0
δ(E − Hcl ) dφ1dφ2dz1dz2,

(12)

where C = 1
4 keeps the normalization condition

∫
ρ(E ) dE =

1, which is useful for the comparison of the semiclassical
result with the exact quantum mechanical DOS, obtained for
a system with finite S. The DOS obtained from quantum
mechanical energy spectrum is in good agreement with the
semiclassical result, as shown in Fig. 3(a). For μ > μc, the
derivative of the semiclassical DOS shown in the inset of
Fig. 3(a) reveals the singularities at the critical energy den-
sities indicating ESQPT. Physically, above μc, FP-I and FP-II
at critical energy densities Ec = ∓2 separate the symmetry
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FIG. 3. Manifestation of ESQPT: (a) Density of states ρ(E ) and
its derivative dρ/dE shown in the inset, (b) pair gap 
ν , (c) 〈Ŝ1z/S〉,
and (d) 〈Ŝ1x/S〉 as a function of energy density E at μ = 3. The red
dashed lines marked at E = ±2 indicate the critical energy densities
corresponding to ESQPT. For quantum calculations, we choose S =
30 in this and the rest of the figures, unless otherwise mentioned.

unbroken states within the range −2 < E < 2 from the sym-
metry broken states in the energy range EGS < E < −2 and
2 < E < EES corresponding to QPT and dynamical transi-
tion, respectively. The ESQPT corresponding to QPT can be
elucidated in terms of the effective potential, as discussed
in Appendix B. Above the critical point, the effective po-
tential takes a double well structure, where the energy of
the barrier height at E = −2 corresponds to the critical en-
ergy density Ec of the ESQPT, which clearly separates the
ferromagnetically ordered symmetry broken states (E < Ec)
from the unbroken ones (E > Ec). To understand the above
mentioned behavior of the eigenstates, we compute the energy
gap between consecutive even and odd parity states, defined
as 
ν = E2ν − E2ν−1, which vanishes exponentially with in-
creasing S for quasidegenerate states [92,93] with |E | > |Ec|
revealing their symmetry broken nature [see Fig. 3(b)]. More-
over, as shown in Figs. 3(c) and 3(d), the expectation values
of the observables like 〈Ŝ1z/S〉 and 〈Ŝ1x/S〉 clearly separate
the symmetry unbroken states from symmetry broken sector
with a significant change at Ec = ∓2, indicating ESQPT. The
critical energy densities corresponding to ESQPT separating
the symmetry broken and unbroken states are also important
for the ergodic nature of the eigenstates, which is discussed in
the latter part of this work.

IV. ONSET OF CHAOS

In this section, we study the onset of chaos in the CT
model, from the phase space dynamics and its reflection in
the spectral statistics. In the weak coupling limit, the model
exhibits an integrable structure, which represents two almost
noninteracting spins. The deviation from such regular dynam-
ics occurs with increasing the coupling strength μ, which is
evident from the classical phase portrait shown in Figs. 1(e)
and 1(g). Above the critical coupling strength μc, the regular

FIG. 4. Poincaré sections computed for z2 = 0 plane at a fixed
energy E = −1.0 for increasing coupling strength, (a) μ = 0.5,
(b) μ = 1.2, (c) μ = 1.85, depicting the onset of chaos. (d) Average
Lyapunov exponent λ̄l with increasing μ for different energies E ,
computed over an ensemble of 200 initial phase space points.

region around the stable FPs shrinks and the remaining part
is filled up with chaotic trajectories, revealing a mixed phase
space structure in the intermediate regime of coupling. As μ

increases, the chaotic region in phase space continues to grow
and it is eventually filled with irregular trajectories, at a fixed
classical energy. This crossover from regular to chaotic regime
can be captured from the Poincaré section corresponding to a
fixed energy. However, it is important to note, in the extreme
limit with μ 
 1, the integrability of the scaled Hamilto-
nian Ĥ/μ can be recovered, which exhibits regular orbits
around the z axis. Such integrable structure of the Hamiltonian
and regular dynamics for μ 
 1 is discussed in details in
Appendix D.

A. Poincaré section and Lyapunov exponent

To capture the onset of chaos in the CT model, we study
the Poincaré section [88] at the z2 = 0 plane for the dynamics
with fixed energy E . As seen from Figs. 4(a)–4(c), for small
coupling strength μ < μc, the Poincaré section contains only
periodic orbits, signifying regular motion in phase space. In-
creasing μ leads to the emergence of a number of chaotic
trajectories that coexist with the periodic orbits, manifesting
an interesting mixed phase space behavior. For large values
of μ, the phase space is completely filled up with chaotic
trajectories, and the system becomes fully chaotic. In order
to quantify the local chaotic behavior, we compute the Lya-
punov exponent (LE) λ [88,94], which is a standard measure
to quantify the degree of chaos. Typically, for a chaotic tra-
jectory, a small initial perturbation δX(t = 0) at the phase
space point X = {z1, φ1, z2, φ2} grows exponentially in time
||δX(t )|| = eλt ||δX(0)||, which yields the Lyapunov exponent

λ = lim
t→∞

1

t
ln

( ||δX(t )||
||δX(0)||

)
. (13)
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FIG. 5. (a) Level spacing distribution for regular (μ = 0.35 <

μc) and chaotic (μ = 2.00 > μc) regime, which are compared with
PP(δ) and PWD(δ), respectively. (b) Variation of average ratio of
consecutive level spacing 〈rν〉 with increasing coupling strength μ.
Solid red (dashed blue) line indicates the value of 〈rν〉 corresponding
to Poisson and GOE statistics, respectively.

When the limit in Eq. (13) exists and λ is positive, the tra-
jectories are sensitive to the initial condition and thus become
chaotic in nature. The Lyapunov exponent λ can be computed
by following the standard procedure described in [94,95].
The overall chaotic behavior can be quantified by the aver-
age Lyapunov exponent λ̄l , which is obtained by averaging
λl , computed for large sample of initial phase space points,
corresponding to a fixed energy E . The growth of λ̄l above the
critical coupling μc captures the onset of chaos, as depicted in
Fig. 4(d). Interestingly, the average LE λ̄l exhibits an energy
dependence across the energy band, which increases towards
the center of the band with E = 0.

B. Spectral statistics

Although it is not possible to quantify chaos from Lya-
punov exponent quantum mechanically, due to the absence
of phase space trajectories, however, its signature can be
captured from spectral statistics of the corresponding Hamil-
tonian. According to Berry and Tabor’s conjecture [96],
the energy level spacing distribution of the system with
regular dynamics follows Poisson statistics, whereas the
Bohigas-Giannoni-Schmit (BGS) conjecture [97] suggests
Wigner-Dyson distribution of level spacing for a classically
chaotic system. To analyze the spectral statistics of the energy
eigenvalues, we diagonalize the Hamiltonian given in Eq. (1)
and obtain the eigenvalues Eν corresponding to eigenvectors
|ψν〉. Since the spectral statistics is performed for a particular
symmetry sector, it is important to find out the symmetries of
the CT model. The Hamiltonian in Eq. (1) remains invariant
under the action of parity �̂ = eiπ (Ŝ1x+Ŝ2x ) and spin exchange
(S1 ↔ S2) operator Ô [60], which flips the indices of basis
states |m1z, m2z〉, where miz are the quantum numbers of Ŝiz.
Both the operators �̂, Ô possess two eigenvalues ±1, which
we call as even (+1) and odd (−1). For spectral statistics, we
consider the symmetry sector, for which both the eigenvalue
of �̂ and Ô are +1, without any loss of generality. Next, we
arrange the eigenvalues corresponding to the said symmetry
sector, in ascending order and compute the consecutive level
spacings δν = Eν+1 − Eν . Then, the normalized level spacing
distribution is obtained by keeping the mean to be unity, fol-
lowing the standard procedure [98,99]. As seen from Fig. 5(a),
the obtained level spacing distribution of energy eigenvalues

agrees well with the Poisson statistics PP(δ) = exp(−δ) for
small coupling strength μ < μc; on the other hand, the spac-
ing distribution exhibits level repulsion and approaches the
Wigner-Dyson (WD) distribution PWD(δ) = π

