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Model for tectonic tremors: Enduring events, moment rate spectrum, and moment-duration scaling
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Numerous attempts have been made to obtain earthquake statistics from a theoretical-physics perspective,
but these studies mostly involve regular earthquakes. In recent years, a new category of earthquakes, referred
to as slow earthquakes, has been discovered. Slow earthquakes emit only weak or no seismic signals and
have different statistics than regular earthquakes. Here we propose a physical model for the tremor, which is
a type of slow earthquake, introducing two competing timescales in a cellular automaton model. The proposed
model reproduces some observation results for tremors, such as enduring events, moment-duration scaling, size
distribution, and the power spectrum of the moment rate function.
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I. INTRODUCTION

A. Statistics of regular earthquakes

The statistical properties of nonequilibrium systems often
involve power laws and have been a major research interest in
statistical physics [1,2]. A prominent example is earthquakes
[3], which exhibit complex time series with nontrivial statis-
tics, including the Gutenberg-Richter (GR) law [4]. The GR
law is usually stated in terms of magnitude, but the power-law
nature becomes clearer if the law is recast in terms of seismic
moment, which is defined as Mo ≡ μDLW . Here μ is the
shear modulus, L and W are the length and width of the
fault plane where a earthquake occurs, and D is the averaged
relative displacement on the fault. The probability density
function of the seismic moment P(Mo) can then be expressed
as

P(Mo) ∝ M−B
o . (1)

The exponent B may vary in space and time, but is generally
around 1–2. Seismic activity involves yet another major power
law, which is known as the Omori law [5,6], where the after-
shock rate decays as a power law as the time elapses from a
mainshock. In addition, the interevent time distribution, also
referred to as the waiting time distribution, follows the �

distribution [7,8]. Note that all of these nontrivial statistics
are for “regular” earthquakes, whereas we consider a new
category of earthquakes, i.e., slow earthquakes.
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B. Low-frequency earthquakes, tectonic tremors,
and slow slip events

In recent years, a new category of earthquakes has been dis-
covered in many subduction zones in the world. This category
is now referred to as slow earthquakes. They occur in the prox-
imity of seismogenic zones, where huge earthquakes occur,
and therefore the physical mechanism of slow earthquakes
is of great interest as it may give a clue to the occurrence
of huge earthquakes [9]. Slow earthquakes occur where the
S-wave velocity is low, suggesting that fluid is involved in
their occurrence mechanism [10].

One of the remarkable properties of slow earthquakes is
weak seismic signals of lower frequency. Tectonic tremor is an
example of slow earthquakes, showing weak seismic signals
that last for several minutes to several hours [11]. Similarly,
low-frequency earthquakes (LFEs) emit a weak seismic signal
that lasts less than 1 s [12]. Both tremors and LFEs are slow
earthquakes with a predominantly low frequency of 2–8 Hz
and the seismic waveform of tremors is highly correlated with
the LFE waveform. Therefore, tremors are now considered
to be clusters of LFEs [13]. In particular, many observation
studies have revealed that tremors are mostly the migration of
many LFEs at a velocity of 101–102 m/s [14–16].

Tremors occur almost simultaneously with yet another type
of slow earthquake [17,18], which is referred to as a slow
slip event (SSE). Slow slip events do not produce any seismic
waves and thus are detectable by geodetic observations only
[19]. The typical slip velocity of the SSE is only several times
larger than that of the steady plate motion. Slow slip events
continue for longer duration, ranging from months to years.

C. Properties of tectonic tremors

Tremors have different dynamic characteristics from regu-
lar earthquakes. For regular earthquakes, the spectrum of the
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seismic moment rate Ṁo(t ) is proportional to f −2, where f is
the frequency [20]. Contrastingly, for tremors and LFEs, the
spectra are proportional to f −1 [13,21]. Note that, in terms
of the power spectrum that we discuss in this paper, they are
proportional to f −4 and f −2, respectively.

