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Multilane totally asymmetric simple exclusion processes with interactions between the lanes have recently
been investigated actively. This paper proposes a two-lane model with extended Langmuir kinetics on a periodic
lattice. Both bidirectional and unidirectional flows are investigated. In our model, the hopping, attachment,
and detachment rates vary depending on the state of the corresponding site in the other lane. We obtain a
theoretical expression for the global density of the system in the steady state from three kinds of mean-field
analyses [(1 × 1)-, (2 × 1)-, and (2 × 2)-cluster cases]. We verify that the (2 × 2)-cluster mean-field analysis
reproduces the differences between the two directional flows and approximates well the results of computer
simulations for some cases. We observe that (2 × 1)-cluster mean-field analyses are already good approximations
of the simulation results for unidirectional flows; on the other hand, the accuracy of the approximations much
improves by (2 × 2)-cluster one for bidirectional flows. We explain the phenomena in a qualitative manner by
a simple analysis of correlations. We expect these findings to give informative suggestions for actual traffic
systems.
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I. INTRODUCTION

The asymmetric simple exclusion process (ASEP), which
is a stochastic process involving particles on a lattice, has
been applied in many fields [1] since it was first proposed
by MacDonald and Gibbs [2,3]. A special version of ASEP,
in which particles on a lattice can hop unidirectionally, is
referred to as a totally asymmetric simple exclusion process
(TASEP). Researchers have applied TASEPs to traffic flows
of self-driven particles, as in biological transport [4–7], ve-
hicular traffic [8,9], and pedestrian flow [10–12]. Recently,
one-lane TASEPs with varying hopping probabilities [13–15],
multilane TASEPs with interactions between lanes [16–27],
and multilane TASEPs with varying hopping probabilities and
interactions between lanes [28,29] have begun to be investi-
gated. For example, in Refs. [13–15], the hopping probability
of a particle varies depending on the states of the sites sur-
rounding it, whereas in Refs. [17–19,29], the hopping rate of
a particle varies depending on the state of the other lane.

One of the extensions of TASEP, a TASEP with Langmuir
kinetics, which we refer to as LK-TASEP in the present paper,
has begun to be actively investigated [30–46]. In the original
LK-TASEP, a particle attaches (detaches) at a certain rate ωA

(ωD) when the targeted site on the lattice is empty (occupied).
The LK-TASEP was first proposed in Ref. [30] and was in-
vestigated using mean-field theory in Refs. [31,32]. Recently,
multilane or/and multispecies LK-TASEPs have been studied
[33–38]. In addition, Refs. [39–43] changed the attachment
and detachment rates depending on the occupancy of the
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adjacent sites. We note that the models of Refs. [40–42] are
more generalized versions of those discussed in Ref. [31].

In the present paper, we consider a two-lane extended LK-
TASEP on a periodic lattice. The proposed model considers
the interaction between particles in each lane without lane
changing. Specifically, the hopping rate p and the attachment
(detachment) rate ωA (ωD) vary depending on the state of
the corresponding site in the other lane. We stress that the
hopping rule has already been employed in Refs. [17–19];
however, the attachment and detachment rule has not been
considered in previous studies. In the present paper, we inves-
tigate both unidirectional and bidirectional flows. We conduct
computer simulations and perform three kinds of mean-field
analyses [(1 × 1)-, (2 × 1)-, and (2 × 2)-cluster cases] to in-
vestigate the global density of the system in the steady state.
We find that the (2 × 2)-cluster mean-field analysis captures
the differences between unidirectional and bidirectional flows
and reproduces the simulation results well, especially for
small p.

From a practical point of view, LK-TASEP has been
used extensively for analyzing the motions of motor pro-
teins in Refs. [44–46], in which the investigators determined
the parameters from experimental data. For applications to
traffic flow, a TASEP model with an absorbing lane, which
can be classified into the same category as LK-TASEP, has
been investigated in Refs. [20] (parking lots) and [21,22]
(airport transportation systems). Our proposed model can
also be applied to traffic flow; e.g., to crowd dynamics
in the situations where multiple lanes are formed in a
narrow passage, such as in trains, airplanes, and concert halls.
In those situations, we observe two important phenomena.
First, we often observe that people decrease their walking
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FIG. 1. Schematic illustration of the present model. The upper
and lower panels represent unidirectional (U) and bidirectional (B)
flows, respectively. Red (green) circles represent particles in lane 1
(2). The left and right boundaries are connected (periodic boundary
conditions). The case L = 10 is shown.

speed to avoid collisions while walking side by side in uni-
directional flows (passing each other in bidirectional flows).
Second, decision making during inflow to (outflow from) a
passage is influenced by the local state. For example, people
tend to hesitate to enter a passage when it is congested locally
at the inflow point. The former phenomenon corresponds to a
change of the hopping rate, whereas the latter one corresponds
to changes of attachment and detachment rates.

This paper is organized as follows. Section II describes the
details of our proposed model. In Sec. III the numerical results
from mean-field analyses are presented. Section IV compares
the results from mean-field analyses and simulation results.
Finally, the paper concludes in Sec. V.

II. MODEL

The model consists of two L-site lanes, labeled i =
1, 2, . . . , L, as shown in Fig. 1. Each site can either be
empty or be occupied by one particle. The state of a site is
represented by 1 if a particle occupies that site; otherwise,
its state is represented by 0. We employ periodic boundary
conditions, i.e., site L and site 1 are connected, and we use
random updating. Changing lanes is prohibited in this model.
In the present paper, we consider two cases: unidirectional
flows (particles in both lanes all hop in the same direction)
and bidirectional flows (the particles in the two lanes hop in
opposite directions).

Next, we describe the update scheme for the case of unidi-
rectional flows. In the proposed model, the hopping rate and

attachment (detachment) rates depend on the occupancy of the
corresponding site in the other lane.

For the hopping rate, a particle at site i in one lane hops
to site (i + 1) with rate 1 if site i in the other lane is vacant;
otherwise, it hops with rate p (0 � p � 1).

However, for the attachment and detachment rates, the
process can be divided into two patterns; specifically, (1) if
site i in one lane is empty and site i in the other lane is
empty (occupied), the particle attaches with rate ωA1 (ωA2),
whereas (2) if site i in one lane is occupied and site i in the
other lane is empty (occupied), the particle detaches with rate
ωD1 (ωD2). For bidirectional flows, only the hopping rule for
lane 2 differs from the case of unidirectional flows. In this
case, a particle at site i in lane 2 hops to site (i − 1) with
rate 1 if the corresponding site in lane1 is vacant; otherwise,
it hops with rate p (0 � p � 1). We note that this model
yields the standard LK-TASEP when p = 1, ωA1 = ωA2,
and ωD1 = ωD2.

III. MEAN-FIELD ANALYSES

In this section, we investigate the density profile in the
steady state using three kinds of mean-field analyses. We
hereafter write the probability finding configuration τ as P(τ ).
The configuration τ , which is one element of the set S which
consists of all possible configurations, contains (2 × L) fig-
ures. The top (bottom) row represents the state of the sites in
lane 1 (2). For example, when L = 5 and the occupied site
numbers in lane 1 are 1, 2, and 3, and those in lane 2 are 4 and
5, τ can be written as

τ = 1 1 1 0 0
0 0 0 1 1. (1)

The master equation for this system can be written as
dP(τ )

dt
=

∑
τ ′∈S

W (τ ′ → τ )P(τ ′) −
∑
τ∈S

W (τ → τ ′)P(τ ), (2)

where W (τ ′ → τ ) is the transition weight to go from state
τ ′ to state τ . However, it is very difficult to analyze (2 ×
L)-site configurations. We therefore consider cluster approx-
imations; specifically, (1 × 1)-, (2 × 1)-, and (2 × 2)-cluster
approximations. In the following subsections, we consider
both unidirectional and bidirectional flows.

A. (1 × 1)-cluster mean-field analysis

In this subsection, we consider the (1 × 1)-cluster mean-
field analysis, which is identical to the normal mean-field
analysis used in ASEP investigations. Translational invariance
leads to spatial homogeneity, i.e., the probability is indepen-
dent of the site number; therefore, we can abbreviate the site
number in the following discussions (similarly in Secs. III B
and III C).

For the probability P(1
∗), where ∗ represents either 0 or 1,

the master equation for unidirectional flows can be written as

dP
(1
∗
)

dt
=

[
P

(
1 0
0 ∗

)
+ pP

(
1 0
1 ∗

)
+ ωA1P

(
0
0

)
+ ωA2P

(
0
1

)]
−

[
P

(
1 0
0 ∗

)
+ pP

(
1 0
1 ∗

)
+ ωD1P

(
1
0

)
+ ωD2P

(
1
1

)]
,

(3)
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where the underlined sites on the right hand corresponds to the sites on the left hand (and similarly hereafter). We note that this

equation does not change for bidirectional flows, although that of P(∗1) changes.
Performing the mean-field analysis, i.e., ignoring higher correlations in Eq. (3), we have

dP
(1
∗
)

dt
=

[
P

(
1
∗
)

P

(
0
∗
)

P

(∗
0

)
+ pP

(
1
∗
)

P

(
0
∗
)

P

(∗
1

)
+ ωA1P

(
0
∗
)

P

(∗
0

)
+ ωA2P

(
0
∗
)

P

(∗
1

)]

−
[

P

(
1
∗
)

P

(
0
∗
)

P

(∗
0

)
+ pP

(
1
∗
)

P

(
0
∗
)

P

(∗
1

)
+ ωD1P

(
1
∗
)

P

(∗
0

)
+ ωD2P

(
1
∗
)

P

(∗
1

)]
, (4)

where P(0
∗) + P(1

∗) = 1 and P(∗0) + P(∗1) = 1.
Given the obvious symmetry between lanes 1 and 2, after

a long enough time we obtain ρ = P(1
∗) = P(∗1); therefore,

Eq. (4) reduces to
dρ

dt
= (ωA1 + ωD1 − ωA2 − ωD2)ρ2

+ (−2ωA1 + ωA2 − ωD1)ρ + ωA1, (5)

where all the terms including p disappear. We note that Eq. (5)
does not change for bidirectional flows.