2 δ exp(−π
4 δ2)

corresponding to random matrix theory (RMT) of Gaussian
orthogonal ensemble (GOE) for an intermediate range of cou-
pling strength above μc, where the underlying phase space
becomes fully chaotic. The crossover from Poisson to Wigner-
Dyson statistics of spacing distribution can also be captured
from the average ratio of consecutive level spacing 〈rν〉 [100],
which is given by

〈rν〉 =
〈

min(δν, δν+1)

max(δν, δν+1)

〉
. (14)

For Poisson matrix of level spacing, 〈rν〉 ≈ 0.386 [100],
whereas in case of Gaussian orthogonal ensemble (GOE) of
RMT, 〈rν〉 ≈ 0.53 [100]. Figure 5(b) shows the variation of
〈rν〉 with μ, which clearly exhibits the crossover from Poisson
to the WD statistics.

V. ERGODIC BEHAVIOR AND MULTIFRACTALITY
OF EIGENSTATES

In the previous section, we have investigated the onset of
chaos in the CT model at an intermediate coupling above
the critical point, both classically and at the quantum level
from the spectral statistics. In this section, we present a more
detailed study of the eigenstates, which can reveal interesting
phenomena related to ergodicity and nonequilibrium dynam-
ics. Since the entropy is related to the degree of ergodicity, we
study entanglement entropy (EE) of the eigenstates |ψν〉 of the
Hamiltonian given in Eq. (1). To obtain the EE, we compute
the reduced density matrix ρ̂S of a particular spin sector S as
follows:

ρ̂S = TrS̄|ψν〉〈ψν |, (15)

where TrS̄ denotes the partial trace with respect to the other
spin sector. The EE quantifies the degree of entanglement,
which is given by

Sen = −Tr ρ̂S log ρ̂S. (16)

We quantify the degree of ergodicity of a state by comparing
the EE with its maximum value

Smax � log(DA) − DA/2DB (17)

which is obtained for a random state, partitioned into subsys-
tems A (B) with dimensions DA (DB) [101]. Therefore, the
relative EE Sen/Smax attains a maximum value at unity. In the
CT model, we have DA = DB = 2S + 1, hence, the maximum
value of EE is given by Smax � log(2S + 1) − 1

2 . From the
comparison of the Lyapunov exponent obtained for the edge
and center of the energy band [shown in Fig. 4(d)], we ob-
serve a variation in degree of chaos across the band, which
is maximum at the band center, with classical energy E = 0.
Interestingly, at the quantum level, the degree of ergodicity in
terms of the relative EE Sen/Smax reveals the similar behav-
ior with increasing energy density E across the energy band
which is peaked at the center with energy density E = 0 [see
Fig. 6(a)]. Although, in general, the notion of chaos is not
quite the same as ergodicity in quantum systems. Overall
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FIG. 6. Ergodic behavior of the coupled top model: (a) Varia-
tion of relative entanglement entropy (EE) Sen/Smax (color plot) of
eigenstates with energy densities E for increasing coupling strength
μ. (b) Variation of relative EE of eigenstates with energy density E
for different coupling μ. Horizontal red dashed line represents the
maximum EE at unity. Pink dashed lines represent energy densities
Ec corresponding to ESQPT.

ergodic behavior of the CT model, in terms of the relative
EE with increasing coupling μ, across the QPT is shown as
color scale plot in Fig. 6(a). It is evident from Fig. 6 that,
after QPT, the symmetry broken eigenstates near the band
edge are less ergodic compared to the symmetry unbroken
states, which are separated by the ESQPT lines (FP-I, FP-II).
Above QPT, the relative EE of the eigenstates near band
center with E ≈ 0 increases and attains its maximum value
Sen/Smax ≈ 1 at an intermediate coupling strength μ ≈ 1.85
[see Fig. 6(b)], where the system becomes fully chaotic and
〈rν〉 approaches to the GOE limit. As discussed earlier, since
the model exhibits integrable behavior in the two extreme
limits of coupling (μ � 1 and μ 
 1), the system becomes
maximally ergodic within a moderate range of coupling across
μ ≈ 1.85, which is the main focus in the latter part of this
work.

A. Multifractality of eigenstates

The localization and ergodic behavior of a state |ψ〉 =∑N
i=1 ψ i|i〉 can be determined from the participation of the

computational basis |i〉 in the formation of said state. For a
localized state, a few basis states participate with nonvanish-
ing ψ i, whereas, for a fully ergodic state ψ i ∼ 1/N , where
N is the dimension of the Hilbert space. In addition, the
multifractal state lies in-between these two extremes and their
presence in a quantum many body system can give rise to
an interesting nonergodic behavior [102,103]. Recently, it has
been observed that the ground state of the quantum many body
systems exhibits multifractality and the appearance of QPT in
such systems can be captured from the change of multifractal
dimensions [102,104]. In Appendix C, we also discuss how
the QPT in the CT model can be captured from the multi-
fractal dimension of the ground state computed in a suitably
chosen basis. The multifractal nature of the eigenstates |ψν〉
can be captured from the statistical analysis of the coefficients
ψ i

ν and their scaling with the dimensionality N . To quantify
the degree of localization of a state, the generalized inverse
participation ratio (IPR) is given by

Iq =
∑

i

|ψ i|2q (18)

which reduces to the usual IPR for q = 2. In general, Iq ∼
1/N τq for sufficiently large dimension N . In case of a lo-
calized state, τq vanishes and Iq becomes independent of
N , whereas for an extended ergodic state, τq ∼ (q − 1) as
|ψ i|2 ∼ 1/N . Generally, the exponent can be written as τq =
(q − 1)Dq, where Dq is the qth multifractal exponent charac-
terizing the multifractality of the state. Alternatively, Dq can
be calculated from the Rényi entropy SR(q,N ) as follows:

Dq = lim
N→∞

SR(q,N )

lnN , (19)

where the Rényi entropy is defined by

SR(q,N ) = − 1

(q − 1)
ln

( N∑
i

|ψ i|2q

)
. (20)

For q → 1, the Rényi entropy reduces to Shannon entropy
SSh = −∑N

i |ψ i|2 ln |ψ i|2 which yields the exponent D1:

D1 = lim
N→∞

SSh

lnN . (21)

