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Reexamining equations of state of oblate hard ellipsoids of revolution: Numerical simulation
utilizing a cluster Monte Carlo algorithm and comparison to virial theory
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We provide highly accurate equation-of-state data determined by means of cluster Monte Carlo simulations
for the isotropic phase of oblate hard ellipsoids of revolution. Both equation-of-state data and phase boundaries
of the isotropic phase are obtained from relatively large ensembles with typically 1000 particles. The comparison
of simulation data with a virial approach gives evidence for the importance of high-order so-far-unknown virial
coefficients and therewith many-particle interactions in dense, isotropic systems of anisotropic particles. While
a virial approach with a rescaled Carnahan-Starling correction for the unknown, higher-order virial coefficients
reproduces the simulation data of moderately anisotropic particles with high accuracy, we suggest for highly
anisotropic shapes a simple, heuristic equation of state as a suitable approach.
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I. INTRODUCTION

Due to their relevance as model systems for dense con-
densed matter, hard-particle systems have attracted large
scientific interest for several decades. In addition to hard-
sphere systems, where numerous properties can be calculated
analytically, with increasing computer performance a growing
interest in anisometric hard-particle systems emerged. Us-
ing computer simulations considering realistic many-particle
interactions, Onsagers theory on isotropic-nematic phase tran-
sitions [1] could be confirmed and extended. To obtain an
analytical access to this phase transition, Onsager used in-
finitely thin needles as a model. With computer simulations,
which are capable to handle different particle shapes, the
investigation of the influence of the detailed particle geometry
and its aspect ratio ν is possible. Herewith, tunable models
for the self-organization and properties of liquid crystalline
matter could be investigated.

First computer simulations of hard ellipsoids [2,3] identi-
fied an isotropic-nematic phase transition depending on the
aspect ratio and provided first equation-of-state data for these
systems. The identification of unusual dense packings of ellip-
soids exceeding even close packings of spheres [4] initiated a
reexamination of the hard ellipsoid system concerning both
equation of state [5] and phase behavior for the identified
structures. In addition to an isotropic and nematic phase, a
plastic crystalline phase and the unusually dense monoclinic
SM2 phase could be identified as two types of crystalline
phases [6–9].

The theoretical investigation of hard-sphere systems si-
multaneously stimulated the development and refinement of
simulation techniques. Starting from the seminal Metropolis-
Hastings scheme [10,11] as a theoretical background of
classical Monte Carlo (MC) simulations, improved methods
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such as biased MC simulations [12], event-chain Monte Carlo
[13–15], and replica exchange Monte Carlo methods [16]
have been developed.

Especially for the simulation of hard-body multiparticle
systems in the isobaric and isothermal (N, p, T ) ensemble,
cluster MC as a variant of biased MC simulations is the
method of choice to calculate accurate equation-of-state data
as shown by Almarza [17] for the crystalline phase of hard-
sphere systems. This method has been extended to anisotropic
particles to investigate the phase behavior of hard rhombic
platelets [18]. The availability of theoretical predictions for
the phase behavior and equation of state has regularly lead to
experimental verifications employing colloidal model systems
with predominant hard-body interactions by means of scatter-
ing methods [19] or confocal microscopy [20].

The virial series is a complementary theoretical approach
to equation-of-state data of the isotropic phase of hard mul-
tiparticle systems. While the second virial coefficients of
convex hard bodies are analytically known [21–24], higher
virial coefficients have to be calculated employing numeri-
cal methods [25,26]. With an optimized algorithm based on
Mayer sampling [27], these quantities are accessible with
improved accuracy [28]. In contrast to MC simulations of
large ensembles, for the calculation of the virial coefficient
of order i, a cluster integral over interactions between i par-
ticles is calculated. Since the maximum order of accessible
virial coefficients is limited, the truncation of the virial series
at order imax ignores contributions of clusters with N > imax

particles to the equation of state.
The Carnahan-Starling relation B∗

i = i2 + i − 2 as an ap-
proximation for the reduced virial coefficients of order i leads
to a closed expression for hard spheres’ equation of state
in terms of their volume fraction ϕ = �VP, where � denotes
the number density of particles and VP the particle volume.
Parsons suggested rescaling the hard-sphere virial coefficients
by the ratio of the reduced, second virial coefficient of an
anisotropic shape and a sphere as an approximation for the
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equation of state of an ensemble of anisotropic particles [29].
Later, Vega [25] modified this approach considering all known
virial coefficients and approximating only the unknown ones
in the same manner. Alternatively, several heuristic correla-
tions for the equation of state have been suggested [30–33].

