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Superdiffusion in self-reinforcing run-and-tumble model with rests
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This paper introduces a run-and-tumble model with self-reinforcing directionality and rests. We derive a
single governing hyperbolic partial differential equation for the probability density of random-walk position,
from which we obtain the second moment in the long-time limit. We find the criteria for the transition between
superdiffusion and diffusion caused by the addition of a rest state. The emergence of superdiffusion depends
on both the parameter representing the strength of self-reinforcement and the ratio between mean running and
resting times. The mean running time must be at least 2/3 of the mean resting time for superdiffusion to be
possible. Monte Carlo simulations validate this theoretical result. This work demonstrates the possibility of
extending the telegrapher’s (or Cattaneo) equation by adding self-reinforcing directionality so that superdiffusion
occurs even when rests are introduced.
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I. INTRODUCTION

Persistent random walks with finite velocities are power-
ful models describing chemotaxis [1–5], organism movement
and searching strategies [6–8], intracellular transport [9–11],
and cell motility [12,13]. Stochastic cell movement plays
a major role in embryonic morphogenesis, wound healing,
and tumor cell proliferation [14]. The modeling of cell and
bacteria migration toward a favorable environment is usually
based on “velocity-jump” models describing self-propelled
motion with the runs and tumbles. Finite velocities and
inertial resistance to changes in direction make these ran-
dom walks physically well motivated since random walkers
in nature cannot instantaneously jump to different states.
The collective behavior of cells and various organisms
is another rapidly growing area of active matter research
[15,16]. Various hyperbolic models involving nonlinear par-
tial differential equations (PDEs) for the population densities
have been used for analysis of spatiotemporal patterns de-
scribing the chemical and social interactions of organisms
[17–21].

Models of cell motility have been predominantly con-
cerned with Markovian random-walk models (see for example
Refs. [13,22]). However, the analysis of random movement
of metastatic cancer cells shows the anomalous superdiffusive
dynamics of cell migration [23]. Over the past few years there
have been several attempts to model anomalous transport
involving superdiffusion [24–30]. Superdiffusion occurs as a
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result of the power-law distributed running times with infinite
second moment [25] or collective interaction between random
walkers [31]. Such models are intrinsically non-Markovian
involving nonlocal in time integral terms, making the inclu-
sion of reactions, internal dynamics, chemical signals, and
interparticle interactions cumbersome and unwieldy.

Recently, we introduced a persistent random-walk model
with self-reinforcing directionality that generates superdiffu-
sion from exponentially distributed runs, accurately modeling
the statistics found in active intracellular transport [32].
Although this model involves strong memory, it can be
formulated as a persistent random walk with space- and
time-dependent coefficients, facilitating convenient imple-
mentations of reactions, chemotaxis, and interactions using
the established methods within the persistent random-walk
framework.

In Ref. [32], we considered a particle moving with velocity
±ν for exponentially distributed running times with rate λ.
The key idea was to introduce conditional transition proba-
bilities, q+ and q−, involving self-reinforcing directionality.
These conditional transition probabilities describe switching
from one velocity state to the other dependent on the time
that the particle has spent in the respective states such that
q± = wt±/t + (1 − w)t∓/t . In this case, t+ and t− are the
times that a particle has spent traveling in the positive and neg-
ative direction, respectively, and t = t+ + t−. The persistence
probability w defines how much the random walk chooses to
follow its past behavior. For example, if much time is spent
moving in the positive direction (t+ → t) and w = 1, then,
the particle will choose to move in the positive direction with
probability q+ → 1. To formulate the governing equations,
we introduce p+(x, t ) and p−(x, t ), which are the joint proba-
bility densities that the position of the particle is in the interval
(x, x + dx) at time t and moving with positive and negative
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velocities, respectively. Then

∂ p±
∂t

± ν
∂ p±
∂x

= −λ(1 − q±)p± + λ(1 − q∓)p∓. (1)

The advantage of this formulation is that q± can be simply
expressed as a function of space, x, and time, t . If one realizes
that x = ν(t+ − t−), then

q±(x, t ) = 1

2

[
1 ± (2w − 1)(x − x0)

νt

]
. (2)

Expressing q± in this way, we can write down (1) as a single
hyperbolic PDE,

∂2 p

∂t2
+ λ

∂ p

∂t
= ν2 ∂2 p

∂x2
− λ(2w − 1)

t

∂[(x − x0)p]

∂x
. (3)

This model has been shown to exhibit superdiffusion despite
having exponentially distributed run times [32]. For values
of w > 1/2, the conditional transition probabilities generates
self-reinforcing directionality in (3) and for w > 3/4, su-
perdiffusion. Research on reinforcement in random walks has
been explored in jump processes [22]. The model represented
in (3) is actually a continuous space and time generalization of
the elephant random walk [33–39], which is discrete in space
and time.