Note that the numerical computations are performed in the Ŝz

basis.
When the CT model becomes maximally chaotic (μ ≈

1.85), we investigate the multifractal properties of eigenstates
with different energy densities using the above mentioned
framework. For the eigenstates at the band center (E ≈ 0),
the variation of generalized IPR Iq with dimension N as
shown in the log-log scale reveals the linear behavior [see
Fig. 7(a)] and the slope yields the exponent τq for different q.
As seen from Fig. 7(b), the behavior of τq with q deviates from
linearity, indicating multifractal nature of the eigenstates. The
multifractal dimension Dq can be extracted from τq, and its
variation with q for different energy densities is shown in
Fig. 7(c), which clearly exhibits the multifractal character of
the eigenstates at different energy densities. The eigenstates at
the band center with E ≈ 0 have multifractal dimension close
to unity, which indicates that these states approach the ergodic
limit. In the numerical computations, the presence of finite
size effect leads to larger deviation in Dq for higher values
of q, which is also present for eigenvectors in random matri-
ces with finite dimensionality [105]. Due to such finite size
effects, it is difficult to conclude whether the states at band
center (E ≈ 0) become fully ergodic or remain weakly er-
godic. Away from the band center, the multifractal dimension
Dq of the eigenstates decreases with increasing energy density
|E |, indicating their nonergodic nature. We plot the averaged
multifractal dimension D1 with increasing energy density E
across the energy band, which resembles with the behavior of
relative EE, as depicted in Fig. 7(d). Interestingly, the linear
variation of relative EE Sen/Smax with multifractal exponent
D1 [see inset of Fig. 7(d)] has recently been observed for
nonergodic “sparse random pure states” discussed in [106].
This behavior indicates that both multifractal dimension D1

and relative EE Sen/Smax can quantify the degree of ergodicity,
which is also reflected in the nonequilibrium dynamics, as
discussed in Sec. VI B.
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FIG. 7. Multifractality of the energy eigenstates: (a) Scaling of
generalized IPR Iq with dimension N for eigenstates at the band
center with energy density E ≈ 0. The solid lines represent the
linear fit. (b) Variation of τq with q for eigenstates with different
values of E . The red dashed line represents τq = q − 1 with Dq = 1.
(c) Multifractal dimension Dq (obtained from τq) as a function of
q for different energy densities E . (d) Comparison between the
multifractal dimension D1 and relative EE Sen/Smax, for eigenstates
with increasing energy density E across the energy band. The linear
behavior of D1 with Sen/Smax curve is shown in the inset of (d) and
the red dashed line represents the corresponding linear fit. For all the
figures, μ = 1.85.

VI. QUANTUM DYNAMICS

In this section, we study the nonequilibrium dynamics of
the coupled top model to investigate the onset of chaos and
related ergodic behavior. The time evolution of various ob-
servables can be studied from the time evolved state |ψ (t )〉 =
e−ıĤt |ψ (0)〉 for a suitably chosen initial state |ψ (0)〉. To com-
pare the quantum dynamics with its classical counterpart, we
use the prescription of spin coherent state [107]

|z, φ〉 =
(

1 + z

2

)S

exp

√
1 − z

1 + z
eiφ Ŝ−|S, S〉, (22)

where z = cos θ , with θ and φ representing the orientation
of the corresponding classical spin vector. The two spins of
the CT model can be represented as the product of two corre-
sponding coherent states,

|ψc〉 = |z1, φ1, z2, φ2〉 = |z1, φ1〉 ⊗ |z2, φ2〉, (23)

which provides a semiclassical description of the phase space
point {z1, φ1, z2, φ2}. Such choice of an initial state as the spin
coherent state allows us to probe the local ergodic behavior.
Following this prescription, we next study the onset of chaos
and the ergodic behavior from the nonequilibrium dynamics.

A. Classical quantum correspondence

In this section, we compute the time evolution of the
appropriately scaled physical observables obtained quantum
mechanically and compare them with corresponding classical

FIG. 8. Time evolution of the observable 〈Ŝ1z/S〉 for (a) μ = 0.1
and (b) μ = 1.85. The time evolution obtained from quantum dy-
namics (solid red line) is compared with the results obtained from
classical dynamics using Eq. (4) (black dashed line). Time evolution
of the spin fluctuation f1sz = (〈Ŝ2

1z〉 − 〈Ŝ1z〉2)/S2 for (c) μ = 0.1 and
(d) μ = 1.85.

dynamics by solving the EOM, given in Eq. (4). For this
purpose, we choose the initial coherent state representing the
initial classical phase space point. For small coupling regime
μ � μc, when the system exhibits regular dynamics, the time
evolution of the expectation value 〈Ŝ1z/S〉 is in good agree-
ment with that of the classical dynamics [63], as shown in
Fig. 8(a). On the contrary, in the chaotic regime, the quantum
evolution of the corresponding observable matches with its
classical counterpart up to certain timescale, after which it
deviates significantly with increasing time [63] [see Fig. 8(b)].
Moreover, the fluctuation corresponding to the above men-
tioned observable in the chaotic regime [see Fig. 8(d)] is much
larger compared to the regular regime [see Fig. 8(c)] [63] and,
systematic study of such fluctuations allows us to quantify
chaos, which is discussed in the next subsection.

B. Manifestation of ergodicity in nonequilibrium dynamics

To this end, we study the local ergodic behavior of the CT
model from the dynamics of different physical quantities. As
seen from the analysis of the eigenstates in the previous sec-
tion, the ergodic behavior of the eigenstates depends on their
energy density E , even when the system becomes maximally
chaotic.

We probe such behavior from nonequilibrium dynamics
of the physical observables, starting from an initial coherent
state with a given energy density E since the energy re-
mains conserved during the time evolution. In the maximally
chaotic regime, we study the dynamics of the spin components
〈Ŝ1a/S〉 (a = x, y, z) by choosing two initial coherent states
with energy density corresponding to the edge and center of
the energy band. For dynamics with energy close to the band
edge, the expectation values of the spin components exhibit
oscillation without reaching any steady state, as shown in
Fig. 9(a). Moreover, the nonvanishing value of 〈Ŝ1z/S〉 reflects
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FIG. 9. Dynamics of different components of the spins
(〈Ŝ1x,y,z/S〉) corresponding to the initial coherent state (a) near the
band edge with E = −2.3 and (b) at the band center for E = −0.01.
For both the figures, μ = 1.85.

the symmetry broken nature of the states at the band edge.
On the other hand, the initial state at the band center (E ≈ 0)
evolves to a steady state with vanishing expectation value of
all the spin components [see Fig. 9(b)], which is signature
of diagonal reduced density matrix corresponding to micro-
canonical ensemble (discussed later in this section), indicating
the ergodic evolution. This dynamical behavior supports the
fact that the states near the center of the energy band approach
the ergodic limit, whereas the absence of steady states from
the dynamics of an initial state at the band edge indicates
nonergodic evolution, which is consistent with our previous
analysis discussed in Sec. V.

To understand the dynamical signature of degree of ergod-
icity across the energy band in a more definitive manner, we
study the evolution of EE [108–110] and the final reduced
density matrix, as well the survival probability for different
energy densities. For time evolution of |ψ (t )〉 starting from an
initial state |ψ (0)〉, the survival probability is defined as

F (t ) = |〈ψ (t )|ψ (0)〉|2. (24)

Physically, it describes the memory of the initial state, which
decays from unity and approaches to the GOE limit 3/N
[25,111] for ergodic evolution. At long time, the deviation
of survival probability from the GOE limit can quantify
the degree of ergodicity. Similarly, in the ergodic evolution,
it is expected that the reduced density matrix (ρ̂S )mm′ =
〈m|ρ̂S |m′〉 (|m〉, |m′〉 are basis states of Ŝz) approaches to the
microcanonical form with nonvanishing diagonal elements
giving rise to maximum EE Smax given in Eq. (17). To gain
more insight, we also study the corresponding phase space
dynamics with fixed energy, projected on the Bloch sphere.
The degree of ergodicity across the energy band from its edge
to the center is summarized in Fig. 10. For classical energy
close to the band edge below the critical energy of ESQPT, the
classical trajectories are confined within a small region around
the symmetry broken fixed points (FP-III), clearly exhibiting
a localized structure in Bloch sphere, as shown in Fig. 10(a1).
With increasing energy density E , the diffusive behavior of

FIG. 10. Manifestation of degree of ergodicity in nonequilibrium dynamics of different physical quantities, with increasing energy density
E (as shown in different rows). Column (a): The classical phase space trajectories on Bloch sphere with fixed classical energy E . Column
(b): Color scale plot of the elements of final reduced density matrix (ρ̂S )mm′ (in the basis of Ŝz), after time evolution of an initial coherent
state representing a phase space point corresponding to energy density E . Columns (c) and (d) represent the time evolution of EE and survival
probability, respectively, for the same initial coherent states. Horizontal pink dashed lines in columns (c) and (d) denote maximum limit of EE
[Eq. (17)] and GOE limit 3/N of survival probability, respectively. Parameters chosen: μ = 1.85.
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the trajectories is observed, which occupies the Bloch sphere
partially, as shown in Fig. 10(a2), and eventually covers the
full Bloch sphere for E ≈ 0 [see Fig. 10(a3)] corresponding to
the center of energy band. Such behavior of increasing degree
of ergodicity across the energy band is also reflected from the
final form of reduced density matrix, as well from the long
time saturation of EE and survival probability, as depicted
in respective columns of Figs. 10(b)–10(d). The degree of
ergodicity of eigenstates across the energy band, as shown
in Fig. 6, is also reflected in the nonequilibrium dynamics.
Moreover, the classical dynamics provides a connection be-
tween the phase space mixing and energy dependent ergodic
behavior of its quantum counterpart. In the next subsection,
we discuss a newly developed technique to probe the degree
of ergodicity in a more systematic manner.