Since cluster-MC simulations give access to precise
equation-of-state data and implicitly take many-particle in-
teractions of large systems into account, with these data, a
systematic evaluation of proposed equations of state and cor-
rections for the truncated virial series is possible.

II. THEORETICAL BACKGROUND

A. (N, p, T ) Monte Carlo algorithm

Monte Carlo simulations in the isobaric-isothermal
(N, p, T ) ensemble are a useful approach to determine
equation-of-state data of hard particles as already proposed by
McDonald [34]. In this ensemble with fixed pressure p, Monte
Carlo simulations compute the configuration integral of the
studied system which is independent of the thermal energy
β−1 = kBT since the potential energy U (rN ,V ) can in the case
of hard particles only be infinite in an overlapping configura-
tion or zero otherwise. In the following, for better readability,
only the potential energy’s dependence on the center-of-mass
coordinates rN is explicitly written down, which can easily be
extended to anisotropic systems by additionally introducing
angular coordinates.

To simulate an (N, p, T ) ensemble, fluctuations of the
system’s volume V and therewith the simulation box are
necessary. Employing a transformation matrix H defined by
ri = H.si, volume-independent, reduced center-of-mass co-
ordinates si are elegantly obtained allowing particle moves
decoupled from volume changes of the simulation box. The
volume of the simulation box equals the parallelepipedal
product V = ‖H‖ of the transformation matrix.

In the case of fluid phases, where a cubic simulation box
can be used, the transformation matrix is simply related to
matrix identity I via H = V

1
3 I. For the simulation of solid

phases, additionally shape fluctuations of the simulation box
are required for which an upper triangular transformation
matrix H is an obvious choice enabling decoupled shape and
volume fluctuations.

B. Acceptance criteria for volume fluctuations

Starting from the configuration integral

ZN,p,T =
∫

V
V N−1

∫
s1

· · ·
∫

sN

× exp[−βpV − βU (sN ,V )]dN s dV, (1)

the normalized probability of a configuration (sN ,V ) reads as

pN,p,T
(
sN ,V

) = V N−1

ZN,p,T
exp[−βpV − βU (sN ,V )] (2)

with the reduced enthalpy as argument of the exponential.
Herewith, the acceptance criterion PA(V ′|V ) for a volume
change from V to V ′ in an (N, p, T ) ensemble can be

written as

PA(V ′|V ) = min

[
1,

(
V ′

V

)N−1 exp [−βpV ′ − βU (sN ,V ′)]
exp [−βpV − βU (sN ,V )]

]
(3)

within the Metropolis-Hastings scheme [35].

C. Cluster MC algorithm

To improve the sampling efficiency, Almarza adopted
a cluster algorithm for the (N, p, T ) simulation of hard
spheres [17]. In this approach, the biased formation of rigid
pseudomolecules of especially close particles during vol-
ume fluctuations increases the accepted mean volume change
〈|V ′ − V |〉 and thus allows a better exploration of phase space.
Before the actual volume change random bonds are generated
between particles forming clusters containing all pairs of all
linked particles. Instead of scaling the particles coordinates
during a volume trial move, only the cluster’s center of mass
is rescaled, preserving the interparticle distances and orienta-
tions within the rigid cluster.

The arbitrary bond probability function b(ri j ) suggested
by Almarza was generalized by Tasios [18] to anisotropic
particles

b(σi j ) =
{

1 − ( σi j

δ

)2
: σi j < δ

0 : σi j � δ
(4)

by considering the shortest surface distance σi j instead of the
center-of-mass distance ri j . Using the closest surface distance
σi j weighted by the cutoff distance δ increases the probability
of forming clusters at small surface distances while for dis-
tances σi j � δ bonds are not generated.