Because dρ

dt = 0 in the steady state, we obtain

aρ2 + bρ + c = 0, (6)

where

a = ωA1 − ωA2 + ωD1 − ωD2, (7)

b = −2ωA1 + ωA2 − ωD1, (8)

and

c = ωA1. (9)

For a �= 0, the solution of Eq. (6) can be written as

ρ = −b − √
b2 − 4ac

2a
, (10)

where

b2 − 4ac = (ωA2 − ωD1)2 + 4ωA2ωD2 > 0. (11)

We discuss the inclusion of Eq. (10) and the exclusion of the
other solution of Eq. (6), i.e., ρ = −b+√

b2−4ac
2a , in Appendix A.

On the other hand, when a = 0, we have

ρ = ωA1

ωA1 + ωD1
. (12)

B. (2 × 1)-cluster mean-field analysis

In this subsection, we consider the (2 × 1)-cluster mean-
field analysis, where 2(= 2 × 1) sites are regarded as one
cluster. We note that this analysis is called simple mean-field
method in Refs. [17–19]; however, we do not use this termi-
nology in order to clarify the difference from the analysis in
the previous subsection and to avoid misunderstanding.

For the (2 × 1)-cluster probability, the following two mas-
ter equations can be derived for the case of unidirectional
flows:

dP
(0

0

)
dt

=
[

P

(
1 0
0 0

)
+ P

(
1 0
0 1

)
+ P

(
0 0
1 0

)
+ P

(
0 1
1 0

)
+ ωD1P

(
1
0

)
+ ωD1P

(
0
1

)]
−

[
P

(
1 0
0 0

)
+ P

(
0 0
1 0

)

+ 2pP

(
1 0
1 0

)
+ 2ωA1P

(
0
0

)]
(13)

and

dP
(1

0

)
dt

=
[

P

(
1 0
0 0

)
+ pP

(
1 0
1 0

)
+ pP

(
1 0
1 0

)
+ pP

(
1 1
1 0

)
+ ωA1P

(
0
0

)
+ ωD2P

(
1
1

)]

−
[

P

(
0 1
1 0

)
+ pP

(
1 1
1 0

)
+ P

(
1 0
0 0

)
+ P

(
1 0
0 1

)
+ ωA2P

(
1
0

)
+ ωD1P

(
1
0

)]
. (14)

Again performing the mean-field analysis, i.e., ignoring the higher correlations in Eqs. (13) and (14), we have

dP
(0

0

)
dt

=
[

P

(
1
0

)
P

(
0
0

)
+ P

(
1
0

)
P

(
0
1

)
+ P

(
0
1

)
P

(
0
0

)
+ P

(
0
1

)
P

(
1
0

)
+ ωD1P

(
1
0

)
+ ωD1P

(
0
1

)]

−
[

P

(
1
0

)
P

(
0
0

)
+ P

(
0
1

)
P

(
0
0

)
+ 2pP

(
1
1

)
P

(
0
0

)
+ 2ωA1P

(
0
0

)]

= 2P

(
1
0

)
P

(
0
1

)
− 2pP

(
0
0

)
P

(
1
1

)
+ ωD1P

(
1
0

)
+ ωD1P

(
0
1

)
− 2ωA1P

(
0
0

)
(15)
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and

dP
(1

0

)
dt

=
[

P

(
1
0

)
P

(
0
0

)
+ pP

(
1
1

)
P

(
0
0

)
+ pP

(
1
1

)
P

(
0
0

)
+ pP

(
1
1

)
P

(
1
0

)
+ ωA1P

(
0
0

)
+ ωD2P

(
1
1

)]

−
[

P

(
0
1

)
P

(
1
0

)
+ pP

(
1
1

)
P

(
1
0

)
+ P

(
1
0

)
P

(
0
0

)
+ P

(
1
0

)
P

(
0
1

)
+ ωA2P

(
1
0

)
+ ωD1P

(
1
0

)]

= 2pP

(
0
0

)
P

(
1
1

)
− 2P

(
1
0

)
P

(
0
1

)
+ ωA1P

(
0
0

)
+ ωD2P

(
1
1

)
− ωA2P

(
1
0

)
− ωD1P

(
1
0

)
. (16)

We stress here that Eqs. (13) and (14) change for the case of
bidirectional flows; however, Eqs. (15) and (16) do not change
and thus yield the same results for the mean-field analysis.

Again given the obvious symmetry between lanes 1 and 2
after a long enough time, we obtain

P

(
1
0

)
= P

(
0
1

)
. (17)

Moreover, P( i
j) (i, j ∈ {0, 1}) must satisfy the normaliza-

tion condition:

P

(
0
0

)
+ P

(
1
0

)
+ P

(
0
1

)
+ P

(
1
1

)
= 1. (18)

Because d
dt P( i

j) = 0 in the steady state, we obtain the fol-
lowing expression from Eqs. (15)–(18):

A

[
P

(
1
0

)]2

+ BP

(
1
0

)
+ C = 0, (19)

where

A = 2 + 4pα + 2pα2, (20)

B = 4pαβ + 4pβ + ωA2 + ωD1 + 2ωD2

+ ωD2α − 2pα − ωA1α, (21)

C = 2pβ2 + ωD2β − 2pβ − ωA1β − ωD2, (22)

α = ωD1 − ωA2 − 2ωD2

ωA1 + ωD2
, (23)

and

β = ωD2

ωA1 + ωD2
. (24)

We discuss the detailed derivation of Eq. (19) in Appendix B.

Solving Eq. (19) yields P(1
0) in the form

P

(
1
0

)
= −B + √

B2 − 4AC

2A
. (25)

We note that because

A = 2 + 4pα + 2pα2 = 2(1 − p) + 2p(α + 1)2 > 0 (26)

and

C = 2pβ2 + ωD2β − 2pβ − ωA1β − ωD2 (27)

= −2pωA1 − ωD2ωA1 − ωA1ωD2

ωA1 + ωD2
< 0, (28)

we have

B2 − 4AC > 0. (29)

We discuss the exclusion of the other solution of Eq. (19), i.e.,

P(1
0) = −B−√

B2−4AC
2A in Appendix C.

Because the density is defined as

ρ = P

(
1
0

)
+ P

(
1
1

)
, (30)

we finally have

ρ = 1 − β − (1 + α)(−B + √
B2 − 4AC)

2A
. (31)

C. (2 × 2)-cluster mean-field analysis

This subsection presents the (2 × 2)-cluster mean-field
analysis, where 4(= 2 × 2) sites are regarded as one cluster.
We note that this analysis is called the two-cluster or two-
cell mean-field method in Refs. [17–19]; however, as with
Sec. III B, we do not use this terminology in order to clarify
the difference from the analyses in the last two subsections
and to avoid misunderstanding.

Unlike the two previous mean-field analyses, in this case
the final results are different for the two directional flows.
Therefore, in this subsection we consider the two flows sepa-
rately.

1. Unidirectional flows

The master equation for P(0 0
0 0) can be expressed as

dP
(0 0

0 0

)
dt

=
[

P

(
0 1 0
0 0 0

)
+ P

(
0 1 0
0 0 1

)
+ P

(
0 0 0
0 1 0

)
+ P

(
0 0 1
0 1 0

)
+ ωD1P

(
1 0
0 0

)
+ ωD1P

(
0 0
1 0

)

+ ωD1P

(
0 1
0 0

)
+ ωD1P

(
0 0
0 1

)]
−

[
P

(
1 0 0
0 0 0

)
+ P

(
0 0 0
1 0 0

)
+ 2pP

(
1 0 0
1 0 0

)
+ 4ωA1P

(
0 0
0 0

)]
.

(32)
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Utilizing the concept of conditional probability, we can express P( i k m
j l n ) in this mean-field analysis in the form

P

(
i k m
j l n

)
=

P
( i k

j l

)
P
(k m

l n

)
∑

m∈{0,1}
∑

n∈{0,1} P
(k m

l n

) , (33)

where i, j, k, l, m, n ∈ {0, 1}.
Inserting Eq. (33) into Eq. (32) and noting that in the steady state d

dt P( i k
j l ) = 0, we obtain

P
(0 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(0 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(0 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(0 0

0 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

)

+ ωD1P

(
1 0
0 0

)
+ ωD1P

(
0 0
1 0

)
+ ωD1P

(
0 1
0 0

)
+ ωD1P

(
0 0
0 1

)
−

P
(1 0

0 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

−
P
(0 0

1 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
2pP

(1 0
1 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) − 4ωA1P
(0 0

0 0

) = 0. (34)

We can obtain the eight other master equations for the (2 × 2)-cluster probabilities in the steady state similarly, as shown in
Appendix D.