C. OTOC dynamics

In recent studies, it has been shown that the dynamics of
out-of-time-order correlator (OTOC) can be used as a tool
to detect dynamical instability that can lead to chaos in an
interacting quantum system [65–81], which has also been
implemented in NMR [72] and trapped ion experiments [73].
This was originally introduced in the context of superconduc-
tivity [112] and, in recent years, it has also been applied in
different areas of physics, most popularly in the context of
black hole thermalization [65,66], and scrambling of quantum
information [71]. The growth rate of OTOC of appropriately
chosen operators plays an analogous role of Lyapunov ex-
ponent for quantum systems [68,75–77], which can quantify
the instability. Moreover, the recent studies reveal that its
saturation value can also be used as a measure for degree
of ergodicity [78–81]. The OTOC of two operators Ŵ (t ) and
V̂ (0) is defined as follows:

O(t ) = Trρ̂0Ŵ
†(t )V̂ †(0)Ŵ (t )V̂ (0), (25)

where Ŵ (t ) represents the evolution of the operator at time t
and ρ̂0 is an appropriately chosen initial density matrix. This
is related to the unequal time commutator C(t ) defined as

C(t ) = Trρ̂0[Ŵ (t ), V̂ (0)]†[Ŵ (t ), V̂ (0)] (26)

which measures the noncommutativity between these op-
erators evolving with time, even if the operators commute
initially. Both C(t ) and O(t ) are related by C(t ) = 2[1 −
ReO(t )], for unitary Ŵ and V̂ . A generalization of OTOC
known as the fidelity out-of-time-order correlator (FOTOC) is
defined for Ŵ = eıδφĜ and V̂ = ρ̂0, for any Hermitian opera-
tor Ĝ and ρ̂0 = |ψ (0)〉〈ψ (0)|, where |ψ (0)〉 is the initial state.
For a sufficiently small perturbation δφ � 1, the FOTOC is
related to the fluctuation fG of the operator Ĝ [75,76]:

1 − FG = (〈Ĝ2〉 − 〈Ĝ〉2)δφ2 ≡ fGδφ2. (27)

Therefore, measuring the fluctuations of appropriately chosen
operators can quantify the degree of ergodicity. In this work,
we study the FOTOC corresponding to the sum of fluctuations
of all the spin components in a particular spin sector, which is
given by

fis =
∑

a=x,y,z

fisa =
∑

a=x,y,z

(〈
Ŝ2

ia

〉 − 〈Ŝia〉2
)
/S2. (28)

FIG. 11. Dynamics of average FOTOC f E
1s , computed for an

ensemble of initial coherent states with fixed energy density E .
(a) Time evolution of f E

1s for E ≈ 0, corresponding to the band center,
reflecting its change in degree of ergodicity with increasing coupling
strength μ. (b) Variation in dynamics of f E

1s for different energy
densities E across the energy band, reflecting the maximum degree
of ergodicity at the band center for μ = 1.85.

In order to probe the ergodicity in an energy resolved manner,
we define energy dependent FOTOC of spins f E

is , which is
obtained by averaging fis over an ensemble of initial co-
herent states with a fixed energy density E . As depicted in
Fig. 11(a), the transition to chaos with increasing coupling
strength μ can be captured from the growth rate of f E

is with
E ≈ 0. Moreover, in the chaotic regime, its saturation value
approaches to unity, which is consistent with the fact that the
states at the band center with E ≈ 0 become ergodic. Near
the maximally chaotic region at μ ≈ 1.85, we investigate the
energy dependent degree of ergodicity from the dynamics of
f E
is for different energy densities, which is shown in Fig. 11(b).

With increasing energy density E , corresponding to the energy
band, from its edge to the center, the growth rate of f E

is as
well as its saturation value increases, which finally approaches
to unity for E = 0 [see Fig. 11(b)]. Such behavior, observed
in FOTOC dynamics, confirms the variation of degree of er-
godicity across the energy band shown in Fig. 6. The present
analysis opens up the possibility for experimental investiga-
tion of local ergodic behavior of a quantum system using
FOTOC technique, which has already been implemented in
trapped ion system [75].

VII. FORMATION OF QUANTUM SCARS

The investigation related to the fate of the unstable steady
states in the coupled top (CT) model reveals another source
of deviation from ergodicity, due to the quantum scarring
phenomena. In recent years, the study of quantum scars has
regained interest due to the experimental observation of pe-
riodic revival and athermal behavior of some special choice
of initial state [42], which is attributed to many body quan-
tum scar [43–48]. In the CT model, two types of scars are
observed, which appear as reminiscence of unstable fixed
points (FPs) and periodic orbits, as mentioned in our previous
work [60]. In this section, we elaborate the discussion on the
above mentioned scars and present results related to detection
of dynamical signature of scars using FOTOC technique. In
addition, we identify different scars and provide a systematic
statistical analysis to identify the scarred eigenstates.
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FIG. 12. Identification of eigenstates bearing the scars of unsta-
ble FPs. Overlap |〈ψc|ψν〉|2 of eigenstates |ψν〉 with coherent states
|ψc〉 corresponding to (a) the unstable π mode and (b) FP-I. (c),
(d) Husimi distribution for a particular spin sector of the eigenstate
|ψν〉 having maximum overlap [marked by arrowhead in (a) and (b)].
(e), (f) Distribution P(η) of the elements η = |ψ i

ν |2N of the scarred
eigenstates [marked by arrowhead in (a) and (b)]. The black dashed
line represents the Porter-Thomas (PT) distribution.

A. Scars of unstable fixed points

To this end, we discuss about the quantum scars formed
due to the unstable FPs. The reminiscence of the unstable FPs
can be detected in some energy eigenstates in the form of a
scar. Since such unstable FPs can be represented semiclassi-
cally in terms of the coherent states |ψc〉, the corresponding
scarred eigenstates |ψν〉 can be identified from the large over-
lap |〈ψc|ψν〉|2 
 1/N [47,59], where N = (2S + 1)2 is the
dimension of the Hilbert space. In the ergodic regime, such
overlap becomes O(1/N ), indicating delocalization. To visu-
alize the scars, we compute the Husimi distribution obtained
from the reduced density matrix ρ̂S of the corresponding
scarred eigenstate |ψν〉,

Q(z, φ) = 1

π
〈z, φ|ρ̂S |z, φ〉, (29)

which provides a semiclassical phase space distribution. As
seen from Figs. 12(c) and 12(d), the Husimi distribution of
the scarred eigenstates exhibits accumulation of phase space
density near the corresponding unstable FPs, retaining their
reminiscence at the quantum level.