Since the probability of forming a specific cluster config-
uration depends via the surface distances σi j on the volume,
an additional factor in the acceptance probability is required
to fulfill the condition of detailed balance. Let ωc(χc|s′N ,V ′)
be the probability to form the cluster configuration χc at
reduced center-of-mass configuration s′N and volume V ′, and
ωc(χc|sN ,V ) that with reduced center-of-mass configuration
sN at volume V , the acceptance probability for a volume
change allowing cluster formation reads as

PA(V ′|V, χc) = min

[
1,

(
V ′

V

)Ñ−1 exp [−βpV ′−βU (χc,V ′)]
exp [−βpV − βU (χc,V )]

×ωc(χc|s′N ,V ′)
ωc(χc|sN ,V )

]
(5)

under the constraint of detailed balance. Additionally, the
apparent number of particles Ñ � N is reduced by cluster
formation, where Ñ is the sum of remaining single particles
and the number of present clusters.

The additional factor in the volume change proposal ratio
allowing cluster formation can, according to Almarza [17], be
written as

ωc(χc|s′N ,V ′)
ωc(χc|sN ,V )

=
∏
[i j]

1 − b(σ ′
i j )

1 − b(σi j )
, (6)

where the product contains factors resulting from all particle
combinations [i j] where i and j belong to different clusters.
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However, there is no need to check that i and j belong to
different clusters: Since, within a cluster, interparticle dis-
tances and relative orientations are preserved during a volume
change, the surface distances σ ′

i j = σi j remain unchanged,
resulting in [1 − b(σ ′

i j )]/[1 − b(σi j )] = 1. For large systems,
the numerical stability can be improved by calculating the
product by the summation of individual ratios’ logarithms.

Using periodic boundary conditions, particles within a
cluster may be linked via a chain of bonds to its periodic im-
ages. When this cluster percolation occurs, the simulation box
cannot be rescaled, keeping the particle distances within the
cluster constant. Hence cluster percolation has to be checked
and volume change attempts leading to cluster percolation
have to be rejected. If the amount of scale rejections becomes
substantial, the sampling efficiency of cluster-MC simulations
decreases.

D. Surface distance of ellipsoids

The check for overlaps of two ellipsoids can be done by the
Perram-Wertheim algorithm [36]. This algorithm essentially
scales two ellipsoids until they reach tangent contact. From
the scaling factor at tangent contact, overlap and nonoverlap
can be distinguished. We improved the performance of the
original algorithm by replacing the bisection minimization by
a Newton-Raphson minimization using analytic derivatives of
the elliptic contact function.

There is no known algorithm to directly determine the
closest surface distance σ (A, B) of two ellipsoids A and B
with given shape, orientation, and center of mass which is
needed to calculate the bond probability. Paramonov and Yali-
raki [37] suggested a lower limit σll (A, B) and an upper limit
σul(A, B) for the closest surface distance σ (A, B) fulfilling the
inequality

0 < σll (A, B) � σ (A, B) � σul(A, B) (7)

for nonoverlapping particles. The upper limit σul(A, B) can be
directly determined in the Perram-Wertheim algorithm and is
a reasonable approximation for large distances. In the limit
σul(A, B) → ∞, the approximation is independent of the mu-
tual orientation of both ellipsoids. The lower limit σll (A, B)
can be determined by calculating the projection of the upper
limit to the normal vector of both rescaled ellipsoids at the
common contact point. The latter approximation generally
provides better results for small separations.

Therefore, the lower limit σll (A, B) is expected to be a
better approximation in the case of small surface distances,
when clusters are presumably formed. However, obvious dif-
ferences between the results of cluster-MC simulations using
both approximations for σi j are not observed within their
uncertainties. We presume that the proposal ratio in Eq. (6)
sufficiently compensates over- and underestimations of the
surface distance. The data provided in this contribution are
obtained using the lower limit σll (A, B) as an approximation
for the closest surface distance.

E. Simulation details

An isotropic start configuration is prepared for each inves-
tigated pressure via an equilibration phase of 106 MC steps at

a volume fraction of ϕ = 0.05 starting from a configuration
with centers of mass placed at a cubic lattice and particle
directors randomly aligned, where an MC step consists of N
particle translation or rotation attempts and a volume change
attempt.

The resulting isotropic configuration is compressed to the
pressure of interest and after a second equilibration phase a
production run with 5 × 107 steps is performed.

Since cluster percolation is an increasing obstacle for the
simulation of highly anisotropic particles, the characteristic
length δ which determines cluster formation is tuned to obtain
approximately Nb/N ≈ 1/4, where Nb is the number of bonds
created between N individual particles. Hereby the number of
rejections due to cluster percolation is reduced to less than
1%.