Regular and slow earthquakes obey different scaling re-
lations. Regular earthquakes obey a distinct scaling relation
with respect to their duration T and seismic moment Mo: T ∝
M1/3

o . In contrast, slow earthquakes (tremors, LFEs, and SSEs)
are known to obey another scaling: T ∝ Mo [21]. However,
on a smaller spatiotemporal scale, this scaling may shift to
T ∝ M2/3

o [22] or T ∝ M1/3
o [23]. This is still an open problem.

The differences in the scaling relation and the moment
rate spectrum suggest that the rupture propagation dynamics
of slow earthquakes are qualitatively different from those of
regular earthquakes.

The statistical properties of slow earthquakes are yet
to be established firmly. In particular, it is still arguable
as to whether the size distribution of tremors is a power
law [24–29]. For example, tremors at deeper subduction
zones exhibit an exponential size distribution in terms
of the radiated seismic energy [27], whereas that of the
shallow tremors obeys a power-law size distribution with an
exponential cutoff [28,29]. This difference may be due to the
different detection limit in the seismic observation. If small
events cannot be detected correctly, then the distribution
function is distorted, leading to the difference in exponential
or power-law distributions.

D. Models for tremors

In order to understand the underlying physics behind slow
earthquakes, several models have been proposed to reproduce
the spectral properties and the scaling law. For example, a
pulselike fracture model was proposed to reproduce the spec-
tral properties of tremors [30,31]. Similarly, Ide suggested that
the source size of a tremor fluctuates, which is described by
a stochastic differential equation for Brownian motion [32].
However, these models assumed the size of source area and
therefore could not explain the size distribution.

If one wishes to clarify how the size distribution is deter-
mined within the system, one must consider rupture dynamics
in spatially extended systems. In this regard, some models
reproduce power-law size distributions with an exponential
cutoff [33–35]. On the other hand, it is an open question as
to why the size distribution of the tremor varies in different
regions.

E. Olami-Feder-Christensen model

The statistical properties of regular earthquakes have been
discussed using various cellular-automaton models. Among
them, the Olami-Feder-Christensen (OFC) model is one of
the most popular models [36–39]. The OFC model reproduces
the GR law with a range of exponents for the size-frequency
relation. Despite its simplicity, the model also reproduces
aftershocks obeying the Omori law as well as foreshocks
obeying the inverse Omori law [40,41]. These complex behav-
iors arising out of a simple model may be due to the complex
stress heterogeneity in the model [42], which even reproduces
the behavior similar to repeating earthquakes [43].

II. IMPORTANCE OF LOADING RATE

In the present study, we focus on the effect of two com-
peting timescales in the occurrence mechanism of tremors.
In regular earthquakes, the timescale of rupture propagation
is sufficiently shorter than that of tectonic stress accumu-
lation. Therefore, the loading timescale is always neglected
in conventional earthquake models. Namely, stress does not
accumulate during the rupture propagation [36,44,45].

For slow earthquakes, however, these two timescales may
not be separated sufficiently. In order to quantify the extent of
timescale separation, we define a nondimensional parameter
R as

R ≡ τ̇

σ̇
, (2)

where τ̇ is the stress loading rate and σ̇ is the stress release
rate by the slip. Therefore, we refer to R as the dimensionless
loading rate. Since stress is released by the slip on the fault
plane, the dimensionless loading rate represents how close the
two timescales are: rupture propagation and stress accumula-
tion.

If a patch on the fault plane is displaced by u with the rest of
the area stuck, the stress change on this patch is on the order of
μu/L, where L2 is the area of the patch [46]. This also applies
to the stressing case, in which a patch is stuck and the rest of
the fault plane is displaced by u. Therefore, the loading rate τ̇

depends on the patch size L as

τ̇ ∼ μu̇

L
, (3)

where u̇ is the steady subduction rate in the aseismic region.
In the same manner, the tectonic loading rate of a subduc-

tion zone can be estimated as μu̇/L, where L is the length of
a seismogenic zone. If we assume that u̇ � 10 cm/yr and L
is on the order of 102 km, then the tectonic loading rate may
be on the order of 10 kPa/yr [47]. Considering that the stress
drop of an earthquake is on the order of 10−1–100 MPa, this
loading rate implies that major earthquakes (e.g., magnitude
8) that cover a seismogenic zone may occur every several 100
years. This does not contradict the seismic activities observed
in major subduction zones. Then the dimensionless loading
rate for regular earthquakes is roughly estimated as

RRE ∼ 10 (kPa/yr)

10 (MPa/10 s]
∼ 3×10−10, (4)

where a stress drop of 10 MPa during a rise time of 10 s is
assumed.