In the present case, above the critical coupling μc, the un-
stable “π mode” (FP-V), as well the two symmetry unbroken
unstable steady states (FP-I, FP-II), as discussed in Sec. II, can
manifest in the form of scars in the energy eigenstates. Since
there are two degenerate spin configurations corresponding to

the π mode, to describe such state semiclassically, we con-
sider the following linear combination of the coherent states:

|π+〉 = 1√
2

(|0, 0〉 ⊗ |0, π〉 + |0, π〉 ⊗ |0, 0〉). (30)

As shown in Fig. 12(a), we identify the eigenstates bearing
the scar of unstable π mode from the maximum overlap
with |π+〉. The scarring of π mode is evident from strong
localization of Husimi distribution at φ = 0 and π , as de-
picted in Fig. 12(c). Although the π mode with energy E = 0
coexists with the most ergodic states at the center of the
energy band, the corresponding scarred eigenstates can be
distinguished from their statistical properties. According to
Berry’s conjecture [113], the high energy eigenstates of a
classically chaotic system behave as random states, although
they rely on semiclassical analysis [23]. For such random
states, the probability distribution of their components η =
|ψ i

ν |2N follows the well known Porter-Thomas (PT) distri-
bution P(η) = (1/

√
2πη) exp(−η/2) [98]. Interestingly, the

eigenstates bearing scars deviate from PT distribution, indi-
cating the violation of Berry’s conjecture [59,60], as shown
in Figs. 12(e) and 12(f)). It is important to mention that the
magnitude of such deviation and the overlap with the corre-
sponding coherent states depend on the degree of scarring,
which reduces with the enhanced instability of the underly-
ing classical dynamics. A similar analysis reveals the scarred
eigenstates corresponding to symmetry unbroken unstable
steady state FP-I [see Figs. 12(b), 12(d), and 12(f)] at energy
density E = −2. In a similar manner, the scar of equivalent
symmetry unbroken steady state FP-II can also be identified
at energy density E = +2. It is to be noted that the degree
of scarring of the π mode is much less compared to that
of FP-I (or FP-II), as reflected from the deviation from PT
distribution, shown in Figs. 12(e) and 12(f), since the π mode
remains always unstable and the instability is much larger
compared to that of FP-I (or FP-II). Moreover, the steady state
FP-I (or FP-II) is located away from the center of the energy
band comprising of maximally ergodic states.

To this end, we quantify the degree of scarring from the
average overlap |〈ψν |ψc〉|2 of the eigenstates |ψν〉, having
significant overlap |〈ψν |ψc〉|2 
 1/N [47,59] (N being the
system size) with the coherent state |ψc〉 describing the un-
stable FP. With increasing the coupling strength μ, as the
instability of the unstable FP increases, we also find that
the degree of scarring decreases, as shown for scar of the π

mode in Fig. 13. We also study the behavior of such average
overlap |〈ψν |ψc〉|2 with increasing system size, which appears
to saturate to a finite value 
1/N for sufficiently large system
size, confirming the persistence of quantum scarring due to the
unstable FPs, as shown for the π mode in the inset of Fig. 13.

B. Scars of periodic orbit and dynamical class

The second type of scars can be identified from the eigen-
states maximally deviating from the ergodic limit at the center
of the energy band with E ≈ 0, where the majority of states
approach to this limit. Such behavior can be revealed from
the analysis of Shannon entropy SSh = −∑

i |ψ i
ν |2log|ψ i

ν |2 in
a small energy window of 
E ∼ 0.1 around the band center
E ≈ 0, in the ergodic regime near μ ≈ 1.85. As seen from
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FIG. 13. Variation of average overlap |〈ψν |π+〉|2 of the |π+〉 state
with increasing μ for S = 30, and with spin magnitude S in the inset
for μ = 1.1.

Fig. 14(a), the Shannon entropy SSh for most of the states
forms a bandlike structure and approaches the GOE limit
ln(0.48N ) [24,25], whereas there are a few states which have
a lower value of SSh and deviate from it. Also, such states
exhibit deviation from PT distribution [see Fig. 14(b)]. The
Husimi distribution corresponding to these deviated states [as
indicated by circles in Fig. 14(a)] show a significant phase
space localization, revealing the scars of periodic orbit, as
depicted in Figs. 14(c) and 14(d).

To understand the origin of such periodic orbits, we closely
analyze the classical equations of motion (EOM) given in
Eq. (4). As mentioned earlier, the CT model remains invariant
under the exchange of two spins (S1 ↔ S2). As a result, in
terms of the redefined classical variables z± = (z1 ± z2)/2
and φ± = (φ1 ± φ2)/2, the overall dynamics of the system
can be categorized into two classes, namely, class I with

FIG. 14. Identification of eigenstates with scars of unstable pe-
riodic orbits: (a) Shannon entropy SSh of the eigenstates around the
energy density E = 0. The pink dashed line denotes the GOE limit
ln(0.48N ). (b) Comparison of distribution P(η) for the deviated
scarred states (violet line) with that of an ergodic state (green line).
The black dashed line corresponds to the PT distribution. Husimi
distribution for (c), (d) deviated states, marked by violet circles in
(a), revealing the scar of periodic orbit. For all figures, μ = 1.85.

{z+ = 0; φ+ = 0}, and class II for which {z− = 0; φ− = 0}
holds, where the dynamics is restricted on the reduced phase
space of remaining variables. It can be verified from the
equation of motion (EOM) in Eq. (4), either of the above
conditions remain valid irrespective of the coupling strength
μ and the dynamics of the remaining variables reduces
to that of the Lipkin-Meshkov-Glick (LMG) model [114]
with (anti)ferromagnetic interaction corresponding to class
(I) II. However, the presence of initial fluctuations violating
such conditions corresponding to classes I and II can lead
to the instability of dynamics of the corresponding classes
on the reduced phase space. By using the EOM in Eq. (4)
and the conditions for both the classes, the dynamics of the
remaining variables can be described by

Class I: ż− = −
√

1 − z−2 sin φ−, (31a)

φ̇− = z−√
1 − z−2

cos φ− + μz−, (31b)

Class II: ż+ = −
√

1 − z+2 sin φ+, (31c)

φ̇+ = z+√
1 − z+2

cos φ+ − μz+, (31d)

where the dynamical class (I) II corresponds to the LMG
model with (antiferromagnetic) ferromagnetic interaction.
From the above equations, we obtain the periodic orbits at
energy E in a closed form, which can be written as

z±(t ) = A cn

(Aμ

2k
(t + t0), k

)
, (32a)

cos[φ±(t )] = −E + ξμ z2
±(t )

2
√

1 − z2±(t )
, (32b)

where cn is the Jacobi elliptic function with elliptic modulus
k < 1 and the constants are given by

A2 = 2

μ2

[
−ξ

μE

2
− 1 + �

]
, k2 = 1

2

[
1 − ξEμ/2 + 1

�

]
,

t0 = F(cos−1[z±(0)/A], k)

�1/2
, � =

√
μ2 + 1 + ξEμ.