A limitation of (3) is that only active states were included
in the model. In reality, most natural phenomena have rest
states associated with passive movement, no movement, or
even death. In particular, animals move by alternating between
foraging and resting [40,41]. In modeling processes with rest
states, the Lévy walk with rests [42–45] and persistent random
walks with death [46] have been introduced.

The aim of this paper is to formulate the self-reinforcing
velocity random walks with stochastic rests. Important ques-
tions for this model are does superdiffusion still exist after
introducing rests? and; if superdiffusion does exist, then what
is the critical value of the ratio of mean running and resting
time for which the phase transition from diffusion to superdif-
fusion occurs?

In the first section, we formulate the self-reinforcing direc-
tionality random walk with a rest state and derive the nonlocal
hyperbolic governing partial differential equation for the PDF
of particle position. In the second section, we find an analyt-
ical expression for the second moment and the critical point
where the transition from diffusion to superdiffusion occurs.
Finally, we present the Monte Carlo simulations of the random
walk with reinforcement, which confirms the existence of
superdiffusion.

II. SELF-REINFORCING DIRECTIONALITY WITH RESTS

In this section, we introduce the self-reinforcing velocity
random walk with transitions between moving states via an
intermediate resting state with zero velocity. Consider a parti-
cle that moves with constant speed ν in the positive or negative
direction for exponentially distributed running times with rate
λ. This movement is interrupted by rests with exponentially
distributed resting times with rate η. Now we introduce three
joint probability density functions, p+(x, t ), p−(x, t ), and
p0(x, t ). Here p+(x, t ) and p−(x, t ) are the same as the joint
densities described in (1). Additionally, p0(x, t ) is the joint

FIG. 1. A diagram showing the conditional transition probabili-
ties, r+, r−, and r0, for the velocity random walk in (4). A particle at
rest can switch to the positive velocity state, negative velocity state,
or remain at rest.

probability density that a particle is in the interval (x, x + dx)
at time t and has zero velocity. The governing equations for
these probability densities are

∂ p±
∂t

± ν
∂ p±
∂x

= −λp± + ηr± p0,

∂ p0

∂t
= λp+ + λp− − η(1 − r0)p0. (4)

Here the transition probabilities, r+, r−, and r0, describe three
possible transitions that the particle can make from the rest
state. r+ is the probability that the particle switches from the
rest state to the moving state with positive velocity, ν. r− is the
probability of switching from the rest state to the moving state
with negative velocity −ν. r0 is the probability that the resting
particle remains at rest again after an exponentially distributed
random time with rate η (see Fig. 1). Clearly, r+ + r− +
r0 = 1.

In this paper, we introduce self-reinforcing directionality
through the conditional transition probabilities as follows:

r± = w1
t±

t
+ w2

t∓

t
+ w3

t0

t
, (5)

where t+, t−, and t0 are the relative times that the particle
has spent in the positive velocity, negative velocity, or rest-
ing state, respectively. The total time is t = t+ + t− + t0. The
weights, w1, w2, and w3, represent the amount of influence
that each relative time has on the probability that a parti-
cle will transition to the corresponding state. Naturally, the
weights are positive and w1 + w2 + w3 = 1.

Why and how does (5) introduce self-reinforcing direction-
ality into (4)? We demonstrate the effect on the conditional
transition probabilities by considering weights w1 and w2. For
w1 > w2, the random walk reinforces its own past behavior
by increasing the transition probability to the positive velocity
state, r+, when the time spent in that state, t+, increases. The
same can be said between r− and t−. In other words, the more
the random walk spends time in either the positive or negative
velocity state, the more likely a future transition into that state
becomes. So the weights w1 and w2 perform an essential func-
tion in self-reinforcing directionality by either “punishing”
or “rewarding” past choices and making future transitions to
states dependent on time spent in the two active states. Now
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we present a clear and effective method for simplifying (5) so
that a single governing equation can be obtained.