For tremors and LFEs, the dimensionless loading rate is
estimated in the same manner. Note, however, that the major
stressing source for tremors may not be a secular tectonic
motion. Here we assume that tremors are driven by SSEs,
since tremors and SSEs often occur simultaneously [17,19].
In this case, we regard the source region of tremors as a
stuck patch and the rest area is displaced by an SSE. The
stressing rate for tremors, denoted by τ̇TR, is then estimated
using Eq. (3),

τ̇TR = μ
u̇SSE

LTR
, (5)
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where u̇SSE is the slip rate of the SSE and LTR is the source
region of tremors. Similarly, the stress release rate for the SSE
is estimated as

σ̇SSE = μ
u̇SSE

LSSE
. (6)

Combining Eqs. (5) and (6), we obtain the dimensionless
loading rate for tremors:

RTR = τ̇TR

σ̇TR
= LSSE

LTR

σ̇SSE

σ̇TR
. (7)

The source size of tremors, LTR, is assumed to be 10 km
because the observed locations of LFEs are clustered in this
area [10]. The size of the SSE region, LSSE, may be approxi-
mately 100 km. The stress release rate of SSEs, σ̇SSE, may be
on the order of 10−5–10−4 kPa/s based on some observation
studies. The stress drop is 10–100 kPa and the duration is
106 s [48,49]. The stress release rate of tremors, σ̇TR, may be
10 kPa/s, assuming a stress drop of 1 kPa [50] and a rise time
of 0.1 s. Inserting the above values into Eq. (7), we estimate
that

RTR ∼ 10−4–10−5. (8)

The dimensionless loading rate for tremors is still small,
but much larger than that of regular earthquakes [Eq. (4)].
This is mainly because the event duration is much longer and
the stress drop is much smaller for the tremors. Here we wish
to investigate whether this small but finite loading rate may
have some relevant effects on slip dynamics and the statistical
properties of tremors.

III. MODEL DESCRIPTION

A. Algorithm

In the present study, we use the Olami-Feder-Christensen
model [36,38] modified to include the stressing effect during
an event. This enables us to study the competition between
two timescales: rupture and loading. Such a model, however,
is not new in the literature. The sandpile model [51],
the forest-fire model [52], and the fiber bundle model [53] also
allow such a variation, in which the cells are loaded during
a toppling event. In particular, Hamon et al. used the OFC
model in the context of solar flares, adopting the same algo-
rithm as the present study [54]. We reinterpret and reexamine
this model in the context of slow earthquakes.

The model investigated here consists of the following al-
gorithm.

(i) Setup. The internal variable, ranging from 0 to h, is
defined on each cell of a two-dimensional lattice of N cells.
The physical meaning of the internal variable is arbitrary,
while a typical interpretation is the stress.

(ii) Inspection. Scan all the cells. Any cells in which the
internal variable exceeds the threshold h undergo slip and the
internal variable drops to zero. In addition, every slipped site
should redistribute the internal variable to each of the four
nearest neighbors with the amount of hα, where 0 < α � 0.25
and h is the stress drop. Note, however, that the redistribution
process is not performed during the scan, but is just recorded
to be implemented in the next step. Thus, each cell needs to
be inspected only once at each time step.

(iii) Update. After scanning all of the sites, the redistri-
bution process is performed. At the same time, each cell is
loaded with τ̇�t . The moment rate Ṁo(t ) is defined as the
number of slipped sites.

After process (iii), go back to process (ii) with the time
elapsed t → t + �t .