In addition, given the obvious symmetry between lanes 1 and 2 after a long enough time, we obtain

P

(
1 0
0 0

)
= P

(
0 0
1 0

)
, (35)

P

(
0 1
0 0

)
= P

(
0 0
0 1

)
, (36)

P

(
1 1
0 0

)
= P

(
0 0
1 1

)
, (37)

P

(
1 0
0 1

)
= P

(
0 1
1 0

)
, (38)

P

(
1 1
1 0

)
= P

(
1 0
1 1

)
, (39)

and

P

(
1 1
0 1

)
= P

(
0 1
1 1

)
. (40)

Moreover, P( i k
j l ) must satisfy the normalization condition

∑
i∈{0,1}

∑
j∈{0,1}

∑
k∈{0,1}

∑
l∈{0,1}

P

(
i k
j l

)
= 1. (41)

From 16 independent Eqs. (34)–(41) and (D9)–(D16), we obtain all the probabilities P( i k
j l ).

Finally, the definition of density gives

ρ =
∑

i∈{0,1}

∑
j∈{0,1}

∑
k∈{0,1}

P

(
1 j
i k

)
. (42)

2. Bidirectional flows

The master equation for P(0 0
0 0) can be written in the form

dP
(0 0

0 0

)
dt

=
[

P

(
0 0 0
0 1 0

)
+ P

(
1 0 0
0 1 0

)
+ P

(
0 1 0
0 0 0

)
+ P

(
0 1 0
0 0 1

)
+ ωD1P

(
1 0
0 0

)
+ ωD1P

(
0 0
1 0

)

+ ωD1P

(
0 1
0 0

)
+ ωD1P

(
0 0
0 1

)]
−

[
P

(
1 0 0
0 0 0

)
+ pP

(
1 0 0
1 0 0

)
+ P

(
0 0 0
0 0 1

)
+ pP

(
0 0 1
0 0 1

)

+ 4ωA1P

(
0 0
0 0

)]
. (43)
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Inserting Eq. (33) into Eq. (43) and noting that in the steady state d
dt P( i k

j l ) = 0, we obtain

P
(0 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(1 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(0 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(0 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+ ωD1P

(
1 0
0 0

)
+ ωD1P

(
0 0
1 0

)
+ ωD1P

(
0 1
0 0

)
+ ωD1P

(
0 0
0 1

)
−

P
(1 0

0 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

−
pP

(1 0
1 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
P
(0 0

0 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
pP

(0 0
0 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

− 4ωA1P

(
0 0
0 0

)
= 0. (44)

We can again obtain the eight other master equations for
the (2 × 2)-cluster probabilities in the steady state similarly,
as shown in Appendix E.

Given the obvious symmetry between lanes 1 and 2 after a
long enough time, we obtain

P

(
1 0
0 0

)
= P

(
0 0
0 1

)
, (45)

P

(
0 0
1 0

)
= P

(
0 1
0 0

)
, (46)

P

(
1 1
0 0

)
= P

(
0 0
1 1

)
, (47)

P

(
1 0
1 0

)
= P

(
0 1
0 1

)
, (48)

P

(
1 1
1 0

)
= P

(
0 1
1 1

)
, (49)

and

P

(
1 0
1 1

)
= P

(
1 1
0 1

)
. (50)

From 16 independent Eqs. (41), (44)–(50), and (E9)–(E16),

we obtain all the probabilities P( i k
j l ).

Finally, the definition of density gives Eq. (42).

IV. COMPARISON OF NUMERICAL RESULTS WITH
MEAN-FIELD ANALYSES AND SIMULATION RESULTS

In this section, we compare numerical results from the
three [(1 × 1)-, (2 × 1)-, and (2 × 2)-cluster] mean-field anal-
yses with simulation results. Although analytical solutions
can be derived for (1 × 1)- and (2 × 1)-cluster mean-field
analyses, similar solutions cannot be obtained explicitly for
the (2 × 2)-cluster mean-field analysis (see the last section).
We therefore obtain numerical solutions for this case using
Newton’s iteration method. In this study, we use the function
FindRoot, which is based on the Newton’s method, in the
software package Mathematica 12.0. In all the simulations
below, we set L = 100 and calculate the steady-state value of
ρ for 107 time steps after evolving the system for 107 time
steps, unless otherwise specified.

A. Special case: ωA1 = ωA2 and ωD1 = ωD2

In this special case, the results of all three mean-field
analyses for the two directional flows give us the following
equation for the steady-state value of ρ:

ρ = ωA

ωA + ωD
. (51)

Equation (51) shows that all the mean-field analyses give a
result independent of p for this special case.

Figure 2 compares the simulation and mean-field val-
ues of ρ as functions of p for various (ωA, ωD) ∈
{(0.004, 0.008), (0.005, 0.005), (0.008, 0.004)} for (a) uni-
directional and (b) bidirectional flows. In both figures, the
simulations show very good agreement with our mean-field
analyses.

B. General case

In this subsection, we consider the more general case with
ωA1 �= ωA2 or ωD1 �= ωD2.

Table I summarizes the three kinds of mean-field analyses
[(1 × 1)-, (2 × 1)-, and (2 × 2)-cluster cases], which were
discussed in detail in Sec. III. In the (1 × 1)-cluster mean-field
analysis, ρ is a function of ω independent of p; therefore, the
influence of p cannot be captured. In contrast, the (2 × 1)-
cluster mean-field analysis gives ρ as a function of both ω and
p; however, the function is the same for unidirectional and
bidirectional flows. Finally, in the (2 × 2)-cluster mean-field
analysis, ρ is a function of both ω and p, and the function
is different for unidirectional and bidirectional flows. From
this discussion, we expect that the (1 × 1)-cluster mean-field
analysis to approximate the simulation results well in cases
where p ∼ 1, whereas the (2 × 1)-cluster mean-field analysis
roughly captures the influence of p, and the (2 × 2)-cluster

TABLE I. Comparison of the three kinds of mean-field analyses.

Mean-field analysis Direction p

(1 × 1)-cluster Independent Independent
(2 × 1)-cluster Independent Dependent
(2 × 2)-cluster Dependent Dependent
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FIG. 2. Simulation (circles) and mean-field values (curves) of ρ for (a) unidirectional and (b) bidirectional flows as functions of p with
(ωA, ωD) ∈ {(0.004, 0.008) (red), (0.005, 0.005) (green), (0.008, 0.004) (blue)}.

mean-field analysis reproduces the difference between two
directional flows.

We next consider eight fundamental cases; specifically,

(a) (ωA1, ωA2, ωD1, ωD2) = (0.008, 0.004, 0.004, 0.004).

(b) (ωA1, ωA2, ωD1, ωD2) = (0.002, 0.004, 0.004, 0.004).

(c) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.008, 0.004, 0.004).

(d) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.002, 0.004, 0.004).

(e) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.008, 0.004).

(f) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.002, 0.004).

(g) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004, 0.008).

(h) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004, 0.002).

(52)

These cases enable us to investigate the influence of changes
in ωA or ωD depending on the state of the corresponding site in
the other lane. Specifically, cases (a)–(d) exhibit the influence
of ωA, whereas cases (e)–(h) show that of ωD. Figure 3 plots
the simulation and mean-field curves of ρ for the parameter
sets of cases (a)–(h), adding error bars of one standard er-
ror for 10 trials, each of whose averaging time is 106 time
steps. We summarize specific values of the standard errors in
Appendix F.

As expected, Fig. 3 shows that (1) the (1 × 1)-cluster
mean-field analysis agrees very well with the simulation
results only near p = 1, (2) the (2 × 1)-cluster mean-field
results capture well the qualitative change of ρ with (p, ω)
for both directions, and (3) the (2 × 2)-cluster case not
only succeeds in reproducing the difference between the two
directional flows, but also improves the accuracy of the ap-
proximations, mainly for small p. We note that in case of
p = 1 the deviation of the numerical results from simulations
can be the smallest for (1 × 1)-cluster mean-field analysis,
depending on ω, e.g., cases (a) and (f), although the (1 × 1)-
cluster analysis does not capture the p-dependence.

In addition, we observe an interesting phenomenon in
Fig. 3. Specifically, there are smaller discrepancies between
the simulations and numerical results for the (2 × 1)- and
(2 × 2)-cluster mean-field analyses for unidirectional flows
than for bidirectional flows. In other words, the numerical

results from the (2 × 1)-cluster mean-field analysis
are already good approximations for unidirectional
flows.

We note that the magnitude relation between the simulation
values for the two directional flows can reverse dependent on
p for some cases, i.e., Figs. 3(b), 3(e), and 3(g). Considering
tiny standard errors, summarized in Table V in Appendix F,
this phenomenon is not due to numerical errors; however, even
the (2 × 2)-cluster analysis cannot reproduce it well.

In the following subsections, we discuss in detail
the discrepancies between the numerical results for the
(2 × 1)- and (2 × 2)-cluster mean-field analyses and for
(p, ω)-dependence of ρ for the two directional flows.

1. Discrepancies between the numerical results from the (2 × 1)-
and (2 × 2)-cluster mean-field analyses

Figure 3 shows that the discrepancies are smaller for uni-
directional flows than for bidirectional flows.

To investigate this phenomenon, we first define the follow-
ing correlation between two adjacent clusters, each of which
consists of 2(= 2 × 1) sites:

μ

(
i k
j l

)
= P

(
i k
j l

)
− P

(
i
j

)
P

(
k
l

)
, (53)

where i, j, k, l ∈ {0, 1}. From the definition, |μ| = 0 indi-
cates that there is no correlation between the two adjacent
clusters, whereas μ > 0 (μ < 0) indicates that the possibil-
ity of the spontaneous appearance of two adjacent clusters
is larger (smaller) than the possibility under the assumption
that clusters appear randomly in the system. This explains
why the (2 × 2)-cluster mean-field analysis improves the ap-
proximate accuracy more than the (2 × 1)-cluster analysis for
relatively large |μ|. In contrast, the (2 × 1)-cluster analysis
is already a good approximation for relatively small |μ|.
We note that in Appendix G we introduce another measure
for analyzing the discrepancies, which is simpler and more
qualitative.