We can rewrite (5) using t = t+ + t− + t0 and x = x0 +
ν(t+ − t−) as

r+(x, t ) = w1 − w2

2

x − x0

νt
+ w1 + w2

2
+ �

t0

t

r−(x, t ) = −w1 − w2

2

x − x0

νt
+ w1 + w2

2
+ �

t0

t
(6)

r0 = 1 − r+ − r−,

where � = −(w1 + w2)/2 + w3.
In this paper, we introduce self-reinforcing directionality

such that t0, the time spent resting, does not explicitly con-
tribute to the conditional transition probabilities r+ and r−.
To achieve this, we set � = 0 and given w1 + w2 + w3 =
1, one finds that w3 = 1/3 and w1 + w2 = 2/3 is a unique
requirement. Self-reinforcement appears when w1 > w2 and
disappears for the symmetrical case when w1 = w2 = w3 =
1/3. Then the conditional transition probabilities in (6) can be
written in terms of a self-reinforcing parameter, α0, as

r± = 1

3
± α0

x − x0

2νt
and r0 = 1

3
, (7)

where

α0 = w1 − w2 and 0 < α0 < 2/3. (8)

The formulation of self-reinforcement in this way presents
a particularly powerful mechanism to introduce memory ef-
fects and superdiffusion. It is clear that this mechanism is
different to that used to generate superdiffusion in continuous
time random walks or Lévy walks. Note that (7) is also valid
for −2/3 < α0 � 0, for which the model exhibits behavior
opposite to self-reinforcement. Using the definition of condi-
tional transition probabilities in (7), we can formulate a single
governing equation that enables various extensions, such as
reactions, interactions, and chemotaxis, to be readily applied
from the persistent random-walk framework. In our previous
paper, we suggested a simple microscopic mechanism of self-
reinforcement (see Sec. VII in Ref. [32]).

Now we will derive the single governing equation. From
combining (4), we obtain three equations,

∂ p

∂t
= −∂J

∂x
,

∂ p0

∂t
= λp − γ p0, and

∂J

∂t
= −ν2 ∂ p

∂x
+ ν2 ∂ p0

∂x
− λJ + νη(r+ − r−)p0, (9)

where p(x, t ) = p+(x, t ) + p−(x, t ) + p0(x, t ) so that p(x, t )
is the probability density of finding the particle in the interval
(x, x + dx) at time t regardless of the particle’s velocity state.
Furthermore,

∫ ∞
−∞ p(x, t )dx = 1. In addition, J = νp+ − νp−

and

γ = λ + (1 − r0)η = λ + 2
3η. (10)

The initial conditions are

p(x, 0) = δ(x − x0), p0(x, 0) = 0 and

J (x, 0) = ν(2u − 1)δ(x − x0), (11)

where u is the probability that the particle begins with positive
velocity and (1 − u) to begin with negative velocity. Solving

the second equation in (9) with the initial condition p0(x, 0) =
0, one can also write p0(x, t ) in terms of p(x, t ) as

p0(x, t ) = λ

∫ t

0
e−γ (t−t ′ ) p(x, t ′)dt ′. (12)

Combining (9), (12), and (7), a single equation can be
found for p as

∂2 p

∂t2
+ λ

∂ p

∂t
− ν2 ∂2 p

∂x2
+ λν2

∫ t

0
e−γ (t−t ′ ) ∂

2 p(x, t ′)
∂x2

dt ′

+λα0η

t

∂

∂x

[
(x − x0)

∫ t

0
e−γ (t−t ′ ) p(x, t ′)dt ′

]
= 0. (13)

Now the crucial question is does the intermediate rest state
destroy superdiffusion seen in the self-reinforcing directional-
ity random-walk model? To answer this, we perform moment
analysis.

If the parameter η → ∞, then the average rest time, which
is 1/η, approaches 0. The fourth term in (13) approaches 0
because γ defined in (10) → ∞. However, the last term in
(13) does not approach 0 because (1 − r0)ηe−γ (t−t ′ ) → δ(t −
t ′) as η → ∞. So in this case, (13) becomes the same as the
governing equation in the case of no rests, which can be found
in (10) in Ref. [32].

III. MOMENT CALCULATIONS AND SUPERDIFFUSION

To find an analytical expression for the second moment
μ2(t ) = ∫ ∞

−∞ x2 p(x, t )dx, we use (13) with the assumption
that x0 = 0. Then

d2μ2(t )

dt2
+ λ

dμ2(t )

dt
− 2λα0η

t

∫ t

0
e−γ (t−t ′ )μ2(t ′)dt ′

= 2ν2

(
1 − λ

γ

)
+ 2ν2λ

γ
e−γ t . (14)

Now using the initial conditions (11), we obtain the initial
conditions for the second moment,

μ2(0) = 0 and
dμ2(0)

dt
= 0. (15)

Using the Laplace transform of (14) and (15), the equation for
μ̂2(s) = ∫ ∞

0 μ2(t )e−st dt is

dμ̂2

ds
+ 2s + λ + 2λα0η(s + γ )−1

s(s + λ)
μ̂2

= − 2ν2

s3(s + λ)