The periodic orbits corresponding to dynamical class (I) II
have energy in the range 0 < E < 2 (−2 < E < 0) and the
parameter value ξ = −1 (+1), which determines the sign of
the effective LMG model with (anti)ferromagnetic interaction
[as seen from Eqs. (31b) and (31d)]. Such orbits with different
energies belonging to the dynamical classes I and II are shown
in Fig. 15(a). The periodic orbits corresponding to the classes
I and II are formed around the unstable steady states FP-I and
FP-II, respectively, and the orbits with equal and opposite en-
ergies have identical shapes; however, their centers are shifted
around the corresponding FPs [see Fig. 15(a)]. Interestingly,
the largest orbits with energy E = 0 belonging to the two
different dynamical classes touch at {z1 = 0, φ1 = ±π/2},
where the accumulation of phase space density is exhibited
in the Husimi distribution of the corresponding scarred eigen-
states, as shown in Figs. 14(c) and 14(d). The time period of
such orbits with energy E = 0 is given by

T = 4K (k)

(1 + μ2)1/4
, (33)
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FIG. 15. (a) Unstable periodic orbits corresponding to classes
I (dashed lines) and II (solid lines) for μ = 1.85. The outermost
orbits of the two classes correspond to energy E = 0. (b) Lyapunov
exponent λPO for the periodic orbits (with energy E ) associated with
the dynamical classes, as a function of coupling μ. Time evolution
of a periodic orbit corresponding to dynamical class II with energy
E ≈ 0, in presence of a small constraint violating initial perturbation
z−(0) = δz � 1, (c) in the stable region with μ = 1.2 and (d) unsta-
ble region with μ = 1.4.

where K (k) = F(π/2, k) is the complete elliptic integral of
first kind and F(φ, k) = ∫ φ

0 dx(1 − k2 sin2 x)−1/2 [115]. Next,
we investigate the stability of such periodic orbits by using the
method of monodromy matrix described in [94,95]. Similar to
the stability analysis of a phase space trajectory described in
Sec. IV A, we calculate the Lyapunov exponent λPO starting
from a point on the periodic orbit over its time period T and
the instability of the corresponding orbit can be quantified
from λPO > 0. The variation of Lyapunov exponent λPO with
increasing coupling strength μ is shown in Fig. 15(b) for
periodic orbits with different classical energies E . As seen
from this figure, the largest periodic orbits with E = 0 become
unstable for μ > μu = 1.23, which ensures that these orbits in
the ergodic regime (μ ≈ 1.85) are indeed unstable. However,
the reminiscence of such unstable orbits is still visible in the
form of scars, which is evident from the Husimi distribution
of the corresponding eigenstates, as shown in Figs. 14(c) and
14(d). It is evident from Fig. 15(b) that the smaller periodic
orbits with increasing |E | (from E = 0) become successively
unstable for μ < μu, which finally terminates at μc = 1 for
E = ±2 corresponding to the unstable steady states FP-I and
FP-II, around which such periodic orbits are formed. More-
over, we observe that the λPO for E = ±2 coincides with
the imaginary part of the small amplitude oscillation fre-
quency Im(ω) = √

μ − 1, corresponding to FP-I and FP-II,
as discussed previously in Sec. II. From the full phase space
dynamics, we identify that the instability of such periodic
orbits belonging to a particular dynamical class stems from
the initial perturbations violating the constraints of the cor-
responding class. In Figs. 15(c)and 15(d), we elucidate such
dynamics in presence of small initial perturbation deviating

FIG. 16. Dynamical signature of quantum scars: Dynamics of
FOTOC f1s starting from the initial coherent state |ψc〉, representing
the unstable FP of (a) π mode and (b) FP-I, which is compared
with average FOTOC f E

1s (green line) corresponding to the same
energy density E of the respective unstable FPs. Survival probability
|〈ψ (t )|ψc〉|2 corresponding to unstable (c) π mode and (d) FP-I.
Green line corresponds to survival probability starting from an initial
coherent state representing an arbitrary phase space point with same
energy E of the above mentioned FPs.

from a particular dynamical class, which clearly leads to
instability of the periodic orbits [see Fig. 15(d)], however,
the irregular trajectory remains localized around the corre-
sponding orbits of both the dynamical classes, resembling the
shape of the scar, as observed from the Husimi distributions
in Fig. 14(c).

C. Dynamical signature of scars

To this end, we discuss the detection of two types of scars
from their dynamical signature using the method of out-of-
time order correlators (OTOC) and survival probability. In
Sec. VI C, we outline the OTOC technique and its extension
fidelity OTOC (FOTOC) which has been used to probe the
local ergodic behavior of phase space. Since the first type of
scars arises from the unstable FPs such as FP-V, FP-I, and
FP-II, it is more convenient to detect their signature from
FOTOC dynamics. Given that the FOTOC is directly related
to the fluctuation of the corresponding operator, here we in-
vestigate the behavior of total spin fluctuation f1s, defined in
Eq. (28) to probe the presence of the first type of scar. Start-
ing from an initial coherent state representing the unstable
FPs, the dynamics of the total spin fluctuations f1s exhibits
oscillations with large magnitude, as depicted in Figs. 16(a)
and 16(b). For comparison, we also compute the mean value
of FOTOC f E

1s (discussed in Sec. VI C) averaged over an
ensemble of initial coherent states with energy density E
corresponding to that of the unstable FP. As observed from
Figs. 16(a) and 16(b), the f E

1s exhibits a smooth behavior
and saturation in absence of oscillations, in contrast to the
oscillatory behavior of f1s for unstable FPs. We also observed
that the oscillations in the dynamics of f1s decrease as the
overlap of the initial coherent state with that corresponding to
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FIG. 17. Signature of scar of unstable periodic orbit obtained
from OTOC dynamics. Time evolution of C(t ) corresponding to two
different initial density matrices ρ̂0 (black dashed line) and ρ̂mc (red
solid line), as described in the main text, for μ = 1.85. Dynamics of
OTOC corresponding to scarred states (black dashed line) exhibits
oscillation with periodicity close to time period T [see Eq. (33)] of
the unstable periodic orbit.

the unstable FP reduces. Since the quantum scars lead to the
deviation from ergodicity and retain the memory of the initial
states, they can also be detected from the survival probability
F (t ) = |〈ψ (t )|ψ (0)〉|2, describing the overlap of time evolved
state |ψ (t )〉 with the initial state |ψ (0)〉. The time evolution
of survival probability starting from the initial coherent state
representing the FP-V and FP-I is shown in Figs. 16(c) and
16(d). The revival phenomena as observed in the survival
probability, for the initial coherent states corresponding to
the unstable steady states, are a characteristic of such scarred
states [43], which are absent in the ergodic evolution. Also,
the survival probability at long time differs from the GOE
limit, indicating the deviation from ergodicity. We detect
the dynamical signature of the second type of scars corre-
sponding to the unstable periodic orbits using the unequal
time commutator of spins C(t ) = −Trρ̂0[Ŝz(t )/S, Ŝz(0)/S]2,
which is also discussed in Sec. VI C. Next, we study the time
evolution of C(t ) for initial density matrix ρ̂0 = |ψ (0)〉〈ψ (0)|
constructed from the eigenstates carrying such scars, which
are located near the band center, where the majority of states
are ergodic [see Fig. 14(a)]. For comparison, we also investi-
gate C(t ) evaluated for initial microcanonical density matrix
ρ̂mc = ∑

j |ψ j〉〈ψ j |/N
 constructed from N
 ergodic states
within a small range of energy density 
E at the center of the
band. As seen from Fig. 17, the unequal time commutator C(t )
corresponding to the scarred eigenstate exhibits oscillatory
behavior, in contrast to the C(t ) showing a rapid growth and
saturation in absence of oscillations for the ergodic states.
The oscillatory behavior observed in FOTOC, as well in the
unequal time commutator, can be considered as a detectable
signature for both types of scars.

VIII. CONCLUSION

To summarize, we have investigated various aspects of the
coupled top (CT) model, which includes analysis of differ-
ent types of quantum transitions and ergodic behavior of the
system as well its deviation, revealing its connection with the
underlying collective spin dynamics.

Ferromagnetic interaction between the spins leads to the
quantum phase transition (QPT) at a critical coupling strength

μc = 1, which gives rise to ferromagnetic ordering of the
ground state. Moreover, at the same coupling, the highest
excited state undergoes a dynamical transition with anti-
ferromagnetic ordering. For both the transitions, the lowest
collective frequency vanishes at the critical point μc as√|μ − μc|. Such gapless excitation at the critical point can
lead to a large spin fluctuation of the ground state, which has
been analyzed using the Holstein-Primakoff approximation.
Above μc, both QPT and dynamical transition are accompa-
nied by two excited state quantum phase transitions (ESQPT)
characterized by the singularities in density of states at critical
energy densities. Such energy densities associated with ES-
QPT correspond to the symmetry unbroken unstable steady
states, which separate the symmetry unbroken eigenstates at
the center of the energy band from the symmetry broken states
at the band edge. We also derive an effective potential which
provides a pictorial description of both QPT and ESQPT.