Figure 4 compares 16 kinds of μ for unidirectional and
bidirectional flows for various p ∈ {0, 0.01, 0.1, 0.2, 0.5, 1},
fixing (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0) and ρ = 0.5,
adding error bars of one standard error for 100 (for p = 0) and
10 (for p ∈ {0.01, 0.1, 0.2, 0.5, 1}) trials. The relatively small
error bars indicate an independence of μ on initial conditions.
We set (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0) to observe the
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FIG. 3. Values of ρ from simulations (symbols) and mean-field calculations (blue solid, green dashed, red dash-dotted, and orange dotted
curves) as functions of p for (a) (ωA1, ωA2, ωD1, ωD2) = (0.008, 0.004, 0.004, 0.004), (b) (ωA1, ωA2, ωD1, ωD2) = (0.002, 0.004, 0.004, 0.004),
(c) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.008, 0.004, 0.004), (d) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.002, 0.004, 0.004), (e) (ωA1, ωA2, ωD1, ωD2) =
(0.004, 0.004, 0.008, 0.004), (f) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.002, 0.004), (g) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004,

0.008), and (h) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004, 0.002). Black circles represent the simulation results for unidirectional flows
(U), whereas black crosses represent those for bidirectional flows (B). The blue, green, red, and orange curves represent the (1 × 1)-cluster,
(2 × 1)-cluster, (2 × 2)-cluster (U), and (2 × 2)-cluster (B) mean-field values, respectively. Error bars are almost within the size of the symbols.

pure correlations caused by p because Langmuir kinetics
reduce the correlations. We note that, strictly speaking, we
cannot discuss the case p = 0 in the same way as for the cases
with p > 0 because in the former case, all the particles stop at
some point, depending on the initial configurations, due to the
blocking effect (which we discuss later). Therefore, Fig. 4(a)

is just presented for reference (as are the points at p = 0 in
Fig. 5).

We observe two important phenomena in Fig. 4. First, for
the two directional flows |μ| approaches to 0 as p increases;
i.e., the correlation becomes smaller with larger p. This qual-
itatively explains that for larger p, the discrepancies between
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FIG. 4. Calculated values of 16 kinds of μ of unidirectional (blue) and bidirectional (red) flows for various p ∈ {0, 0.01, 0.1, 0.2, 0.5, 1},
fixing (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0) and ρ = 0.5. We note (1) that those values are calculated by averaging 100 different initial
configurations for p = 0 and (2) that they are calculated for 109 time steps after evolving the system with p = 0.01 for 109 time steps because
it takes more time for the system to evolve into the steady state. Error bars represent one standard error. For depicting error bars, the evolving
and calculated time is set to 108 (for p = 0.01) and 106 (for p ∈ {0, 0.1, 0.2, 0.5, 1}), respectively.

the numerical results from the (2 × 1)- and (2 × 2)-cluster
mean-field analyses become smaller, which explains the over-
lap of the (2 × 1)- and (2 × 2)-cluster theoretical curves in
Fig. 3.

Second, we confirm that in most cases many values of
|μ| for unidirectional flows are smaller than those for bidi-
rectional flows with the same values of p [Figs. 4(b)–4(e)];
i.e., the correlations for unidirectional flows are smaller than
those for bidirectional flows. This qualitatively explains that
there are smaller discrepancies between the numerical results
from the (2 × 1)- and (2 × 2)-cluster mean-field analyses for
unidirectional flows compared with those for bidirectional
flows. In contrast, for p = 0 [Fig. 4(a)], some values of |μ|
become large even for unidirectional flows, and therefore, the
discrepancies also become large (see Fig. 3).

2. (p, ω)-dependence of ρ

This subsection discusses the (p, ω)-dependence of ρ, ob-
served from Fig. 3, for the numerical results from the (2 × 1)-

and (2 × 2)-cluster mean-field analyses and for the simulation
results.

First, to investigate the influence of p on ρ, we investigate

P(0
0), P(1

0) + P(0
1), and P(1

1), fixing (ωA1, ωA2, ωD1, ωD2) =
(0, 0, 0, 0) and ρ = 0.5, as in Fig. 5. We note that P(0

0) = P(1
1)

when ρ = 0.5.

Figure 5 shows (1) that P(1
1) and P(0

0) increase and P(1
0) +

P(0
1) decreases with smaller p for the two directional flows, (2)

that the degrees of those changes are greater for unidirectional
flows than for bidirectional flows, excluding the case with

p = 0 for unidirectional flows, and (3) that P(1
1) and P(0

0)

decrease and P(1
0) + P(0

1) increases abruptly from p = 0.01 to
p = 0 for unidirectional flows.

Three effects can qualitatively explain these phenomena:
(1) the trapping, (2) jamming, and (3) blocking effects. First,
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FIG. 5. Simulation results for steady-state values of P(1
0) + P(0

1),

and P(1
1) as functions of p, fixing (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0)

and ρ = 0.5. The points between p = 0 and p = 0.05 are for p =
0.01. We note (1) that the values for p = 0 are calculated by averag-
ing 100 different initial configurations and (2) that they are calculated
for 109 time steps after evolving the system with p = 0.01 for 109

time steps because it takes more time for the system to evolve into
the steady state.

in the trapping effect, for small p, particles can become

trapped in the state (1
1), which leads to an increase in P(1

1) and

P(0
0), and a decrease in P(1

0) + P(0
1), as shown in Fig. 6. We

stress that the trapping effect works in common between the
two directional flows.

Contrarily, in the jamming effect, for small p, the particles
following a trapped particle can become involved in a jam, as
shown in Fig. 7. For unidirectional flows, this effect works

the same as the trapping effect; specifically, P(1
1) and P(0

0)

increase and P(1
0) + P(0

1) decreases with smaller p. In contrast,
for bidirectional flows, this effect tends to counter the trapping

FIG. 6. Schematic illustration of the trapping effect. Langmuir
kinetics are not considered here; the case L = 10 is shown.

FIG. 7. Schematic illustration of the jamming effect. Langmuir
kinetics are not considered here; the case L = 10 is shown.

effect; specifically, P(1
1) and P(0

0) decrease, and P(1
0) + P(0

1)
increases with smaller p. We note that the jamming effect is
smaller than the trapping effect because jams occur only after
many trapped particles appear. Because the jamming effect
influences each P oppositely in the two directional flows, the
degrees of those changes are greater for unidirectional flows
than for bidirectional flows, excluding the case with p = 0.

Finally, the blocking effect appears only for p = 0, as
shown in Fig. 8. Once the particles are trapped in the state

(1
1), this state never changes for p = 0 and ωD2 = 0; therefore,

the isolated particles between the two clusters of (1
1) must

finally make the state (1
0) or (0

1). Because this effect counters

the trapping and jamming effects, P(1
1) and P(0

0) decrease and

P(1
0) + P(0

1) increases from p = 0.01 to p = 0 for unidirec-
tional flows. We note (1) that this effect is virtually the same
as the jamming effect for bidirectional flows and (2) that the
blockages can be dismantled if ωD2 > 0.

We can also confirm the existence of those three effects
in Fig. 4. Table II summarizes the kinds of μ, which become

FIG. 8. Schematic illustration of the blocking effect for unidi-
rectional flows. Langmuir kinetics are not considered here; the case
L = 10 is shown.
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TABLE II. Kinds of μ, which generally become larger with
smaller p, for each direction (see Fig. 4).

Direction Corresponding μ

Unidirection μ
(0 0

0 0

)
, μ

(1 1
0 1

)
, μ

(0 1
1 1

)
, μ

(1 1
1 1

)
Bidirection μ

(0 0
0 0

)
, μ

(1 1
0 0

)
, μ

(1 1
0 1

)
, μ

(0 0
1 1

)
, μ

(1 0
1 1

)

larger with smaller p. We note that Table II excludes the case
p = 0 for unidirectional flows because of its singularity.

For unidirectional flows, the trapping and jamming effects
explain why all the listed μ values become larger with smaller

p. Contrarily, for bidirectional flows, the fact that μ(0 0
0 0),

μ(1 0
1 1), and μ(1 1

0 1) become larger with smaller p can be

explained by the trapping effect, whereas the fact that μ(1 1
0 0)

and μ(0 0
1 1) become larger with smaller p can be explained by

the jamming effect. Conversely, for p = 0, μ(1 1
0 0), μ(1 1

0 1),

μ(0 0
1 1), and μ(1 0

1 1) also soar for unidirectional flows, indi-
cating the blocking effect.

On the basis aforementioned discussions, we finally sum-

marize the influences of the three effects on P(0
0), P(1

0) + P(0
1),

and P(1
1) in Table III. We again stress that the results shown in

Fig. 5 can be explained from Table III, noting that the trapping
effect is stronger than the jamming effect and that the blocking
effect only appears for p = 0.

Next, we consider the influences of ω on ρ, P(0
0), P(1

0) +
P(0

1), and P(1
1).

From the definition of ω and the state-transition of dia-
gram, as shown in Fig. 9, we can summarize the increase (+)
and decrease (−) of each value by the change of ω in Table IV.