Since isotropic-crystalline phase transitions can only be de-
termined by the expansion of a crystalline phase, these phase
boundaries are determined by expansion of a dense mono-
clinic SM2 crystal [38] containing between 972 and 1040
particles depending on their aspect ratio. For these expansion
simulations, additionally shape fluctuations of the simulation
box at constant volume are allowed, where at least 2 × 108

steps are performed.

III. RESULTS AND DISCUSSION

A. Validation of the cluster-MC algorithm
with a system of hard spheres

As hard spheres are a thoroughly investigated model sys-
tem, the cluster (N, p, T ) algorithm is validated with hard
spheres, i.e., ellipsoids with an aspect ratio ν = 1. The devia-
tions of our data from the highly accurate equation-of-state
data of Kolafa et al. [39] are illustrated in Fig. 1 for five
different system sizes from N = 500 to N = 2916.

A comparison of the different system sizes shows that
the system-size dependence becomes more pronounced with
increasing reduced pressure β pr3. This is especially the case
in the region of the phase transition, which is indicated by
the dashed black line (as determined by Noya et al. [40]).
The data beyond the phase transition result from a metastable
phase and depend significantly on the system size. While this
dependence is especially notable for N = 500 particles, it de-
creases for N = 864 particles and the deviations are within the
determined uncertainties of the volume fraction ϕ compared
to the equation of state of Kolafa et al. for larger systems. It
is also visible that the determined uncertainties for a system
of N = 864 hard spheres obtained in 5 × 107 steps employ-
ing the cluster algorithm displayed with blue error bars are
considerably smaller than those obtained in 2.5 × 108 steps
displayed with gray error bars employing a standard (N, p, T )
approach. Although equation-of-state data for hard spheres
can be determined via simpler methods, the comparison with
the data shown in Fig. 1 is a proof of the cluster algorithm’s
reliability.

For anisotropic particles only few data are available re-
sulting from relatively small ensembles. A comparison of
available data from McBride and Lomba [5] with our cluster-
MC data is displayed in the Supplemental Material (Sec. S-I)
[41].
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FIG. 1. Deviations of hard-sphere volume fraction ϕ from the
reference data ϕref from Kolafa et al. [39] in dependence on the
reduced pressure βpr3. The volume fractions are determined for
five system sizes N obtained during 5 × 107 steps with the cluster
(N, p, T ) algorithm. For comparison, data obtained during 2.5 × 108

steps in a classical (N, p, T ) MC simulation are displayed with dark
gray circles. The liquid-solid phase transition of hard spheres deter-
mined by Noya et al. [40] is indicated by the dashed black line.

B. Influence of the system size for aspect ratio ν = 1/3

The influence of the system size is exemplarily investigated
for the intermediate aspect ratio ν = 1/3. Data from five dif-
ferent system sizes from N = 343 to N = 4096 are analyzed
in Fig. 2, where deviations of volume fractions are displayed
in dependence on the reduced pressure. As a reference, data
of the largest investigated system with N = 4096 particles are
used.

For reduced pressures βpr3
eq below the isotropic-nematic

phase transition, a systematic dependence of the volume frac-
tion ϕ on the system size cannot be observed. In the phase
transition’s vicinity, however, a significant system-size de-
pendence emerges. Additionally, the uncertainties increase
drastically in this region.

For the subsequent systematic investigation of equations of
states in dependence on the aspect ratio ν, systems with
N = 1000 particles are used. The deviations to a system of
N = 4096 particles are in the range of the uncertainties at ac-
ceptable numerical effort. Equation-of-state data obtained for
these systems with aspect ratios 1/10 � ν � 1 are compiled
in Tables S-1, S-2, S-3, and S-4 in the Supplemental Material
(Sec. S-II) [41].

C. Tracing the phase transitions

Since phase transitions are discontinuities in equations of
state, the regions of stability need to be determined as a first
step. For the equation of state in the isotropic phase of oblate

FIG. 2. Deviations of the volume fraction ϕ in dependence on
the reduced pressure βpr3

eq for aspect ratio ν = 1/3 using different
system sizes N . Here, the largest investigated system with N = 4096
particles is used as a reference. The estimated critical pressure for the
isotropic-nematic phase transition is indicated by the dashed black
line.

ellipsoids of revolution, phase boundaries to nematic, plastic
solid, and monoclinic phase limit their region of stability
depending on the aspect ratio. The formation of these phases
can be identified by means of characteristic observables.