With this algorithm, an event takes a finite time and there-
fore the duration is defined. A single event continues as long
as the moment rate is nonzero: Ṁo(t ) > 0 for ti � t � t f .
Namely, the event starts when Ṁo(ti ) > 0 with Ṁo(ti − �t ) =
0 and terminates when Ṁo(t f + �t ) = 0. The total moment
release of an event is then defined as

Mo =
∫ t f

ti

Ṁo(t )dt (9)

and the duration of this event is t f − ti.
A stress drop of h occurs during a single time step �t

and therefore the stress release rate is given by σ̇ = h/�t .
The dimensionless loading rate is thus written as R = τ̇�t/h.
In the numerical simulation, �t and h are set to unity and
therefore the stress increase at each time step τ̇�t is R. By
varying the dimensionless loading rate R, we can investigate
the effect of stress accumulation during rupture propagation.

The difference between the present model and the conven-
tional OFC model is the stressing effects during an event. In
this model, each cell is stressed even during an event. This
is implemented in step (iii). In the conventional OFC model,
cells are not stressed during a sequence of toppling events. In
this respect, the present model is reduced to the conventional
model in the limit of R → 0.

Note that the moment rate Ṁo(t ) is obtained as time series
data. Theoretically, the moment rate is proportional to the
absolute value of the displacement waveform in the far-field
observation. Therefore, the simulation results of this model
can be discussed in relation to the observed waveforms. Such
a quantity is absent in the conventional OFC model. In this
sense, we may refer to the present model as a dynamic OFC
model.

We adopt open boundary conditions, where the internal
variable is discarded at the boundary upon redistribution.

Note that this model does not allow the fast numerical algo-
rithm proposed by Pinho and Prado [55]. The computational
cost is thus proportional to the square of the number of cells.
For this reason, we cannot deal with a very large system in
this study.

B. Physical interpretation

Here the entire system is assumed to be a source region
of tremors, the size of which is known to be on the order
of several kilometers [21,56]. We consider a single source
region only and exclude multiple source regions and their
interactions.

Physically, the slip and stress redistributions in steps (ii)
and (iii), constituting a single time step of the model, take a
certain amount of time �t . For tremors, this duration for stress
redistribution should be much longer than that for regular
earthquakes and therefore the amount of stress accumulation
during �t may not be negligible. This slow redistribution of
stress may be because stress redistribution is not caused by
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the elasticity alone but may rather be due to fluid migration
or any other slow processes at the plate boundaries. Then the
nearest-neighbor interaction adopted here may model such
fluid-induced stress redistribution and may not be a mere
oversimplification.

The slip propagates over the cell size of �x during a
single time step. Thus, �t is determined by �x and the slip
propagation velocity.

In cellular automata, one cannot take the limit of �x → 0
since it is the only length scale in the system. Accordingly,
the OFC model and the Burridge-Knopoff model [44,45] are
essentially discrete models in the sense that they do not have
the continuum limit [57]. This spatial discreteness in cellular
automata has been criticized in earthquake studies. However,
in considering geological heterogeneities in natural faults, it is
not so obvious as to whether they can be modeled as a contin-
uum. They may have some characteristic wavelengths, which
would validate discrete modeling [58,59]. In other words,
the cells in this model may represent a characteristic spatial
heterogeneity in the plate boundaries, i.e., the roughness, or
inhomogeneities of permeability and rheological properties.

IV. RESULTS

A. Steady state

In the conventional OFC model, the statistical distribution
is discussed in the steady state after a sufficient time step.
We evaluate and analyze the steady state in the dynamic
OFC model based on the behavior of the moment rate power
spectrum. Figure 1 shows the power spectrum of the moment
rate after time steps of t = 105, 106, 107 from the initial state.
The power spectrum is regarded as the Lorentzian expressed
in the following equation:

I ( f ) = a

1 + ( f / fc)2
. (10)

Since the behavior of the power spectrum is Lorentzian, we
define the inverse of the corner frequency fc as the correlation
time τ . The corner frequency fc decreases over time in Fig. 1.