TABLE III. Influence of the three effects on P(0
0), P(1

0) + P(0
1),

and P(1
1). The sign + (−) indicates that the corresponding effect

causes increases (decreases) in each P. Langmuir kinetics are not
considered. We note that ++ (−−), used for unidirectional flows,
represents the fact that the effect is larger than that for bidirectional
flows.

Direction Effect P(0
0) P(1

0) + P(0
1) P(1

1)

Unidirection Trapping effect + − +
Jamming effect + − +
Blocking effect − + −

Trapping + Jamming ++ −− ++
Bidirection Trapping effect + − +

Jamming effect − + −
Blocking effect − + −

Trapping + Jamming + − +

FIG. 9. State-transition diagram for P(0
0), P(1

0) + P(0
1), and P(1

1).

Blank cells indicate that the effect is indirect and the sign is
not apparent; however, those indirect effects are small enough
to be ignored in the following discussion.

On the basis of the aforementioned discussions of (p, ω)-
dependence of ρ, we consider the following four phenomena
in Fig. 3. We stress that those phenomena can be confirmed
not only for the simulation results but also for the numerical
results with (2 × 2)-cluster mean-field analysis.

a. Increase or decrease of ρ, depending on ω, in the

region where p � 0.1. —Because P(0
0) and P(1

1) increase and

P(1
0) + P(0

1) decreases for smaller p, the effects of ωA1 and ωD2

(ωA2 and ωD1) become larger (smaller). Therefore, consider-
ing Fig. 9 and Table IV, ρ increases (decreases) for smaller p
for cases (a), (d), (e), and (h) [(b), (c), (f), and (g)] in the region

where p � 0.1. For example, for case (a), P(0
0) increases, and

the effect of ωA1 is enhanced for smaller p, resulting in an
increase in ρ for smaller p.

b. Differences in the degree of change between the two
directional flows. —Because the effect of p on each P is
larger for unidirectional flows than for bidirectional ones (see
Fig. 5 and Table III), the degree of the change in ρ with p
becomes greater for unidirectional flows than for bidirectional
ones.

c. Change of the trend in unidirectional flows for p = 0.
—For unidirectional flows, due to the blocking effect, the
configuration changes drastically from very small p( �= 0) to
p = 0, although Langmuir kinetics reduce that effect. This
results in a trend change when p = 0, the extent of which de-
pends on ω. We note that for unidirectional flows the influence
of p on P is large enough so that it is not necessary to consider
the influence of ω.

d. Change of the trend in bidirectional flows when pbecomes
smaller. —Unlike unidirectional flows, we cannot ignore the
effect of ω on P for bidirectional flows. Therefore, for cases
(a), (d), (f), and (g), where the influence of ω on P counters
that of smaller p, the trend changes in the change-easing
direction with smaller p. In contrast, for cases (b), (c), (e), and

TABLE IV. Increase (+) and decrease (−) of each value caused
by the change in ω (�ω > 0). For example, the first row in the
column for ρ indicates that ρ increases with larger ωA1.

Change of ω ρ P(0
0) P(1

0) + P(0
1) P(1

1)

ωA1 → ωA1 + �ω + − +
ωA2 → ωA2 + �ω + − +
ωD1 → ωD1 + �ω − + −
ωD2 → ωD2 + �ω − + −
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(h), where the influence of ω on P reinforces that of smaller
p, the trend changes in the change-accelerating direction with
smaller p.

V. CONCLUSION

In the present paper, we have investigated a two-lane ex-
tended LK-TASEP on a periodic lattice, where the hopping
rate p and the attachment (detachment) rate ωA (ωD) vary
depending on the state of the corresponding site in the other
lane. The proposed model is new in that it introduces a vary-
ing rule for the attachment and detachment rate. We have
investigated the steady-state global density for unidirectional
and bidirectional flows using both computer simulations and
mean-field analyses.

We have conducted three kinds of mean-field analyses
[(1 × 1)-, (2 × 1)-, and (2 × 2)-cluster cases] and have com-
pared them with simulation results. In the (1 × 1)-cluster
mean-field analysis, the calculated value of ρ is in good agree-
ment with the simulation results only in the region where p is
near 1. In contrast, the (2 × 1)-cluster analysis can reproduce
the rough trend of the simulation results for ρ as functions
of p, even though it cannot distinguish between unidirectional
and bidirectional flows. Finally, the (2 × 2)-cluster analysis
not only reproduces the difference between the two directional
flows but also approximates better the simulation results for ρ

in case of small p.
We have therefore considered further the discrepancies

between the numerical results from (2 × 1)- and (2 × 2)-
cluster mean-field analyses for unidirectional flows—which
are smaller than those for bidirectional flows—by calculating
the correlations between two adjacent (2 × 1) clusters. We
have also discussed the (p, ω)-dependence of ρ in terms of
three effects (the trapping, jamming, and blocking effects).
Those three effects by p and ω determine the trend of ρ.

We again emphasize that, despite its simplicity, the pro-
posed model has a potential for applications to real-world
phenomena. For example, for crowd dynamics (traffic flow)
in a narrow passage (road), the proposed model can consider
the velocity and inflow or outflow of pedestrians (vehicles).
In particular, unlike previous models, our model makes it
possible to consider of the dependence of the changes of the
inflow and outflow on the lane state.
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APPENDIX A: INCLUSION OF EQ. (10) AND EXCLUSION
OF THE OTHER SOLUTION OF EQ. (6)

In this Appendix, we discuss the inclusion of Eq. (10) and
the exclusion of the other solution of Eq. (6).

As for the inclusion of Eq. (10), we first consider the case
where a > 0; specifically,

a = ωA1 − ωA2 + ωD1 − ωD2 > 0 (A1)

⇔ ωA1 + ωD1 > ωA2 + ωD2. (A2)

In this case, we have

b = −2ωA1 + ωA2 − ωD1 (A3)

= −(ωA1 + ωD1) − ωA1 + ωA2 (A4)

< −(ωA2 + ωD2) − ωA1 + ωA2 (A5)

= −ωA1 − ωD2, (A6)

resulting in b < 0. Noting that a > 0, b < 0 and c > 0, we
obtain

−b − √
b2 − 4ac

2a
>

|b| − |b|
2a

= 0. (A7)

On the other hand, because

(
√

b2 − 4ac)2 − (−b − 2a)2 (A8)

= 4a(−c − a − b) = 4aωD2 > 0, (A9)

we have √
b2 − 4ac > −b − 2a (A10)

⇔ −b − √
b2 − 4ac

2a
< 1 (A11)

when −b − 2a � 0. In addition, Eq. (A11) obviously holds in
the case where −b − 2a < 0.

We then consider the case where a < 0; specifically,

ωA1 + ωD1 < ωA2 + ωD2. (A12)

Noting that a < 0 and c > 0, we obtain

−b − √
b2 − 4ac

2a
>

−b − |b|
2a

� 0. (A13)

On the other hand, because

(−b − 2a)2 − (
√

b2 − 4ac)2 (A14)

= −4a(−c − a − b) = −4aωD2 > 0, (A15)

we have
√

b2 − 4ac < −b − 2a ⇔ −b − √
b2 − 4ac

2a
< 1, (A16)

noting

−b − 2a = ωA2 + 2ωD2 − ωD1 (A17)

= ωA2 + ωD2 + ωD2 − ωD1 (A18)

> ωA1 + ωD1 + ωD2 − ωD1 (A19)

= ωA1 + ωD2 > 0. (A20)

Therefore, we obtain

0 <
−b − √

b2 − 4ac

2a
< 1. (A21)

We go on to discuss the exclusion of the other solution of
Eq. (6); specifically,

ρ = −b + √
b2 − 4ac

2a
. (A22)

First, we consider the case where a > 0; specifically,

ωA1 + ωD1 > ωA2 + ωD2. (A23)
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In this case, we have

b = −2ωA1 + ωA2 − ωD1 (A24)

= −(ωA1 + ωD1) − ωA1 + ωA2 (A25)

< −(ωA2 + ωD2) − ωA1 + ωA2 (A26)

= −ωA1 − ωD2, (A27)

resulting in b < 0. Noting that a > 0, b < 0 and c > 0, we
have

−b + √
b2 − 4ac

2a
(A28)

>
−b − b

2a
= −b

a
(A29)

= 2ωA1 − ωA2 + ωD1

ωA1 − ωA2 + ωD1 − ωD2
(A30)

= ωA1 − ωA2 + ωD1 + ωA1

ωA1 − ωA2 + ωD1 − ωD2
> 1. (A31)

Second, we consider the case where a < 0. In this case,
because

−b +
√

b2 − 4ac > −b + |b| � 0, (A32)

we have

−b + √
b2 − 4ac

2a
< 0. (A33)

Therefore, we obtain

−b + √
b2 − 4ac

2a
< 0 ∨ −b + √

b2 − 4ac

2a
> 1. (A34)

Based on the discussion so far and the fact that ρ lies in the
range 0 � ρ � 1, we finally obtain Eq. (10).

APPENDIX B: DERIVATION OF EQ. (19)

In this Appendix, we discuss the detailed derivation of
Eq. (19).

Substituting Eqs. (17) and (18) into Eqs. (15) and (16) and
considering the steady state, i.e., d

dt P( i
j ) = 0, we obtain the

two following equations; specifically,

2

[
P

(
1
0

)]2

− 2pP

(
0
0

)[
1 − 2P

(
1
0

)
− P

(
0
0

)]
+ 2ωD1P

(
1
0

)

− 2ωA1P

(
0
0

)
= 0

(B1)

and

2pP

(
0
0

)[
1−2P

(
1
0

)
−P

(
0
0

)]
− 2

[
P

(
1
0

)]2

+ ωA1P

(
0
0

)

+ ωD2

[
1 − 2P

(
1
0

)
− P

(
0
0

)]
− (ωA2 + ωD1)P

(
1
0

)
= 0.