(
1 − λ

γ

)
− 2ν2λ

γ s(s + γ )2(s + λ)
. (16)

Now let us look at the long-time limit (s → 0) for (16),
then

dμ̂2

ds
+

1 + 2α0η

γ

s
μ̂2 ≈ −2ν2

s3λ

(
1 − λ

γ

)
− 2ν2

sγ 3
. (17)

When neglecting the rest state, η → ∞ or γ = λ + (1 −
r0)η → ∞, then (17) becomes

dμ̂2

ds
+ 1 + 2α0

s
μ̂2 ≈ −2ν2

s3λ
. (18)

The homogeneous solution for (18) is μ̂2(s) = C2s−2α0−1

where C2 is a constant, which gives μ2(t ) ∼ t2α0 taking the
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FIG. 2. A diagram showing where the diffusive and superdiffu-
sive regimes are found for varying values of α0 and λ/η. The cyan
dashed line shows α0 = λ/2η + 1/3. The anomalous exponent is
defined in (25).

inverse. This shows that 2α0 is the anomalous exponent. Anal-
ogously, from (17) we obtain

μ̂2(s) ∼ C2s− 2α0η

γ
−1

, (19)

which gives

μ2(t ) ∼ C2t
2α0η

γ . (20)

This shows that even with rests, self-reinforcing directionality
is enough to generate superdiffusion (see Fig. 2). The first
moment, μ1(t ) = ∫ ∞

−∞ xp(x, t )dx, can be found in a similar
way as

μ1(t ) ∼ C1t
α0η

γ , (21)

where C1 is a constant.
In the following sections, we confirm superdiffusion

through Monte Carlo simulations for both the second moment
and the variance Var[x(t )] = μ2(t ) − [μ1(t )]2 (see Figs. 3 and
4). The Monte Carlo simulation results in Figs. 4 show that
C1 �= C2 (and further that C2 > C2

1 ) such that the variance is
nonzero and follows the same time dependence as the second
moment. Now let us consider for what parameter values su-
perdiffusion is achieved.

For superdiffusion, the anomalous exponent in (20) must
satisfy the condition

1 <
2α0

λ
η

+ 2
3

< 2, (22)

where (10) has been used to simplify the expression. Evi-
dently, superdiffusion only depends on two parameters: the
self-reinforcement parameter, α0, and the ratio between run
and rest rates, λ/η. Rearranging, (22) becomes

1

3
+ 1

2

λ

η
< α0 <

2

3
+ λ

η
. (23)

The left inequality gives 1/3 < α0, which in conjunction with
(8) means that 1/3 < α0 < 2/3 is needed for superdiffusion.

FIG. 3. Mean-squared displacements for the random-walk sim-
ulation with varying η. The parameters for the simulation were
α0 = 0.6 < 2/3, r0 = 1/3, λ = 1, ν = 1 and the number of particles
N = 104. The solid black line shows diffusion μ2(t ) ∼ t and dashed
black line shows the predicted superdiffusion from (20) and (22):
μ2(t ) ∼ t3α0 as λ/η → 0 (η → ∞).

Then considering (8) again, we find the limits 0 � λ/η < 2/3
are necessary for superdiffusion.

It follows from (20) that in the superdiffusive regime, the
second moment

μ2(t ) ∼ tσ , (24)

where the anomalous diffusion exponent [17,44,47] is

σ = 3α0

1 + 3
2

λ
η

(25)

with the bounds 1/3 < α0 < 2/3 and 0 � λ/η < 2/3. The
phase diagram showing different parameter values and the
corresponding superdiffusive or diffusive states can be seen
in Fig. 2.

FIG. 4. The variance for the random-walk simulation with vary-
ing η. The parameters for this simulation were exactly the same as in
Fig. 3. The solid and dashed black lines are also exactly the same,
showing a constant multiplicative difference between the second
moment and the variance
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FIG. 5. PDF of particle positions at t = 1000 for the random-
walk simulation with varying η. Identical simulation data from Fig. 3
was used. The parameters for the simulation were α0 = 0.6, r0 =
1/3, λ = 1, and ν = 1 and the number of particles N = 104.

It is particularly interesting to note that there is a smooth
transition from diffusion to superdiffusion dependent on the
ratio between running and resting rates, λ/η, in addition to
the self-reinforcing parameter, α0. In modeling various dif-
ferent transport phenomena with this self-reinforcing random
walk with rests, we expect the dependence of the diffusion-
superdiffusion transition on λ/η to be especially useful as
there is a clear physical meaning to why superdiffusion
emerges from a random walk with rests. For example, mod-
eling transport mediated by multiple types of motor proteins
will involve heterogeneous values of λ and η and may eluci-
date why some motor protein transport is more superdiffusive
than others.

