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Strong anomalous diffusive behaviors of the two-state random walk process
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The phenomenon of the two-state process is observed in various systems and is increasingly attracting
attention, such that there is a need for a theoretical model of the process. In this paper, we present a prototypal
two-state random walk (TSRW) model of a renewal process alternating between the continuous-time random
walk (CTRW) state and Lévy walk (LW) state. The jump length distribution of the CTRW state is assumed to
be Gaussian whereas the time distributions of the two states are both considered to follow a power law. The
diffusive behavior is analyzed and discussed by calculating the mean squared displacement (MSD) analytically
and numerically. The results reveal that it displays strong anomalous diffusive behaviors caused by random
motions of both states, i.e., two anomalous diffusion terms coexist in the expression of the MSD, and the
time distribution which has the heavier tail determines their forms. Moreover, because the two diffusion terms
originate from different mechanisms, we find that the diffusion can be characterized by either the term with
the largest diffusion exponent or the term with the largest diffusion coefficient at long timescales, which shows
very different properties from the single-state process. In addition, the two-state nature of the process of the
particle moving in a velocity field makes the TSRW model applicable to describe it. Results obtained from the
two-state model reveal that the diffusion can even exhibit subdiffusive behavior, which is significantly different
from known results obtained using the single-state model.
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I. INTRODUCTION

Since it was presented by Montroll and Weiss [1,2], the
continuous-time random walk (CTRW) theory, which recently
completed a 50-year history [3], has proved to be a useful and
powerful method and has been widely applied in the study
of anomalous transport phenomena in physical, biological,
and geological systems [4–8]. As a typical phenomenological
model, the CTRW is characterized by the jump length and the
waiting time of a walker between two successive jumps, which
are both drawn from a joint probability density function (PDF)
ψ (x, t ), where λ(x) = ∫ ∞

0 dtψ (x, t ) is the jump length PDF
and ωr (t ) = ∫ ∞

−∞ dxψ (x, t ) is the waiting-time PDF. It has
been extensively observed that anomalous diffusion emerges
if the waiting time follows a power law; i.e., ω(t ) ∼ t−(1+α)

for large t with 0 < α < 2. For 0 < α < 1, subdiffusion oc-
curs, which is extensively observed in biological systems
[9–14]; for 1 < α < 2, experimental and theoretical research
indicates that anomalous diffusion can be found in complex
geological porous media [15–18].

Another fundamental notion in physics and the widely ap-
plied phenomenological model is the Lévy walk (LW), whose
distinctive feature is the space-time correlation [7,8,19–22].
In the LW scheme, with a constant velocity but a ran-
dom direction, the particle performs ballistic excursion for a
random time interval. After finishing this excursion, the parti-
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cle immediately randomly chooses a new direction and moves
for another random time interval with the same velocity [7].
Instead of jump length and waiting time in the CTRW model,
the velocity v of the particle and the time spent in each jump,
which is sampled from jump time PDF ω j (t ), are the two
characteristics, which can incorporate the coupled transition
PDF,

φ(x, t ) = 1
2δ(|x| − vt )ω j (t ), (1)

which implies that only particles jumping from x − vt and
x + vt can reach x in time interval t and change their veloc-
ities after this jump; i.e., the jump size is penalized by the
jump time [7]. If the jump time PDF follows a power law
ω j (t ) ∼ t−(1+β ) for large t with 0 < β < 2, ballistic diffusion
(0 < β < 1) and subballistic diffusion (1 < β < 2) occur. De-
spite its simplicity, the LW model is able to describe stochastic
transport in various areas of research, e.g., the spreading of
cold atoms in optical lattices [23,24], dynamics of blinking
nanocrystals [25,26], migration of swarming bacteria [27],
light transport in special optical materials [28], and foraging
patterns of animals [29]. See Ref. [7] for a detailed discus-
sion of the existing applications and current status of the LW
model.