(B2)

Adding Eqs. (B1) and (B2), we get

P

(
0
0

)
= ωD1 − 2ωD2 − ωA2

ωA1 + ωD2
P

(
1
0

)
+ ωD2

ωA1 + ωD2
. (B3)

Substituting Eq. (B3) into Eq. (B1), Eq. (B1) finally reduces

to a quadratic equation of P(1
0), i.e., Eq. (19).

APPENDIX C: EXCLUSION OF THE OTHER SOLUTION
OF EQ. (19)

In this Appendix, we discuss the exclusion of the other
solution of Eq. (19); specifically,

P

(
1
0

)
= −B − √

B2 − 4AC

2A
. (C1)

Noting Eq. (26) and (28), we have

−B −
√

B2 − 4AC < −B − |B| � 0; (C2)

therefore,

−B − √
B2 − 4AC

2A
< 0. (C3)

Because P(1
0) lies in the range 0 � P(1

0) � 1, this solution
is inappropriate, and because the system must evolve into only
one steady state, we obtain Eq. (25).

APPENDIX D: INDEPENDENT MASTER EQUATIONS FOR THE (2 × 2)-CLUSTER MEAN-FIELD ANALYSIS
FOR UNIDIRECTIONAL FLOWS OTHER THAN EQ. (34)

In this Appendix, we summarize the independent master equations for (2 × 2)-cluster probabilities for unidirectional flows
other than Eq. (34).

For P(1 0
1 0), P(1 1

1 1), P(1 0
0 0), P(0 1

0 0), P(1 1
0 0), P(1 0

0 1), P(1 1
1 0), and P(1 1

0 1), the master equations can be expressed as

dP
(1 0

1 0

)
dt

=
[

P

(
1 0 0
0 1 0

)
+ pP

(
1 0 0
1 1 0

)
+ P

(
0 1 0
1 0 0

)
+ pP

(
1 1 0
1 0 0

)
+ P

(
1 1 0
1 0 0

)
+ P

(
1 1 0
1 0 1

)

+ P

(
1 0 0
1 1 0

)
+ P

(
1 0 1
1 1 0

)
+ ωA2P

(
0 0
1 0

)
+ ωA2P

(
1 0
0 0

)
+ ωD1P

(
1 1
1 0

)
+ ωD1P

(
1 0
1 1

)]

−
[

2pP

(
1 0
1 0

)
+ 2ωD2P

(
1 0
1 0

)
+ 2ωA1P

(
1 0
1 0

)]
, (D1)
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dP
(1 1

1 1

)
dt

=
[

P

(
1 0 1
0 1 1

)
+ pP

(
1 0 1
1 1 1

)
+ P

(
0 1 1
1 0 1

)
+ pP

(
1 1 1
1 0 1

)
+ ωA2P

(
0 1
1 1

)

+ ωA2P

(
1 0
1 1

)
+ ωA2P

(
1 1
0 1

)
+ ωA2P

(
1 1
1 0

)]
−

[
2pP

(
1 1 0
1 1 0

)

+ pP

(
1 1 0
1 1 1

)
+ pP

(
1 1 1
1 1 0

)
+ 4ωD2P

(
1 1
1 1

)]
, (D2)

dP
(1 0

0 0

)
dt

=
[

P

(
1 0 0
0 0 0

)
+ pP

(
1 0 0
1 0 0

)
+ P

(
1 1 0
0 0 0

)
+ P

(
1 1 0
0 0 1

)
+ P

(
1 0 0
0 1 0

)
+ P

(
1 0 1
0 1 0

)

+ ωA1P

(
0 0
0 0

)
+ ωD1P

(
1 1
0 0

)
+ ωD1P

(
1 0
0 1

)
+ ωD2P

(
1 0
1 0

)]
−

[
P

(
1 0
0 0

)
+ P

(
0 1 0
1 0 0

)

+ pP

(
1 1 0
1 0 0

)
+ 2ωA1P

(
1 0
0 0

)
+ ωA2P

(
1 0
0 0

)
+ ωD1P

(
1 0
0 0

)]
, (D3)

dP
(0 1

0 0

)
dt

=
[

P

(
1 0
0 0

)
+ pP

(
0 1 0
0 1 0

)
+ pP

(
0 1 1
0 1 0

)
+ ωD1P

(
1 1
0 0

)
+ ωA1P

(
0 0
0 0

)
+ ωD1P

(
0 1
1 0

)

+ ωD2P

(
0 1
0 1

)]
−

[
P

(
1 0 1
0 0 0

)
+ P

(
0 0 1
1 0 0

)
+ 2pP

(
1 0 1
1 0 0

)
+ P

(
0 1 0
0 0 0

)
+ P

(
0 1 0
0 0 1

)

+ 2ωA1P

(
0 1
0 0

)
+ ωD1P

(
0 1
0 0

)
+ ωA2P

(
0 1
0 0

)]
, (D4)

dP
(1 1

0 0

)
dt

=
[

P

(
1 0 1
0 0 0

)
+ pP

(
1 0 1
1 0 0

)
+ pP

(
1 1 0
0 1 0

)
+ pP

(
1 1 1
0 1 0

)
+ ωA1P

(
0 1
0 0

)
+ ωD2P

(
1 1
1 0

)

+ ωA1P

(
1 0
0 0

)
+ ωD2P

(
1 1
0 1

)]
−

[
P

(
1 1 0
0 0 0

)
+ P

(
1 1 0
0 0 1

)
+ P

(
0 1 1
1 0 0

)
+ pP

(
1 1 1
1 0 0

)

+ 2ωD1P

(
1 1
0 0

)
+ 2ωA2P

(
1 1
0 0

)]
, (D5)

dP
(1 0

0 1

)
dt

=
[

P

(
1 0 0
0 0 1

)
+ pP

(
1 0 0
1 0 1

)
+ pP

(
1 1 0
0 1 0

)
+ pP

(
1 1 0
0 1 1

)
+ pP

(
1 0
1 0

)
+ ωA1P

(
0 0
0 1

)

+ ωD2P

(
1 0
1 1

)
+ ωD2P

(
1 1
0 1

)
+ ωA1P

(
1 0
0 0

)]
−

[
P

(
1 0
0 1

)
+ P

(
0 1 0
1 0 1

)
+ pP

(
1 1 0
1 0 1

)

+ P

(
1 0 0
0 1 0

)
+ P

(
1 0 1
0 1 0

)
+ 2ωD1P

(
1 0
0 1

)
+ 2ωA2P

(
1 0
0 1

)]
, (D6)

dP
(1 1

1 0

)
dt

=
[

P

(
1 0 1
0 1 0

)
+ pP

(
1 0 1
1 1 0

)
+ P

(
0 1 1
1 0 0

)
+ pP

(
1 1 1
1 0 0

)
+ pP

(
1 1 0
1 1 0

)
+ pP

(
1 1 1
1 1 0

)

+ ωA2P

(
0 1
1 0

)
+ ωA2P

(
1 1
0 0

)
+ ωA1P

(
1 0
1 0

)
+ ωD2P

(
1 1
1 1

)]
−

[
P

(
1 1 0
1 0 0

)
+ P

(
1 1 0
1 0 1

)

+ pP

(
1 1
1 0

)
+ 2ωD2P

(
1 1
1 0

)
+ ωD1P

(
1 1
1 0

)
+ ωA2P

(
1 1
1 0

)]
, (D7)

and

dP
(1 1

0 1

)
dt

=
[

P

(
1 0 1
0 0 1

)
+ pP

(
1 0 1
1 0 1

)
+ pP

(
1 1
1 0

)
+ ωA1P

(
0 1
0 1

)
+ ωD2P

(
1 1
1 1

)
+ ωA2P

(
1 0
0 1

)

+ ωA2P

(
1 1
0 0

)]
−

[
P

(
0 1 1
1 0 1

)
+ pP

(
1 1 1
1 0 1

)
+ 2pP

(
1 1 0
0 1 0

)
+ pP

(
1 1 0
0 1 1

)

+ pP

(
1 1 1
0 1 0

)
+ ωD1P

(
1 1
0 1

)
+ ωA2P

(
1 1
0 1

)
+ 2ωD2P

(
1 1
0 1

)]
. (D8)
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Inserting Eq. (33) into Eqs. (D1)–(D8) and noting that in the steady state, d
dt P( i k

j l ) = 0 (i, j, k, l ∈ {0, 1}), we get

P
(1 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
pP

(1 0
1 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(0 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
pP

(1 1
1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

P
(1 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(1 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(1 0

1 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(1 0

1 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

)

+ ωA2P

(
0 0
1 0

)
+ ωA2P

(
1 0
0 0

)
+ ωD1P

(
1 1
1 0

)
+ ωD1P

(
1 0
1 1

)
− 2pP

(
1 0
1 0

)

− 2ωA1P

(
1 0
1 0

)
− 2ωD2P

(
1 0
1 0

)
= 0, (D9)

P
(1 0

0 1

)
P
(0 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
pP

(1 0
1 1

)
P
(0 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(0 1

1 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
pP

(1 1
1 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+ ωA2P
(0 1

1 1

) + ωA2P
(1 0

1 1

) + ωA2P
(1 1

0 1

) + ωA2P
(1 1

1 0

) −
2pP

(1 1
1 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) −
pP

(1 1
1 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

−
pP

(1 1
1 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) − 4ωD2P

(
1 1
1 1

)
= 0, (D10)