Figure 2 shows the evolution of the correlation time τ with
the elapsed time t . The points are the ensemble averages of ten
simulation runs with different initial conditions and the error
bars indicate 1σ . When the dissipation parameter is small or R
is small, the number of events in the time series for determin-
ing the power spectrum is reduced and thus the fluctuations
become larger. The correlation time increases with time and
then becomes constant after a certain transient time. This is
interpreted as a steady state. Figure 2 shows that the relaxation
time decreases as R or the dissipative parameter increase. Note
that the correlation time at a steady state does not depend on
the dimensionless loading rate and the dissipative parameter.

Figure 3 shows the correlation times for various system
sizes with R = 1×10−5. The steady-state correlation time
increases for a larger system. However, the time to reach a
steady state is independent of the system size. Based on these
results, we estimate the time tss to reach a steady state, as
shown in Table I, and use the data from tss onward for further
discussion.

Figure 4 shows how the steady-state correlation time τss

depends on the number of cells at R = 1×10−5. It is described

10-7

10-6

10-5

10-4

10-3

10-2

10-4 10-3 10-2 10-1

PS
D

 

f

4.79 ×10-4 /(1+(x/0.0105) 2)
2.29×10-4 /(1+(x/0.0206) 2)
1.28×10-4 /(1+(x/0.0375) 2)

t=107

t=106

t=105

FIG. 1. Power spectrum of the moment rate after time steps
t = 105, 106, 107 from the initial state. The dimensionless loading
rate R = 1×10−6 with N = 60×60 cells. This power spectrum is
computed from the 217 time-step data and smoothed by the moving
average of 60 data points.

as τss ∝ Nω, where the index ω takes a range of values from
0.47 to 0.61. However, since this scaling is confirmed only for
1.5 orders of magnitude, the power-law behavior may not be
decisive. At least, a positive dependence exists.

In the conventional OFC model, the transition to steady
states is studied by monitoring the snapshots of the stress
field and the steady state is characterized by the disappearance
of the characteristic structure [60]. In the present model, we
also observe the snapshots of stress field and find the same
tendency.

TABLE I. Approximate time tss required for the steady state.

α R = 10−6 R = 10−5 R = 10−4 R = 5×10−4

0.21 108 108 107 106

0.22 108 108 107 106

0.23 108 108 107 106

0.24 107 107 106 106
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(a) (b)

(c) (d)

FIG. 2. Evolution of the correlation time τ with the elapsed time
t for N = 60×60 cells and (a) α = 0.21, (b) α = 0.22, (c) α = 0.23,
and (d) α = 0.24. The plot points are ensemble averages of ten data
with different initial conditions and the error bars indicate 1σ .

B. Enduring events and size distribution

Figure 5 shows the representative time series of the mo-
ment rate at some loading rates. We can see that the duration
of an event increases as the dimensionless loading rate in-
creases. To show this quantitatively, the average duration 〈T 〉
is computed for 106 events at each condition. As shown in
Fig. 6, the average duration increases exponentially with the
dimensionless loading rate, i.e., 〈T 〉 = A exp (R/Rc). Here A

(a) (b)

(c) (d)

FIG. 3. Evolution of the correlation time τ with the elapsed time
t for various system sizes (a) α = 0.21, (b) α = 0.22, (c) α = 0.23,
and (d) α = 0.24, with R = 1×10−5.

 1.8
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 2.2

 2.4

 2.6

 2.8

3

3  3.5 4  4.5 5

lo
g 1

0
τ s

s

log10 N

α=0.21
α=0.22
α=0.23
α=0.24

slope=0.61
slope=0.47

FIG. 4. Steady-state correlation time τss dependence on system
size at R = 1×10−5. The lines represent a power law of τss ∝ Nω,
where the index ω ranges from 0.47 to 0.61.

and Rc are parameters and Rc represents the characteristic
dimensionless loading rate for the exponential increase.