Although, the CT model is integrable in both the extreme
limits of coupling, μ � 1 and μ 
 1, the classical analy-
sis reveals a transition to chaos in an intermediate range of
coupling strength above μc. At the quantum level, the over-
all chaotic behavior is detected from the spectral statistics;
however, a closer investigation reveals the existence of non-
ergodic multifractal eigenstates across the energy band. We
quantify the degree of ergodicity of eigenstates from relative
entanglement entropy as well as multifractal dimensions. Both
the quantities exhibit similar behavior across the energy band,
revealing variation of degree of ergodicity with energy den-
sity. In the maximally chaotic regime, the eigenstates near
the band center approach ergodic limit, whereas the degree
of ergodicity of states decreases toward the band edge. Such
ergodic behavior across the energy band can be probed from
nonequilibrium dynamics by a suitably chosen initial state at
a given energy density, which is also supplemented by cor-
responding phase space dynamics, elucidating the connection
between phase space mixing and ergodicity of its quantum
counterpart.

Finally, we discuss another source of deviation from er-
godicity due to the formation of two types of quantum scars,
which arises as a reminiscence of unstable fixed points and
periodic orbits. We present systematic methods to identify
such eigenstates bearing quantum scars, which are found to be
violating Berry’s conjecture in contrast to the ergodic states.
More importantly, we have shown how the energy dependent
degree of ergodicity can be probed and dynamical signature
of quantum scars can be detected by using a newly developed
technique known as out-of-time-order correlator, which has
already been implemented in cold ion experiments [72,73].

In conclusion, this work provides a detailed discussion of a
rich variety of phenomena observed in a simple collective spin
model known as the coupled top model, which also elucidates
dynamical route to ergodicity, and formation of quantum scars
in presence of interaction, as well its detection.

APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

For large magnitude of spins S 
 1, the coupled top (CT)
model can be analyzed semiclassically by using the Holstein-
Primakoff (HP) approximation [91], where 1/S is considered
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to be a small parameter. When the classical spin vector is
aligned along the z axis, the corresponding spin operators in
HP transformations can be written as

ˆ̃Siz = S − â†
i âi, (A1a)

ˆ̃Si+ =
√

2S − â†
i âi âi, (A1b)

ˆ̃Si− = â†
i

√
2S − â†

i âi, (A1c)

where the index i = 1, 2 represents two spins of CT model
and âi is bosonic annihilation operator describing the quan-
tum fluctuations around the classical spin. As discussed in
Sec. II, corresponding to the classical spin configuration of
the ground state, both the spins of the CT model lie in the
x-z plane making an angle θi with the z axis which depends
on the coupling μ. For such orientation of the classical spin
vectors, corresponding spin operators in HP representation
can be obtained by performing a rotation about the y axis,

Ŝix = ˆ̃Six cos θi + ˆ̃Siz sin θi, (A2a)

Ŝiz = ˆ̃Siz cos θi − ˆ̃Six sin θi. (A2b)

Using these spin operators, the Hamiltonian given in
Eq. (1) can be written in a series of 1/S,

Ĥ = SH0 +
√

SĤ1 + Ĥ2 + O(1/
√

S), (A3)

where the dominant term H0 represents the classical energy
density. Minimizing the classical energy H0, we obtain the
following conditions:

cos θi =
{

0 for μ < 1,

±
√

1 − 1/μ2 for μ � 1,
(A4)

which represents the spin orientation of the ground state. Next
term in the Hamiltonian Ĥ1 vanishes for such ground state
spin configuration. Finally, the Hamiltonian Ĥ2 describing the
quantum fluctuations can be written as

Ĥ2 = ε â†
1 â1 + ε â†

2 â2 − �

2
(â1 + â†

1)(â2 + â†
2), (A5)

where the parameters are given by

ε = 1 , � = μ for μ < 1,

ε = μ , � = 1/μ for μ � 1.

The excitation energies above the ground state can be obtained
by diagonalizing the Hamiltonian Ĥ2, which can be achieved
by canonical transformation of bosonic operators [116]

b̂†
1 = (ω− + ε)(â†

1 − â†
2) + (ω− − ε)(â1 − â2)

2
√

2 ε ω−
, (A6a)

b̂†
2 = (ω+ + ε)(â†

1 + â†
2) + (ω+ − ε)(â1 + â2)

2
√

2 ε ω+
, (A6b)

FIG. 18. Signature of QPT from the singular behavior of spin
fluctuation χ1z/S at the critical coupling strength μc.

where the new set of operators satisfy the commutation rela-
tion [b̂i, b̂†

j] = δi j . The diagonal form of the Hamiltonian is
given by

Ĥ2 =
√

ε2 − �ε b̂†
1 b̂1 +

√
ε2 + �ε b̂†

2 b̂2 + E0

= ω− b̂†
1 b̂1 + ω+ b̂†

2 b̂2 + E0, (A7)

where ω± are the frequency of the collective modes, which
matches exactly with the small amplitude oscillation frequen-
cies [Eq. (10)] obtained from linear stability analysis. The
zero point energy due to quantum fluctuation is given by
E0 = [

√
ε2 + �ε + √

ε2 − �ε − 2ε]/2. The correction due to
finite size effect can be obtained by considering 1/S terms
systematically [117].

Vanishing of the energy gap leads to the enhanced quantum
fluctuations at the critical point, which can be observed in
the spin fluctuation. Within the HP transformation, we obtain
the spin fluctuation of the ground state χ1z = 〈Ŝ2

1z〉 − 〈Ŝ1z〉2

corresponding to a particular spin sector (S1),

χ1z = S

2
cos2 θ1

[
(ε − ω−)2

ε ω−
+ (ε − ω+)2

ε ω+

]
+S

4
ε sin2 θ1

[
1

ω−
+ 1

ω+

]
(A8)

which diverges at the critical coupling strength μc, as shown
in Fig. 18.

APPENDIX B: EFFECTIVE POTENTIAL OF THE
COUPLED TOP MODEL

Similar to the Landau free energy for continuous phase
transition, the coupled top model can equivalently be de-
scribed by an effective potential, which elucidates the
quantum phase transition and its connection with ESQPT. Fol-
lowing the prescription of HP transformation, we define the
canonically conjugate variables Qi, Pi in terms of the bosonic
creation â†

i and annihilation âi operators as

Qi = â†
i + âi√

S
, Pi = i

â†
i − âi√

S
(B1)
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FIG. 19. Effective potential (a) before and (b) after QPT, exhibit-
ing the symmetry breaking phenomena. (c) Cross section of effective
potential with Q− = 0 for different values of μ. Blue (red) lines
denote the potential for μ � μc (μ > μc).

which can be treated classically in the limit S → ∞. Using
the HP transformation, the spin components can be written in
terms of these variables as

S̃ix = S√
2

Qi

√
1 − Q2

i + P2
i

8
, (B2a)

S̃iy = S√
2

Pi

√
1 − Q2

i + P2
i

8
, (B2b)

S̃iz = S

(
1 − Q2

i + P2
i

4

)
. (B2c)

In the symmetry unbroken phase with μ < μc, spins are
aligned along the x axis in the ground state of the system.
For such classical spin orientation we perform a spin rotation
around the y axis, which yields S̃ix = Siz and S̃iz = −Six and
in terms of the classical variables Qi, Pi the corresponding
classical Hamiltonian (scaled by S) can be written as

Hcl = −2 + Q2
1 + P2

1

4
+ Q2

2 + P2
2

4

−μ

2
Q1Q2

√
1 − Q2

1 + P2
1

8

√
1 − Q2

2 + P2
2

8
. (B3)

Minimization of the energy leads to the conditions P1 = P2 =
0 and thus we obtain the effective potential for CT model

Veff = −2 + Q2
1 + Q2

2

4
− μ

2
Q1Q2

√
1 − Q2

1

8

√
1 − Q2

2

8
.