When performing the LW, the particle always moves with
consecutive velocity renewals. However, if the processes are
interrupted by periods of immobilization (rest events) at the
turning points, it is the Lévy walk with rests (LWR) model,
which is actually a two-state process [7,8,30,31]. The wait-
ing time of the rest event is obtained from an independent
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FIG. 1. (a) Schematic descriptions of the CTRW, LW, LWR, and TSRW. The solid black lines denote the waiting times, the dotted red
lines denote the instantaneous jump lengths, and the short dashed blue lines denote the Lévy walk steps. (b) Schematic description of the
transition process. (c) Numerical realization of the single trajectory of various random walk models, where the applied parameters are α = 0.6
and σ = 1.0 for the CTRW model; β = 0.7 for the LW model; α = 0.6 and β = 0.8 for the LWR model; α = 0.8, β = 0.6, and σ = 10 for
the TSRW model.

distribution which may be exponential or follow a power law.
Competition between the LW excursions and rests can thus
affect the time dependence of the mean squared displacement
(MSD), e.g., the motion becomes slower than ballistic and
subballistic motion. The two-state process can be found in
various systems. Trapping occurs when a trajectory undergoes
an LW process in a Hamiltonian dynamical system [30,32].
The transport of the neuronal messenger ribonucleoprotein
(mRNP) in neuronal systems undergoes an LW process inter-
rupted by rests [33]. The intermittent search strategy clearly
exhibits a two-state process which includes a slow local Brow-
nian search phase which is responsible for detecting the target
and a fast ballistic excursion phase which aims to relocate into
unvisited regions to avoid oversampling [34,35].

Consider that a particle precedes a random diffusion. After
being placed in an environment which drives the particle to
execute an LW process, the particle’s diffusion then comes
from the contribution of not only the particle’s intrinsic dif-
fusion itself but also the LW resulting from the environment.
For example, the mRNP may undergo a local intracellular ran-
dom transport itself (such as Brownian motion). After being
activated by messenger ribonucleic acid, the mRNP stochas-
tically travels along the microtubules bidirectionally until it is
captured by target synapses. A more precise example is the
intermittent search strategy mentioned above, which includes
a local Brownian motion phase and LW phase. Undoubtedly,
the mRNP’s local intracellular random transport and local
Brownian motion of the intermittent search process can be
both well described by the CTRW model.

In this paper, we present a renewal two-state process alter-
nating between CTRW and LW, which is called the two-state
random walk (TSRW) model. Different from another two-
state LWR model, when the particle is in the rest state, the
intrinsic random motion which can be well described by the
instantaneous jump length of the CTRW is considered. In
other words, the waiting time and jump length of the CTRW

are dedicated to the rest event and local random motion,
respectively, and the LW process is devoted to the ballistic
excursion. See Fig. 1(a) for a schematic description of the
TSRW model and other existing random walk models.

The remainder of the paper is organized as follows. The
TSRW model is presented and the propagator is calculated
in Sec. II. Anomalous diffusive behaviors are analyzed and
discussed in Sec. III. With the aid of the TSRW model, the
diffusion of a particle traveling in a velocity field is discussed
in Sec. IV. A summary is given in Sec. V.

II. THE MODEL

We restrict ourselves to the one-dimensional case. Con-
sider that the particle initially stays and rests for a period
which is drawn from the corresponding waiting time PDF
ωr (τ2), and then makes an instantaneous random jump
which is drawn from the corresponding jump length PDF
λ(�x2). The particle then enters the LW state: With a
constant velocity v but a random direction with equal
probability, the particle keeps walking for a random pe-
riod drawn from the jump time PDF ω j (τ1); apparently,
the excursion in this walk is �x1 = ±vτ1. After com-
pleting the LW state, the particle enters the CTRW state
and the process iterates. It can be seen that the pro-
pagator P(x, t ), which represents the PDF of finding the parti-
cle at position x at time t , includes two phases, namely, resting
and jumping, i.e., P(x, t ) = Pr (x, t ) + Pj (x, t ), where Pr (x, t )
is the PDF of resting and Pj (x, t ) is the PDF of jumping.

Indeed, when the particle is in the CTRW state, instead of
making only one jump, one can expect that the particle may
undergo numerous random steps in real systems. For example,
for the intermittent search strategy, there are a number of
Gaussian-distributed random searches in the local Brownian
motion phase [34,35]. Undoubtedly, these random steps can
be meticulously described using, for example, the Langevin
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picture. While in the framework of the CTRW model which is
the typical phenomenological method, these random steps can
be statistically and safely described by one jump length.