Figure 7 shows the relationship between the characteristic
dimensionless loading rate and the number of cells for each of
the different dissipation parameters. The characteristic load-
ing rate obeys a scaling 1/Rc ∝ Nγ with γ depending on α.

Figure 8 shows the probability density functions for the
moment and for the duration. At smaller loading rates, the
distribution function for the moment may be regarded as a
power law up to two orders of magnitude, whereas that for
duration is not a clear power law. Both probability density
functions have a peak at large R. This peak corresponds to
the system-size event. However, the mechanism for this peak
is not clear at this point.

In the present model, each event has a finite duration and
therefore the definition of aftershocks is not apparent. We

(a)

(b)

(c)

FIG. 5. Time series of the moment rate at (a) R = 1 × 10−5 and
R/Rc = 0.102, (b) 1×10−4 and R/Rc = 1.02, and (c) 5×10−4 and
R/Rc = 5.10 for N = 60×60 cells and α = 0.22.
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102

103

104

105

10-3 10-2 10-1 100 101

<T
>
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N=60 ×60
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N=400 ×400

4exp(x)

FIG. 6. Average duration of 106 events 〈T 〉 obtained from the
simulation for each dimensionless loading rate and N = 30×30,
40×40, 50×50, 60×60, 100×100, 200×200, and 400×400 cells,
for α = 0.22. The average duration shows an exponential increase
in the dimensionless loading rate, which can be expressed as
〈T 〉 = A exp(R/Rc ).

thus do not inspect the Omori law in this model. On the
other hand, the waiting time distribution is well defined and
found to be the Weibull distribution that is very close to the
exponential distribution irrespective of the loading rate R.
This behavior is consistent with the conventional OFC model
[40,61]. However, this waiting time distribution does not agree
with those observed for natural earthquakes [7,8]. This is a
common drawback of the OFC model.

C. Dimensionless loading rate dependence
of the moment rate spectrum

Figure 9 shows the power spectrum of moment rate, which
may be regarded as Lorentzian for R < Rc. Then the lower-
frequency part decreases at R � Rc. For R > Rc, the shape

 3

 3.5

 4

 4.5

 5

 5.5

 6

 3  3.5  4  4.5  5  5.5

lo
g 1

0(
1/

R
c)

log10(N)

α=0.21
α=0.22
α=0.23
α=0.24

slope=0.759
slope=0.830
slope=0.937
slope=1.002

FIG. 7. Relationship between the characteristic dimensionless
loading rate Rc and the number of cells for each of the dissipa-
tion parameters. The characteristic dimensionless loading rate obeys
a scaling 1/Rc ∝ Nγ , where γ = 0.759 (α = 0.21), γ = 0.830
(α = 0.22), γ = 0.937 (α = 0.23), and γ = 1.002 (α = 0.24).

of the power spectrum develops a peak and deviates from
Lorentzian.

D. Moment-duration scaling

Figure 10 shows the relationship between the event du-
ration and the moment. The linear scaling relation Mo ∝ T
holds for larger events (T > τss and Mo > N). Such scal-
ing may be caused by finite-size effects. For smaller events
(T < τss and Mo < N), another scaling relation Mo ∝ T E

holds. Here the exponent E depends on the dissipative param-
eter and ranges from 1.55 to 1.90, namely, the scaling relation-
ship between the moment and the duration transitions around
the correlation time (T � τss) and the system size (Mo � N).

At R < Rc, larger events do not occur and therefore the
linear scaling relation does not appear. Accordingly, there is
only one scaling regime for smaller events.

V. DISCUSSION

A. Pulselike rupture

The self-similar nature of regular earthquakes is expressed
as L ∝ D ∝ T , where T is the duration, L is the characteristic
length of the fault, and D is the average slip amount. In the
proposed model, the seismic moment is defined in terms of
the number of toppled cells, as the amount of slip is set to be
constant. Accordingly, the present model presumes a pulselike
rupture, because the slip amount D is independent of the
duration. In addition, we observe that the rupture propagates
unilaterally in this model. Because of the constant slip amount
and the unilateral rupture propagation, the shape of the mo-
ment rate is boxcarlike, as shown in Fig. 5. This implies that
the moment rate spectrum is proportional to the −1 power of
the frequency. (The power spectrum is of the −2 power.) In
our simulation, this behavior remains in the limit of R → 0.