(B4)

It can be seen from Fig. 19(a), below μc, the effective po-
tential Veff has a single minimum at Q1 = Q2 = 0, which
corresponds to the symmetry unbroken steady state FP-I with
energy E = −2. Whereas above the phase transition μ >

μc, the potential changes its shape to double well struc-
ture [see Fig. 19(b)], which clearly captures the symmetry

FIG. 20. Signature of QPT from the multifractal dimension Dq

of the ground state as a function of μ.

breaking phenomenon associated with QPT. The energy of
the two minima of this potential matches with that of the
symmetry broken steady state FP-III. Above the QPT with
μ > μc, the point Q1 = Q2 = 0 corresponds to the maxi-
mum of the potential barrier in Veff, which schematically
describes the ESQPT with critical energy density Ec = −2,
separating the symmetry broken states (within the double
well) from the symmetry unbroken sector above the barrier.
The Hamiltonian given in Eq. (B3) remains invariant under the
exchange of the variables (Q1 ↔ Q2, P1 ↔ P2). Therefore, we
redefine the variables as Q± = (Q1 ± Q2)/2 and the effective
potential [Eq. (B4)] can be rewritten in terms of these new
variables. It can be shown the minimization of this redefined
potential leads to the condition Q− = 0, which is in accor-
dance with the fact that, due to the ferromagnetic ordering of
the ground state, the spins are aligned. Using the condition
Q− = 0, the potential can be written in terms of Q+ as

Veff(Q+) = −2 + Q2
+

2
− μ

2

(
Q2

+ − Q4
+

8

)
. (B5)

The nature of this potential as a function of Q+ in the different
coupling regime is presented in Fig. 19(c), which captures the
signature of quantum phase transition. Furthermore, it is evi-
dent from Fig. 19(c) that the ESQPT corresponds to the barrier
between the two wells, and the barrier height corresponds to
the critical energy density Ec = −2.

APPENDIX C: SIGNATURE OF QUANTUM PHASE
TRANSITION IN THE MULTIFRACTAL DIMENSION

The change in the structure of ground state wave function
across the quantum critical point can be captured from the
sudden change in fractal dimension Dq, which signifies the
occurrence of quantum phase transition. Before the transition
(μ < μc), both spins of the CT model are aligned along the x
axis, as a result, a few eigenstates of Ŝix operators with large
eigenvalues participate in the ground state. Hence, the ground
state remains localized in the basis |m1x, m2x〉, where mix is the
eigenvalue of Ŝix. Consequently, before QPT, the multifractal
dimension Dq computed in the above basis yields small value
indicating localization. On the other hand, the spin orientation
changes above the critical coupling μc and more number of
eigenstates contribute to the ground state. Such change in the
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FIG. 21. Comparison of phase space trajectories on Bloch sphere
corresponding to a particular spin sector for (a) ε = 0 and (b) ε =
0.01, exhibiting diffusive behavior of the trajectories near the equator
with E ≈ 0, as a result of deviation from ergodicity for ε > 0.

structure of the ground state is reflected from rapid growth in
multifractal dimension Dq across the QPT as shown in Fig. 20.

APPENDIX D: INTEGRABILITY AT LARGE
COUPLING STRENGTH

The coupled top model becomes integrable at two extreme
limits of coupling strength μ. In the presence of weak inter-
action (μ → 0), two spins precess independently around the x
axis and the system becomes integrable. At the quantum level,
this is manifested by Poissonian level spacing distribution in
the small coupling regime μ < μc. Moreover, in the opposite
limit (μ 
 1) where the interaction between the two spins
becomes large compared to the precession term, the model
is nearly integrable. To study the system in this extreme limit,
we scale the Hamiltonian [given in Eq. (1)] by μ, which can
be written as

Ĥ = −ε(Ŝ1x + Ŝ2x ) − 1

S
Ŝ1zŜ2z, (D1)

where ε = 1/μ and ε → 0 for μ → ∞. The above Hamil-
tonian can be written classically in terms of the collective
coordinates as

Hcl = −ε
[√

1 − z2
1 cos φ1 +

√
1 − z2

2 cos φ2

]
− z1z2. (D2)

For ε = 0, the classical Hamiltonian Hcl given in Eq. (D2) is
independent of the angle variables φi, and the EOM yields
the solution φi = zit + c with constant zi, which represents
precession of spins around the z axis as depicted in Fig. 21(a).

FIG. 22. (a) Level spacing δν with increasing index ν of ordered
eigenvalues (of even symmetry sector), for different values of ε.
The eigenstates near both edges of the energy band exhibit regular
spacing δν , as the integrable limit is approached with decreasing ε.
(b) Variation of average ratio of consecutive level spacing 〈rν〉 with
ε, exhibiting crossover from GOE to Poisson statistics. Red (blue)
dashed lines denote the Poisson (GOE) limit of 〈rν〉.

As ε increases, the dynamics near the equator of the Bloch
sphere corresponding to the energy E ≈ 0 becomes diffusive,
whereas regular trajectories are observed near the poles [see
Fig. 21(b)]. The above results obtained from classical anal-
ysis at large μ are also supported by quantum analysis as
well. To see this, we sort the energy levels obtained from
exact diagonalization of the above Hamiltonian [Eq. (D1)] in
ascending order, belonging to a particular parity as well as
exchange symmetry sector (mentioned in the main text). Next,
we compute the level spacing δν = Eν − Eν−1, which is shown
with increasing value of the index ν in Fig. 22(a). For the
integrable limit with ε = 0, the level spacings are distributed
in a regular fashion compared to that for ε �= 0. However,
for ε � 1, the level spacings corresponding to very low as
well as high energy states show almost regular structure,
whereas those at the middle of the spectrum (E ≈ 0) exhibits
significant deviation, which is consistent with the classical
picture [see Fig. 22(a)]. Also, such deviation increases as the
Hamiltonian differs from the integrable limit with increasing
value of ε. A similar analysis has also been done in the context
of the Dicke model [116]. To confirm the crossover from
chaotic to regular dynamics for large value of μ (ε � 1), we
compute the average ratio of consecutive level spacing 〈rν〉
as a function of decreasing ε, which exhibits an approach to
Poissonian distribution, as depicted in Fig. 22(b).
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[36] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. X 5,

041047 (2015).
[37] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115,

030402 (2015); E. Bairey, G. Refael, and N. H. Lindner, Phys.
Rev. B 96, 020201(R) (2017).

[38] V. P. Michal, B. L. Altshuler, and G. V. Shlyapnikov, Phys.
Rev. Lett. 113, 045304 (2014).

[39] S. Ray, A. Ghosh, and S. Sinha, Phys. Rev. E 97, 010101(R)
(2018); S. Ray, B. Mukherjee, S. Sinha, and K. Sengupta,
Phys. Rev. A 96, 023607 (2017).

[40] P. W. Claeys and A. Lamacraft, Phys. Rev. Lett. 126, 100603
(2021).

[41] K. Klobas, B. Bertini, and L. Piroli, Phys. Rev. Lett. 126,
160602 (2021).

[42] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Nature (London) 551, 579 (2017).

[43] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin, Phys.
Rev. Lett. 122, 220603 (2019).

[46] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev.
Lett. 122, 040603 (2019).

[47] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and
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