1. Isotropic-nematic phase transition

The formation of nematic phases is identified by the ne-
matic order parameters S2 and S4 defined as averages

S2 =
〈

1

2

(
3x2

i − 1
)〉

xi

, (8)

S4 =
〈

1

8

(
35x4

i − 30x2
i + 3

)〉
xi

, (9)

of the second- and fourth-order Legendre polynomials with
xi = ûi.n̂, where the unit vector ûi denotes the orientation of
particle i and the unit vector n̂ the nematic director. If the
nematic director n̂ is a priori unknown, order parameters can
be extracted from the largest positive eigenvalue of averaged
dyadic vector products, known as the Saupe tensor in the case
of S2 [42,43]. However, if just the existence of a preferential
direction is of interest, an orientational correlation can also
be identified by using inner products of particle orientations
xi = û j .ûk instead. With the latter approach, averaging over
scalar products of particle orientations û j and ûk has to be
limited according to periodic boundary conditions fulfilling
the minimum image convention. In this work, we identify
the isotropic-nematic phase transition by comparison of order
parameters calculated via the latter approach.
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FIG. 3. Nematic order parameters S2 (closed squares) and S4

(open circles) in dependence on the volume fraction ϕ for six dif-
ferent aspect ratios ν separated by arbitrary offsets. The dashed red
lines indicate the critical volume fractions ϕc which are roots of
extrapolated, linear increasing S4 beyond the transition to the nematic
phase.

Since the increase of S4 with the volume fraction by tran-
sition to the nematic structure is much more pronounced than
that of S2, the critical volume fractions are determined by lin-
ear extrapolation of S4 to its root. This approach is visualized
in Fig. 3, where for a better display the data are separated by
arbitrary offsets. The critical volume fractions ϕc as indicated
by red dashed lines are compiled in Table I.

2. Isotropic-solid phase transitions

For aspect ratios ν � 1/2, phase transitions from isotropic
to either monoclinic SM2 phases or plastic solids (PS) oc-
cur. In contrast to the isotropic-nematic phase transition,
which can be determined by compression of a disordered
configuration, isotropic-solid phase transitions can only be

TABLE I. Phase boundaries of the isotropic phase.

ν Phase transition ϕc βpcr3
eq

1/10 I → N 0.190(2) 2.45(4)
1/8 I → N 0.231(2) 2.66(5)
1/6 I → N 0.297(2) 3.14(5)
1/5 I → N 0.344(2) 3.64(6)
1/4 I → N 0.405(2) 4.43(7)
1/3 I → N 0.498(2) 6.51(12)
1/2 I → SM2 0.560(5) 6.40(25)
2/3 I → PS 0.615(5) 7.30(29)
4/5 I → PS 0.500(10) 2.03(15)

10/11 I → PS 0.480(20) 1.49(10)

FIG. 4. Equation-of-state data for four different aspect ratios ν

from compression (closed circles) and expansion (open squares)
simulations. The coexistence pressures and their uncertainties are
displayed as horizontal solid and dashed lines. While at aspect ratio
ν = 1/2 a transition from a SM2 phase to the isotropic phase is
observed, for the less anisometric particles a transition from a plastic
solid (PS) to the isotropic phase occurs.

determined by expansion of crystalline structures. Simula-
tions of crystalline phases require deformation trials allowing
nonorthogonal simulation boxes as enabled by appropriate
transformation matrices H (Sec. II A). Due to the high sen-
sitivity of the phase stability to the simulation box and the
larger system-size dependence, data of crystalline phases
exhibit larger uncertainties than those of isotropic and ne-
matic phases. The uncertainties of coexistence pressures
are estimated by pressure differences between consecutive,
independent runs. The coexistence pressures at isotropic-
crystalline phase transitions are displayed in Fig. 4. The
respective data are compiled in Table I.

In contrast to Odrizola et al. [9], who identified the ex-
istence of a nematic phase in the limits 0.561 � ϕ � 0.565
at aspect ratio ν = 1/2 by means of replica exchange MC,
we observed a direct transition from the monoclinic SM2
phase to the isotropic phase for these particles. To facilitate
sufficient exchange probabilities between different replicas,
the maximum size of a replica is rather limited. In contrast
to Odriozala et al. our approach is to minimize the ensemble-
size dependence using significantly larger systems instead of
a higher density resolution. With exception of ν = 1/2, our
phase diagram reproduces that of Odriozola et al.