B. Collective nature of the tremor

In the present model, the stress loading causes more top-
pling sites and therefore a single event tends to endure. This
tendency is enhanced for a larger loading rate or a smaller
stress release rate, i.e., larger R. As a result, the event dura-
tion increases for larger R. In this sense, the present model
reproduces the characteristics of tremors, which continue for a
certain duration with the successive occurrence of unit events.
Namely, a tremor is a swarm (collective occurrence) of LFEs,
whereas an event in the present model consists of many suc-
cessive toppling events.

C. Area characteristics of size-frequency relation

Despite recent extensive studies, the size-frequency rela-
tion for tremors is still not conclusive [24–28], partly due to
the various detectability limits in observations. As shown in
Fig. 8, the size-frequency relation suggests that the charac-
teristic event emerges for R > Rc, while it is scale-free for
R < Rc. Thus, the regional or depth dependence of R/Rc may
explain various observation studies on the size-frequency dis-
tribution. However, Rc cannot be inferred for plate boundaries,
whereas R can be estimated using observable quantities. In
the present model, Rc depends on the number of cells N .
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FIG. 8. Probability density functions of (a) the moment and
(b) the duration. The dissipation parameter is 0.22 and N = 60×60.
The dimensionless moment rates are R = 10−6 (R/Rc = 0.010), R =
10−5 (R/Rc = 0.102), R = 10−4 (R/Rc = 1.02), and R = 5×10−4

(R/Rc = 5.10). The results obtained from the conventional OFC
model are shown for R = 0.

This is determined by the cell size �x, which may be the
characteristic wavelength of geological heterogeneity. This is
not observable to date.

D. Moment-duration scaling

Figure 10 indicates that the scaling transition occurs when
the seismic moment is roughly equal to the total number of
cells and the event duration approximately equals the cor-
relation time. The scaling relation Mo ∝ T is observed only
above this transition point. Since Mo > N , cells slip more than
once in this regime. If τ is the number of time steps needed
for N cells to slip, then the duration should be τMo/N when
Mo > N .

At the transition point, all of the cells undergo slip once on
average, where Mo � N and T � τss. The correlation time τss

is thus interpreted as the characteristic time for the rupture to
propagate through the system.

The proposed model thus reproduces the scaling law for
slow earthquakes, i.e., Mo ∝ T [21], but this is true only
when R/Rc > 1. In this regime, the moment-rate power spec-
trum deviates from Lorentzian and develops a peak at a low
frequency. Although such a peak has not been reported in
observations, it may be masked by microseism, which is dom-
inant in the frequency range from 1 mHz to 1 Hz [62]. If
we can somehow unmask microseism, a direct verification
of our result may be feasible. At the same time, we cannot
exclude the possibility that some other kinds of slip occur
on the low-frequency side. In that case, the model should be
improved to include such processes.

E. Comparison with other tremor models

There have been several similar models in the literature.
Among them, the model in [30] assumes many brittle patches
that cause LFEs driven by SSEs in the continuum plate bound-
ary. The implementation of brittle patches in the continuum
is similar to the assumption of discrete cells that topple in
the present model. In this respect, the present model may
be regarded as a simplification of distributed patches in the
continuum. As a result, both models can reproduce the mo-

FIG. 9. Moment rate power spectrum for N = 60×60 cells and
α = 0.22. The power spectrum is Lorentzian only for R < Rc, while
the lower-frequency component declines at larger R.

ment rate spectrum proportional to f −1. On the other hand, a
major difference is the interaction between patches or cells.
The elasticity yields long-range interaction between patches
in the continuum, whereas the nearest-neighbor interaction is
adopted in the present model. Nevertheless, they yield similar
behavior. This similarity, despite the apparent difference in the
models, may be an interesting problem to investigate further.