P
(1 0

0 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
P
(1 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(1 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+
P
(1 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(1 0

0 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) + ωA1P

(
0 0
0 0

)
+ ωD1P

(
1 1
0 0

)
+ ωD1P

(
1 0
0 1

)

+ ωD2P

(
1 0
1 0

)
− P

(
1 0
0 0

)
−

P
(0 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
pP

(1 1
1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) − 2ωA1P

(
1 0
0 0

)

− ωA2P

(
1 0
0 0

)
− ωD1P

(
1 0
0 0

)
= 0, (D11)

P
(1 0

0 0

) +
pP

(0 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(0 1
0 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) + ωD1P

(
1 1
0 0

)
+ ωA1P

(
0 0
0 0

)
+ ωD1P

(
0 1
1 0

)

+ ωD2P

(
0 1
0 1

)
−

P
(1 0

0 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
P
(0 0

1 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
2pP

(1 0
1 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

−
P
(0 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
P
(0 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) − 2ωA1P

(
0 1
0 0

)
− ωD1P

(
0 1
0 0

)
− ωA2P

(
0 1
0 0

)
= 0,

(D12)

P
(1 0

0 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

+ ωA1P

(
0 1
0 0

)
+ ωD2P

(
1 1
1 0

)
+ ωA1P

(
1 0
0 0

)
+ ωD2P

(
1 1
0 1

)
−

P
(1 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

−
P
(1 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
P
(0 1

1 0

)
P
(1 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
pP

(1 1
1 0

)
P
(1 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)
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− 2ωD1P

(
1 1
0 0

)
− 2ωA2P

(
1 1
0 0

)
= 0, (D13)

P
(1 0

0 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

+ pP

(
1 0
1 0

)
+ ωA1P

(
0 0
0 1

)
+ ωD2P

(
1 1
0 1

)
+ ωD2P

(
1 0
1 1

)
+ ωA1P

(
1 0
0 0

)
− P

(
1 0
0 1

)

−
P
(0 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
pP

(1 1
1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
P
(1 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) −
P
(1 0

0 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

)

− 2ωD1P

(
1 0
0 1

)
− 2ωA2P

(
1 0
0 1

)
= 0, (D14)

P
(1 0

0 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
pP

(1 0
1 1

)
P
(0 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(0 1

1 0

)
P
(1 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
pP

(1 1
1 0

)
P
(1 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+
pP

(1 1
1 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
1 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) + ωA2P

(
0 1
1 0

)
+ ωA2P

(
1 1
0 0

)
+ ωA1P

(
1 0
1 0

)

+ ωD2P

(
1 1
1 1

)
− pP

(
1 1
1 0

)
−

P
(1 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
P
(1 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) − 2ωD2P

(
1 1
1 0

)

− ωD1P

(
1 1
1 0

)
− ωA2P

(
1 1
1 0

)
= 0, (D15)

and

pP
(1 1

1 0

)
+

P
(1 0

0 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) + ωA1P

(
0 1
0 1

)
+ ωD2P

(
1 1
1 1

)
+ ωA2P

(
1 0
0 1

)

+ ωA2P

(
1 1
0 0

)
−

P
(0 1

1 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
pP

(1 1
1 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
2pP

(1 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

−
pP

(1 1
0 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) −
pP

(1 1
0 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) − ωD1P

(
1 1
0 1

)
− ωA2P

(
1 1
0 1

)
− 2ωD2P

(
1 1
0 1

)
= 0,

(D16)

respectively.

APPENDIX E: INDEPENDENT MASTER EQUATIONS FOR THE (2 × 2)-CLUSTER MEAN-FIELD ANALYSIS FOR
BIDIRECTIONAL FLOWS OTHER THAN EQ. (44)

In this Appendix, we summarize the independent master equations for (2 × 2)-cluster probabilities for bidirectional flows
other than Eq. (44).

For P(1 0
0 1), P(1 1

1 1), P(1 0
0 0), P(0 0

1 0), P(1 1
0 0), P(1 0

1 0), P(1 1
1 0), and P(1 0

1 1), the master equations can be expressed as

dP
(1 0

0 1

)
dt

=
[

P

(
1 0 0
0 0 1

)
+ pP

(
1 0 0
1 0 1

)
+ pP

(
0 1 0
0 1 1

)
+ pP

(
1 1 0
0 1 1

)
+ pP

(
1 1 0
0 1 0

)
+ pP

(
1 1 0
0 1 1

)

+ P

(
1 0 0
0 0 1

)
+ pP

(
1 0 1
0 0 1

)
+ ωA1P

(
0 0
0 1

)
+ ωA1P

(
1 0
0 0

)
+ ωD2P

(
1 0
1 1

)

+ ωD2P

(
1 1
0 1

)]
−

[
2P

(
1 0
0 1

)
+ 2ωA2P

(
1 0
0 1

)
+ 2ωD1P

(
1 0
0 1

)]
, (E1)
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dP
(1 1

1 1

)
dt

=
[

P

(
1 0 1
0 1 1

)
+ pP

(
1 0 1
1 1 1

)
+ P

(
1 1 0
1 0 1

)
+ pP

(
1 1 1
1 0 1

)
+ ωA2P

(
0 1
1 1

)
+ ωA2P

(
1 0
1 1

)

+ ωA2P

(
1 1
0 1

)
+ ωA2P

(
1 1
1 0

)]
−

[
pP

(
1 1 1
0 1 1

)
+ pP

(
0 1 1
0 1 1

)
+ pP

(
1 1 0
1 1 0

)
+ pP

(
1 1 0
1 1 1

)

+ 4ωD2P

(
1 1
1 1

)]
, (E2)

dP
(1 0

0 0

)
dt

=
[

P

(
1 0 0
0 0 0

)
+ pP

(
1 0 0
1 0 0

)
+ pP

(
0 1 0
0 1 0

)
+ pP

(
1 1 0
0 1 0

)
+ P

(
1 1 0
0 0 1

)
+ P

(
1 1 0
0 0 0

)

+ ωA1P

(
0 0
0 0

)
+ ωD1P

(
1 1
0 0

)
+ ωD1P

(
1 0
0 1

)
+ ωD2P

(
1 0
1 0

)]
−

[
P

(
1 0
0 0

)
+ P

(
1 0 0
0 0 1

)

+ pP

(
1 0 1
0 0 1

)
+ ωD1P

(
1 0
0 0

)
+ 2ωA1P

(
1 0
0 0

)
+ ωA2P

(
1 0
0 0

)]
, (E3)

dP
(0 0

1 0

)
dt

=
[

P

(
0 0
0 1

)
+ P

(
0 1 0
1 0 0

)
+ P

(
0 1 0
1 0 1

)
+ ωA1P

(
0 0
0 0

)
+ ωD2P

(
1 0
1 0

)
+ ωD1P

(
0 1
1 0

)

+ ωD1P

(
0 0
1 1

)]
−

[
P

(
0 0 0
0 1 0

)
+ P

(
1 0 0
0 1 0

)
+ P

(
1 0 0
0 1 0

)
+ pP

(
1 0 0
1 1 0

)
+ P

(
0 0 0
1 0 1

)

+ pP

(
0 0 1
1 0 1

)
+ ωD1P

(
0 0
1 0

)
+ ωA2P

(
0 0
1 0

)
+ 2ωA1P

(
0 0
1 0

)]
, (E4)

dP
(1 1

0 0

)
dt

=
[

P

(
1 0 1
0 0 0

)
+ pP

(
1 0 1
1 0 0

)
+ pP

(
0 1 1
0 1 0

)
+ pP

(
1 1 1
0 1 0

)
+ ωA1P

(
0 1
0 0

)
+ ωA1P

(
1 0
0 0

)

+ ωD2P

(
1 1
1 0

)
+ ωD2P

(
1 1
0 1

)]
−

[
P

(
1 1 0
0 0 0

)
+ 2P

(
1 1 0
0 0 1

)
+ pP

(
1 1 1
0 0 1

)
+ 2ωD1P

(
1 1
0 0

)

+ 2ωA2P

(
1 1
0 0

)]
, (E5)

dP
(1 0

1 0

)
dt

=
[

P

(
1 0
0 1

)
+ P

(
1 0 0
0 1 0

)
+ pP

(
1 0 0
1 1 0

)
+ P

(
1 1 0
1 0 0

)
+ P

(
1 1 0
1 0 1

)
+ ωA2P

(
0 0
1 0

)

+ ωA2P

(
1 0
0 0

)
+ ωD1P

(
1 1
1 0

)
+ ωD1P

(
1 0
1 1

)]
−

[
pP

(
1 0
1 0

)
+ pP

(
0 1 0
0 1 0

)
+ pP

(
1 1 0
0 1 0

)

+ P

(
1 0 0
1 0 1

)
+ pP

(
1 0 1
1 0 1

)
+ 2ωD2P

(
1 0
1 0

)
+ 2ωA1P

(
1 0
1 0

)]
, (E6)

dP
(1 1

1 0

)
dt

=
[

pP

(
1 1
0 1

)
+ P

(
1 0 1
0 1 0

)
+ pP

(
1 0 1
1 1 0

)
+ ωA2P

(
0 1
1 0

)
+ ωA2P

(
1 1
0 0

)
+ ωA1P

(
1 0
1 0

)

+ ωD2P

(
1 1
1 1

)]
−

[
pP

(
0 1 1
0 1 0

)
+ pP

(
1 1 1
0 1 0

)
+ P

(
1 1 0
1 0 0

)
+ 2P

(
1 1 0
1 0 1

)
+ pP

(
1 1 1
1 0 1

)