D. Equation-of-state data

Due to the absence of attractive interactions, fluidlike,
hard-particle systems do not exhibit a critical point and
thus are supercritical. Employing the virial series originally
proposed by Kamerlingh Onnes [44] and later theoretically
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FIG. 5. Equation-of-state data for selected aspect ratios of oblate
hard ellipsoids. The solid lines represent the equation of state using a
virial series up to order eight. Cluster-MC data in the isotropic phase
are represented by solid circles, while cluster-MC results beyond the
phase boundary of the isotropic phase are displayed by open circles.

derived by Mayer [45], the real gas factor Z can be written
exactly as

Z = p

�kBT
= 1 +

∞∑
i=2

B∗
i ϕi−1 (10)

if the reduced virial coefficients B∗
i are known up to infinite

order i. In the virial series, the virial coefficient B∗
i of order

i accounts for the contribution of i-particle interactions, i.e.,
clusters consisting of i particles to the real gas factor.

Depending on the particle shape, only a limited number of
hard particles’ virial coefficients are known. The truncation
of the virial series after the highest available virial coefficient
possibly leads to an inadequate description for the equation of
state depending on the the volume fraction ϕ.

In Fig. 5, the reduced pressure βpr3
eq. in dependence on

the volume fraction ϕ resulting from cluster-MC simulations
is compared to a virial approach using recently published,
accurate virial coefficients up to order eight [28]. This com-
parison shows a severe discrepancy between simulation data
and truncated virial series at high volume fractions ϕ. For
highly anisotropic particles, the truncated virial approach even
leads to unphysical, negative real gas factors.

Previously, different approaches to compensate the con-
tributions of unknown, higher virial coefficients have been
discussed. These corrections can be reevaluated quantitatively
with the now available, accurate cluster-MC data.

1. Corrections for truncated virial series

Parsons [29] suggested a correction based only on the
second virial coefficient of the respective geometry and the

Carnahan-Starling equation of state for hard spheres [46]. As
this approach leads to a simple analytical expression for the
free energy, it is widely used in classical density functional
theory [47]. When only few low-order virial coefficients of
hard anisotropic particles were known, Nezbeda [30], Boublík
[31], as well as Song and Mason [32] proposed corrections for
the truncation of the virial series.

With access to the virial coefficients up to order five,
Vega extended the Parsons approach by using the known
virial coefficients and approximating the unknown ones by
an identically rescaled Carnahan-Starling approach. Hence, a
generalized Parsons approach reads as

Z = 1 +
imax∑
i=2

B∗
i ϕ

i−1 + B∗
2

B∗, HS
2

∞∑
i=imax+1

B∗, HS
i ϕi−1, (11)

if virial coefficients up to order imax are known. Hereby, es-
sentially the Carnahan-Starling approximation for the missing
virial coefficients of order i > imax is rescaled by the ratio of
second virial coefficients of the respective shape B∗

2 and hard
spheres B∗, HS

2 .
With ϕ < 1, for the infinite Carnahan-Starling series, the

closed expression

∞∑
i=2

(i2 + i − 2)ϕi−1 = 4ϕ − 2ϕ2

(1 − ϕ)3 (12)

results. Herewith for any number imax of known virial coeffi-
cients, a closed expression for Eq. (11) can be formulated. For
imax = 8 this leads to

Z = 1 +
8∑

i=2

B∗
i ϕ

i−1 + B∗
2

4

2ϕ8(35ϕ2 − 78ϕ + 44)

(1 − ϕ)3 . (13)

The comparison of Figs. 5 and 6 clearly shows that for
moderately anisotropic particles with ν � 1/5 the virial series
with the correction according to Eq. (13) accurately describes
the cluster-MC results within the phase boundaries of the
isotropic phase. For intermediate aspect ratios, slight over-
and underestimations at high pressures can be identified. For
highly anisotropic particles with ν � 1/6, however, signif-
icant deviations still occur leading as previously discussed
even to unphysical, negative real gas factors. The drop of real
gas factors is caused by negative virial coefficients of order
i � 5 emerging already for moderately anisotropic particles.