Another model [33] also assumes a collection of cellular
slip patches on a fault surrounded by an elastic continuum.
Adopting a depth-dependent friction model, the complex slip
behavior similar to migrating tremors is reproduced and the
size-frequency relation is a power law with exponential cutoff.
On the other hand, the scaling relation is rather peculiar: Mo ∝
T 2/ log(T )2/3. In addition, the nature of moment rate is not
discussed. Considering the complexity of the model settings,
these continuum models [30,33] rather illuminate a success of
the present model, which is quite simple but reproduces the
moment rate behavior and the scaling relation.

Apart from continuum models, another cellular automaton
model has been proposed aiming in the same direction as the
present study. This model [35] adopts a stochastic nearest-
neighbor interaction and reproduces the moment rate behavior
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(a) (b)

(c) (d)

FIG. 10. Relationship between the event duration and the mo-
ment at different system sizes (a) α = 0.21, (b) α = 0.22, (c) α =
0.23, and (d) α = 0.24 and different dissipation parameters at
R/Rc > 1. We set logarithmic bins for duration and compute the
averaged moment for the events that belong to each bin. The average
is taken using 106 events at each set of system size and dissipation
parameter. The averaged moment and the duration are then rescaled
by the number of cells and the correlation time, respectively. The
events with a duration longer than the correlation time obeys the
relationship Mo ∝ T . Shorter duration events obey Mo ∝ T E , where
E depends on the dissipative parameter and ranges from 1.55 to 1.90.

and the moment-duration scaling. The discrete nature is com-
mon to our model, but the algorithm is significantly different
(particularly the stochastic dynamics). The physical meaning
of this stochastic interaction is not clear at this point. In con-
trast, in the present model, the time evolution is deterministic
and the randomness comes into play only in the initial state.
In other words, complex dynamic behavior emerges out of the
spatial heterogeneity of the stress. In this respect, the physical
meaning may be clearer in the present model.

F. Criticism of nearest-neighbor interaction

The argument for ignoring far-field interactions may be
useful when considering the model of tremors. Many studies
have suggested that areas where tremors occur are fluid rich
[10]. Therefore, we may assume that the pore fluid pressure is

essential for tremors. Based on this consideration, the stress
carrier in slip propagation is mainly the dynamics of the
pore fluid pressure. The nearest-neighbor interaction in the
proposed model might be somewhat justified by such fluid-
assisted rupture propagation.

The correlation time, which is defined through the power
spectrum of the moment rate, is the time required for rupture
propagation through the system. This implies that the memory
in the system is not lost until all of the sites are toppled. This
timescale is independent of the loading rate and thus rather
intrinsic.

Generally, the state variable on the cells may undergo
superdiffusion. This is apparent from Fig. 4, where the cor-
relation time depends on the system size N with an exponent
that is much larger than that for diffusion. Note, however, that
this interpretation does not apply for the case of α = 0.24,
because the scaling does not completely hold, as shown in
Fig. 10.

VI. CONCLUSION

We have proposed a simple model for tremors, modifying
a cellular automaton model to incorporate two competing
timescales: stressing and destressing rates. This ratio, denoted
by R, plays a central role in reproducing the dynamical prop-
erties of tremors. By carefully removing the transient effects,
we can discuss the steady-state properties properly. Some
features of tremors are reproduced at rather larger loading
rates, implying that the ratio of the above two rates is a key
parameter for dynamics of tremors.

As opposed to most self-organized criticality models, a
rupture (or an avalanche) propagates within finite time steps.
We can thus define the duration of a single event and the
duration-moment relation. The event duration increases ex-
ponentially with the dimensionless loading rate, leading to
enduring events.

Nearest-neighbor interaction, which is often criticized
from the viewpoint of elasticity, may be regarded as fluid-
assisted stress diffusion. However, more critical inspection
would be necessary on the relevance of the model to natural
plate boundaries, particularly the counterparts of the discrete
cell size, the finite time step, and the dissipation parameter.
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