+ ωD1P

(
1 1
1 0

)
+ 2ωD2P

(
1 1
1 0

)
+ ωA2P

(
1 1
1 0

)]
, (E7)

and

dP
(1 0

1 1

)
dt

=
[

P

(
1 0 0
0 1 1

)
+ pP

(
1 0 0
1 1 1

)
+ P

(
1 0 0
1 0 1

)
+ pP

(
1 0 1
1 0 1

)
+ pP

(
1 1 0
1 1 0

)
+ pP

(
1 1 0
1 1 1

)

+ ωA2P

(
0 0
1 1

)
+ ωA2P

(
1 0
0 1

)
+ ωA1P

(
1 0
1 0

)
+ ωD2P

(
1 1
1 1

)]
−

[
pP

(
1 0
1 1

)
+ pP

(
0 1 0
0 1 1

)

+ pP

(
1 1 0
0 1 1

)
+ 2ωD2P

(
1 0
1 1

)
+ ωD1P

(
1 0
1 1

)
+ ωA2P

(
1 0
1 1

)]
. (E8)
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Inserting Eq. (33) into Eqs. (E1)–(E8) and noting that in the steady state d
dt P( i k

j l ) = 0 (i, j, k, l ∈ {0, 1}), we get

P
(1 0

0 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

+
pP

(0 1
0 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
P
(1 0

0 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
0 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

+ ωA1P

(
0 0
0 1

)
+ ωD2P

(
1 1
0 1

)
+ ωD2P

(
1 0
1 1

)
+ ωA1P

(
1 0
0 0

)
− 2P

(
1 0
0 1

)
− 2ωD1P

(
1 0
0 1

)
− 2ωA2P

(
1 0
0 1

)
= 0,

(E9)

P
(1 0

0 1

)
P
(0 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
pP

(1 0
1 1

)
P
(0 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(1 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
pP

(1 1
1 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+ ωA2P

(
0 1
1 1

)
+ ωA2P

(
1 0
1 1

)
+ ωA2P

(
1 1
0 1

)
+ ωA2P

(
1 1
1 0

)
−

pP
(1 1

0 1

)
P
(1 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

−
pP

(0 1
0 1

)
P
(1 1

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) −
pP

(1 1
1 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) −
pP

(1 1
1 1

)
P
(1 0

1 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) − 4ωD2P

(
1 1
1 1

)
= 0, (E10)

P
(1 0

0 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P
(0 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(0 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

+
P
(1 1

0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(1 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) + ωA1P

(
0 0
0 0

)
+ ωD1P

(
1 1
0 0

)
+ ωD1P

(
1 0
0 1

)

+ ωD2P

(
1 0
1 0

)
− P

(
1 0
0 0

)
−

P
(1 0

0 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
pP

(1 0
0 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

)

− 2ωA1P

(
1 0
0 0

)
− ωA2P

(
1 0
0 0

)
− ωD1P

(
1 0
0 0

)
= 0, (E11)

P

(
0 0
0 1

)
+

P
(0 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) +
P
(0 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) + ωA1P

(
0 0
0 0

)
+ ωD2P

(
1 0
1 0

)
+ ωD1P

(
0 1
1 0

)

+ ωD1P

(
0 0
1 1

)
−

P
(0 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) −
2P

(1 0
0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) −
pP

(1 0
1 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

)

−
P
(0 0

1 0

)
P
(0 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) −
pP

(0 0
1 0

)
P
(0 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) − ωD1P

(
0 0
1 0

)
− ωA2P

(
0 0
1 0

)
− 2ωA1P

(
0 0
1 0

)
= 0,

(E12)

P
(1 0

0 0

)
P
(0 1

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(1 0
1 0

)
P

(0 1
0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

0 j

) +
pP

(0 1
0 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

) +
pP

(1 1
0 1

)
P
(1 1

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

1 j

)

+ ωA1P
(0 1

0 0

) + ωD2P
(1 1

1 0

) + ωA1P
(1 0

0 0

) + ωD2P
(1 1

0 1

) −
P
(1 1

0 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

−
2P

(1 1
0 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) −
pP

(1 1
0 0

)
P
(1 1

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) − 2ωD1P

(
1 1
0 0

)
− 2ωA2P

(
1 1
0 0

)
= 0, (E13)
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P

(
1 0
0 1

)
+

P
(1 0

0 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
pP

(1 0
1 1

)
P
(0 0

1 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(0 i

1 j

) +
P
(1 1

1 0

)
P
(1 0

0 0

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

)

+
P
(1 1

1 0

)
P
(1 0

0 1

)
∑

i∈{0,1}
∑

j∈{0,1} P
(1 i

0 j

) + ωA2P

(
0 0
1 0

)
+ ωA2P

(
1 0
0 0

)
+ ωD1P

(
1 1
1 0

)
+ ωD1P

(
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respectively.

APPENDIX F: STANDARD ERRORS OF THE SIMULATION
RESULTS IN FIG. 3

In this Appendix, we summarize the standard errors of the
simulation results in Fig. 3. The standard errors are calculated
over 10 trials, each of whose averaging time is 106 time steps
and initial configuration is varied. Although error bars are
added in Fig. 3, they are almost within the size of the symbols
due to their tiny size. Therefore, we show the specific values of
the standard errors in Table V. We observe that all the values
are less than 10−3.

APPENDIX G: CLUSTER MEASURE FOR ANALYZING
THE DISCREPANCIES IN FIG. 3

In this Appendix, we discuss an another approach analyz-
ing the discrepancies between the numerical results from the
(2 × 1)- and (2 × 2)-cluster mean-field analyses (see Fig. 3).

We here introduce a new measure m, a revised version of
one proposed in Ref. [47]; specifically,

m = N − e

N − 1
. (G1)

N is defined as the number of all the particles in the system,
and e is as

e =
N∑

j=1

a j, (G2)

where

a j =
{

1 (if the jth particle is unblocked)
0 (otherwise). (G3)

From the definition, m = 0, i.e., e = N , indicates that all the
particles are unblocked (there is no cluster), whereas m = 1,
i.e., e = 1, does that all the particles make one long cluster.
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TABLE V. Standard errors of the simulation results of ρ for unidirectional flows (left panel) and bidirectional flows (right panel).
The parameters are set as (a) (ωA1, ωA2, ωD1, ωD2) = (0.008, 0.004, 0.004, 0.004), (b) (ωA1, ωA2, ωD1, ωD2) = (0.002, 0.004, 0.004, 0.004),
(c) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.008, 0.004, 0.004), (d) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.002, 0.004, 0.004), (e) (ωA1, ωA2, ωD1, ωD2) =
(0.004, 0.004, 0.008, 0.004), (f) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.002, 0.004), (g) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004,

0.008), and (h) (ωA1, ωA2, ωD1, ωD2) = (0.004, 0.004, 0.004, 0.002).

Therefore, we can interpret that large values of m indicate the
large correlations between the sites.

Figure 10 plots m
ρ

for unidirectional and bidirectional flows
at lane 1 as functions of p, fixing (a) (ωA1, ωA2, ωD1, ωD2) =
(0, 0, 0, 0) and ρ = 0.5, and (b) (ωA1, ωA2, ωD1, ωD2) =
(0.008, 0.004, 0.004, 0.004). We stress that m generally in-
creases as ρ increases; therefore, we use m

ρ
in order to compare

the cases with different steady-state values of ρ.
We observe three important phenomena in Fig. 10. First,

for the two directional flows m decreases as p increases except
for p = 0; i.e., the correlation becomes smaller with larger
p. This qualitatively explains that for larger p, the discrep-
ancies between the numerical results from the (2 × 1)- and
(2 × 2)-cluster mean-field analyses become smaller, which
also explains the overlap of the (2 × 1)- and (2 × 2)-cluster
theoretical curves in Fig. 3. We emphasize that we cannot dis-
cuss the case p = 0 in the same way as for the case p > 0 (see
Sec. IV B 2).

Second, we confirm that almost all the values of m for
unidirectional flows are smaller than those for bidirectional
flows with the same values of p; i.e., the correlations for uni-
directional flows are smaller than those for bidirectional flows.
This qualitatively explains that there are smaller discrepancies
between the numerical results from the (2 × 1)- and (2 × 2)-
cluster mean-field analyses for unidirectional flows compared
with those for bidirectional flows.

Finally, comparing Fig. 10(a) and 10(b), m
ρ

becomes
smaller when Langmuir kinetics are added to the model. This
clearly indicates that Langmuir kinetics reduce the correla-
tions. Therefore, we set (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0)
to observe the pure correlation caused by p in Sec. IV B 1.

As the above discussions, this approach can also grasp the
discrepancies between the numerical results from the (2 × 1)-
and (2 × 2)-cluster mean-field analyses; however, we cannot
discuss the details as in Sec. IV B 2, including that of the case
p = 0.

FIG. 10. Calculated values of m
ρ

for unidirectional (red solid) and bidirectional (blue dashed) flows at lane 1 as functions of p, fixing
(a) (ωA1, ωA2, ωD1, ωD2) = (0, 0, 0, 0) and ρ = 0.5, and (b) (ωA1, ωA2, ωD1, ωD2) = (0.008, 0.004, 0.004, 0.004). We note that for each trial
m is calculated for 106 time steps after evolving the system for 106 time steps, and for each p the averages and standard errors are calculated
over 10 trials. Error bars, representing one standard error, are almost the size of the symbols except for the case p = 0 for (a).
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