Since the maximum volume fraction of the isotropic phase
is comparatively small for highly anisotropic particles, higher-
order virial coefficients can only contribute significantly if
their moduli are extraordinarily large. As visible in Fig. 6,
even rescaled higher-order virial coefficients of hard spheres
cannot compensate the negative contribution of known virial
coefficients: The rescaled Parsons correction based on hard
spheres, adequately describing moderately anisotropic parti-
cles’ equation of state, fails in the case of highly anisotropic
particles.

Orientational correlations of limited range can occur in
isotropic phases even if, in the thermodynamic limit, a
long-range orientational correlation is absent. Whenever the
orientational correlation lengths exceed the size of an i-
cluster, they are not reflected in the corresponding virial
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FIG. 6. Equation-of-state data for selected aspect ratios of oblate
hard ellipsoids. The solid lines correspond to the virial series em-
ploying a rescaled Carnahan-Starling correction [Eq. (13)]. The
equation-of-state points resulting from cluster-MC are displayed by
circles, whereby closed circles are in the isotropic phase and open
circles beyond the phase boundary of the isotropic phase.

coefficient of order i. To adequately take the effect of ori-
entational correlations into account, high-order up-to-now
inaccessible virial coefficients are required.

Since orientational correlations do not exist for spheres
and the Parsons correction only includes the second virial
coefficient which is based on pair interactions, approaches
based on the Parsons correction are not capable to describe the
effect of increasing orientational correlation lengths emerging
with progressively anisometric particles.

2. Generalized Carnahan-Starling equation

For hard spheres, numerous correlations for the compress-
ibility factor using virial coefficients as well as equation-of-
state data have been investigated [48]. Many of them are
Padé expansions based on the Carnahan-Starling equation,
where an increasing number of additional parameters improve
their accordance with available data. For the exhaustively
investigated hard-sphere system, Kolafa et al. [39] proposed
a polynomial with as much as nine heuristic parameters as an
accurate description of the real gas factor.

We investigate a modified Carnahan-Starling equation

Z = 1 + γ0ϕ + γ1ϕ
2 − γ2ϕ

3

(1 − ϕ)3
, (14)

where in addition to the analytically known second virial co-
efficient only two further parameters are needed. To approach
the virial expansion in the low-density limit, the parameter γ0

is chosen to be

γ0 = B∗
2 − 3, (15)

FIG. 7. Equation-of-state data for selected aspect ratios of oblate
hard ellipsoids and fits using the generalized Carnahan-Starling rela-
tion [Eq. (14)]. The closed circles are equation-of-state points in the
isotropic phase while open circles represent equation-of-state data
beyond the phase boundary of the isotropic phase.

which is for hard particles the excess part of the mutual ex-
cluded volume. The correlations proposed by Nezbeda [30]
and Song and Mason [32] approach this low-density limit as
well.

The remaining parameters γ1 and γ2 are obtained via least-
squares fits from cluster-MC data within the boundaries of the
isotropic phase (Sec. III C). The cluster-MC real gas factors
and least-squares fits according to Eq. (14) are displayed in
Fig. 7, and the optimum parameters γ1 and γ2 are compiled in
Table II in dependence on the aspect ratio ν.

Despite the simplicity of this heuristical correction with
only two unknown parameters, the real gas factor according

TABLE II. Parameters γ1 and γ2 and their uncertainties for a gen-
eralized Carnahan-Starling-type equation [Eq. (14)] for 11 different
aspect ratios ν as well as density limits of the data considered.

ν Limits Coefficients

γ1 γ2

1/10 0.020 < ϕ < 0.190 61.66143(13) 333.7431(10)
1/8 0.039 < ϕ < 0.231 37.40249(11) 169.0247(8)
1/6 0.059 < ϕ < 0.297 19.00785(5) 68.07192(23)
1/5 0.050 < ϕ < 0.344 12.26132(8) 37.2321(3)
1/4 0.050 < ϕ < 0.405 7.12067(9) 17.5093(4)
1/3 0.050 < ϕ < 0.498 3.57926(7) 6.50072(18)
1/2 0.050 < ϕ < 0.560 1.593380(26) 1.88163(6)
2/3 0.050 < ϕ < 0.615 1.25381(12) 1.43668(24)
4/5 0.049 < ϕ < 0.500 1.11610(13) 1.1958(4)