IV. MONTE CARLO SIMULATIONS

In this section, we validate the theoretical result in (20)
and show the displacement PDFs as we vary η. The numerical
simulations for a single random walk corresponding to Eq. (4)
were performed as follows:

(1) Initialize variables for current simulation time Tc = 0,
particle position Xc = 0 and current particle state Sc = 1. In
this case, there are only three possible values for Sc = 0 or
±1 corresponding to the rest, positive velocity and negative
velocity states, respectively. For simplicity, we assume the
random walk starts in the positive velocity state.

(2) Initialize the constants of the simulation: λ, η, ν, α0,
r0, and tend, the end time of simulation.

(3) If Sc = 0, then generate a random number �T =
− ln(U )/η, where U ∈ [0, 1) is a uniformly distributed ran-
dom number. If Sc = ±1, then generate a random number
�T = − ln(U )/λ. We emphasize that �T has exponential
distribution with the density d

dt Prob[�T < t] = η exp(−ηt )
for the rest state or λ exp(−λt ) for the moving states.

(4) Increment the current simulation time Tc = Tc + �T
and the particle position Xc = Xc + νSc�T .

(5) If Sc = ±1, then set Sc = 0. If Sc = 0, then generate
a uniformly distributed random number, V ∈ [0, 1) and cal-

culate R± = r0 ± α0Xc/(2νTc). For 0 � V < R+, set Sc = 1.
For R+ � V < R+ + R− set Sc = −1. Otherwise, set. Sc = 0.

(6) Iterate steps 3 to 5 until Tc � tend.
The numerical simulations in this paper were performed

using Python3, taking advantage of the “Numba” package for
JIT compilation and the “multiprocessing” package for CPU
parallelization. These packages were used to significantly im-
prove simulation execution times.

Figures 3 and 4 show the emergence of superdiffusion
and excellent correspondence with (20). Figure 5 shows the
behavior of the PDF as the value of η is varied. Clearly, when
the rests become negligible in the asymptotic limit λ/η →
0 (η → ∞), the drift of particles caused by self-reinforced
directionality dominates. This clearly shows that particles en-
gage in self-reinforcing directionality as rest states become
less time-consuming and particles choose to move in the same
direction as their past history.

V. SUMMARY AND CONCLUSIONS

In this paper, we have formulated a run-and-tumble model
with self-reinforcing directionality and rests. The system
of PDEs (4) has been reduced to a single, nonlocal equa-
tion for the total probability density (13). From this single
governing equation, we demonstrated the emergence of su-
perdiffusion by deriving the second moment for the long-time
limit. This emergence depends on two parameters: the self-
reinforcement of particles, α0, and the ratio between running
and resting rates, λ/η. We find that at the critical point,
λ/η = 2/3, superdiffusion emerges and remains for λ/η <

2/3. In other words, the mean running time must be at
least 2/3 of the mean resting time for superdiffusion to oc-
cur in this model. Interestingly, we find that even a rest
state cannot completely destroy the superdiffusion generated
by self-reinforcement. Further, we present the method for
Monte Carlo simulation of these random walks and show
that the second moment corresponds with theoretical predic-
tions. This superdiffusive model involving rests has potential
application modeling the trapping of intracellular vesicles
in actin-rich regions of neurons. This resting behavior is
thought to act as functional reservoirs and help maintain the
flow of presynaptic vesicles in the neurons of Caenorhabditis
elegans [48].

Since our model describes an anomalous random walk
with strong memory, it would be interesting to explore
its ergodic properties considering both the Khinchin and
fluctuation-dissipation theorems [47,49–52]. We expect er-
godicity breaking for our model as is the case for the discrete
random walk with global memory [53,54]. A natural ex-
tension of resting times distributed with constant rate η

is to introduce a rest state that is non-Markovian with a
residence time-dependent rate [55,56]. Recently, we consid-
ered the case with Mittag-Leffler distributed rest times for
which the mean residence time in the rest state was di-
vergent [57]. This dominates self-reinforcing directionality
in the long-time limit and generates subdiffusion. It is also
interesting to consider the case when the velocities alter-
nate at nonexponentially distributed random times [58] or
driven by random trials [59]. Furthermore, this new frame-
work opens new avenues to include interactions of particles
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by density-dependent rates, λ(p) and η(p), and velocity,
ν(p), leading to aggregation and pattern formation in active
matter [16].
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