10/11 0.050 < ϕ < 0.480 1.07955(15) 1.1336(4)
1 0.051 < ϕ < 0.492 1.07284(22) 1.1246(6)
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FIG. 8. Relative deviations of the modified Carnahan-Starling
real gas factor Eq. (14) from simulation data exemplarily shown for
aspect ratios ν = 1 (hard spheres) and ν = 1/3. The green line is the
relative deviation from the Carnahan-Starling equation (γ1 = γ2 =
1) and the blue line the relative deviation from the Kolafa-Labík-
Malijevský equation of state for hard spheres [39]. The dashed red
line is a cubic spline as a guide to the eye.

to Eq. (14) is in good agreement to cluster-MC data. As
expected, systematic relative deviations of less than 0.5% still
exist exceeding the uncertainty of cluster-MC data as exem-
plarily shown in Fig. 8.

IV. SUMMARY AND OUTLOOK

In principle, equilibrium properties of hard-particle sys-
tems can be accessed via an alternative route using molecular
dynamics instead [4]. Considering collisions of anisotropic
particles, the equations of motion are numerically demand-
ing. Therefore, Monte Carlo simulations requiring only the
discrimination of overlap and nonoverlap configurations are a
widely used approach in the case of anisotropic systems.

Despite the larger numerical effort of cluster-MC in com-
parison to classical MC, the significantly increased statistical
accuracy as illustrated in Fig. 1 in total reduces the CPU time
required to access precise data. The benefit of this technique
increases with the complexity of overlap algorithms which are
often the time-critical step for anisotropic shapes.

The probability of cluster formation depends in the case
of hard particles on the closest surface-to-surface distance
between two particles. For many geometries, a closed ana-
lytical expression for the minimum surface distance does not
exist. In the case of ellipsoids, an upper and a lower limit
for the minimum surface distance can be determined. Cluster
formation probabilities based on both approximations lead to
identical results for equation-of-state data: An approximation

for this quantity is sufficient for cluster-MC simulations of
ellipsoids and probably other shapes.

Using this method, the phase boundaries of the isotropic
phase of oblate, hard ellipsoids of revolution are determined
employing significantly larger ensembles than used before
[5,9]. In addition, precise (N, p, T ) equation-of-state data for
the isotropic phase are obtained. This cluster-MC data are
compared to the virial series considering recently published
virial coefficients of oblate ellipsoids up to order eight.

For moderately anisotropic ellipsoids, the cluster-MC data
excellently agree with the virial series up to moderate vol-
ume fractions (Fig. 5). The discrepancies in vicinity to the
phase transition can be reduced significantly by a rescaled
Carnahan-Starling correction [Eq. (13)] for the unknown
virial coefficients of order i > 8 (Fig. 6).

For highly anisotropic particles with aspect ratio ν � 1/6
even employing this correction, significant deviations from
cluster-MC data are observed in the vicinity to the isotropic-
nematic phase transition. At volume fractions beyond the
isotropic-nematic phase transition, the virial series even pre-
dicts unphysical, negative pressures. A possible explanation
are long-range orientational correlations in dense systems
of highly anisotropic particles whose range is sufficiently
covered only in large clusters reflected by inaccessible high
orders of virial coefficients. Since orientational correlations
do not exist in hard-sphere systems, any correction based
on the Carnahan-Starling equation is not capable to correct
these effects: Rescaling with the second virial coefficient of
a highly anisotropic shape can only account for short-range
orientational correlations in two-particle clusters.

Equation-of-state data of hard-particle systems are com-
monly described by heuristical correlations such as the
Kolafa-Labík-Malijevský equation of state. For ellipsoids
of revolution, different approaches have previously been
published [25,30–32]. We propose a generalized Carnahan-
Starling approach using the second virial coefficient and two
additional parameters for each aspect ratio. Despite the sim-
plicity of this approach, equation-of-state data are described
surprisingly well within the phase boundaries of the isotropic
phase.

Precise equation-of-state data resulting from cluster-MC
simulations enable a quantitative analysis of truncation effects
in virial approaches and commonly used corrections for the
unknown, higher-order virial coefficients. Using oblate, hard
ellipsoids of revolution, the capability of cluster-MC to access
precise equation-of-state data of anisotropic hard particles is
exemplarily demonstrated.

Systematic cluster-MC simulations of differently shaped
hard particles can give insights into the importance of higher-
order virial coefficients and many-particle interactions of hard
particles in dependence on shape and aspect ratio for less
dilute systems.
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