Define η(x, t ) as the flux of particles which just finished the
CTRW state and started moving out of position x and entering
the LW state; it satisfies

η(x, t ) =
∫ ∞

−∞
dx′

∫ t

0
dτ1

∫ t−τ1

0
dτ2η(x′, t ′)φ(�x1, τ1)

× λ(�x2)ωr (τ2) + ωr (t )P0(x), (2)

in which P0(x) = P(x, 0) denotes the initial condition, η(x′, t ′)
denotes the flux at x′ at earlier time t ′, and it shall accomplish
its following LW state and CTRW state to arrive at x at time t ,
see Fig. 1(b). The second term of the right-hand side of Eq. (2)
relates the fact that the particles gradually leave their initial
positions according to the waiting time PDF. Considering
that t − t ′ = τ1 + τ2 and x − x′ = �x1 + �x2, and inserting
Eq. (1) into Eq. (2) yields

η(x, t ) = 1

2

∫ ∞

−∞
dx′

∫ t

0
dτ1

∫ t−τ1

0
dτ2η(x′, t−τ1 − τ2)ω j (τ1)

× [λ(x − x′ + vτ1) + λ(x − x′ − vτ1)]ωr (τ2)

+ωr (t )P0(x) (3)

and

η(k, s) = ωr (s)P0(k)

1 − 1
2 [ω j (s + ivk) + ω j (s − ivk)]ωr (s)λ(k)

, (4)

in Fourier-Laplace space, in which the Fourier-
Laplace technique f (k, s) = FL { f (x, t )} =∫ ∞
−∞ dx

∫ ∞
0 dte−ikx−st f (x, t ) is applied.

The propagator Pr (x, t ) and Pj (x, t ) then can be given by

Pr (x, t ) =
∫ ∞

−∞
dx′

∫ t

0
dτ1

∫ t−τ1

0
dτ2η(x′, t ′)φ(�x1, τ1)

× λ(�x2)
r (τ2) + 
r (t )P0(x) (5)

and

Pj (x, t ) =
∫ ∞

−∞
dx′

∫ t

0
dt ′η(x′, t ′)
 j (�x1, τ1), (6)

in which 
r (t ) = 1 − ∫ t
0 dt ′ωr (t ′) is the survival probability

of the CTRW state, the probability of not leaving until time
t , 
 j (x, t ) = 1

2δ(|x| − vt )
 j (t ), is the survival probability of
the LW state, and the probability of moving a distance x and
remaining in the state of traveling, 
 j (t ) = 1 − ∫ t

0 dt ′ω j (t ′),
is parallel to the meaning of 
r (t ). The first term on the right-
hand side of Eq. (5) is the sum of all possible neighboring
fluxes at different times, weighted by the coupled transition
PDF φ(�x1, τ1) and jump length PDF λ(�x2), provided the
particles survived for a time period τ2 after their arrival at x at
t − τ2, see Fig. 1(b). The second term on the right-hand side of
Eq. (5) accounts for the particles that initially stay at (x, 0) and
wait until time t to leave. The right-hand side of Eq. (6) relates
the sum of all possible neighboring flux which enters the LW
state from (x′, t ′), performs the excursion �x1 = x − x′ with
time τ1 = t − t ′, but still remains in the LW state.

After performing the Fourier-Laplace transform on Eqs. (5)
and (6) and inserting Eq. (4) into them, they arrive at

Pr (k, s) = 
r (s)P0(k)

1 − 1
2 [ω j (s + ivk) + ω j (s − ivk)]λ(k)ωr (s)

(7)

and

Pj (k, s) = ωr (s)
 j (k, s)P0(k)

1 − 1
2 [ω j (s + ivk) + ω j (s − ivk)]λ(k)ωr (s)

.

(8)

Correspondingly, the propagator P(k, s) is

P(k, s) = Pr (k, s) + Pj (k, s)

= 
r (s) + 
 j (k, s)ωr (s)

1 − 1
2 [ω j (s + ivk) + ω j (s − ivk)]λ(k)ωr (s)

, (9)

in which δ(x) at t = 0 being the initial condition is taken into
account.

In this paper, we consider that the waiting time PDF ωr (t )
and jump time PDF ω j (t ) both follow a power law,

ωr (t ) ∼ ατα
0 t−(1+α), 0 < α < 2,

ω j (t ) ∼ βτ
β

0 t−(1+β ), 0 < β < 2, (10)

for t � τ0, where τ0 is the microscopic timescale (scaling
factor). For long-time limit t/τ0 → ∞, the Laplace form of
Eq. (10) reads

ωr (s) = 1 − ταsα, 0 < α < 1,

ω j (s) = 1 − τβsβ, 0 < β < 1, (11)

and

ωr (s) = 1 − Tαs + ταsα, 1 < α < 2,

ω j (s) = 1 − Tβs + τβsβ, 1 < β < 2, (12)

in which τα = |�(1 − α)|τα
0 , τβ = |�(1 − β )|τβ

0 , Tα =
ατ0/(α − 1), and Tβ = βτ0/(β − 1). If the power exponent
α, β ∈ (0, 1), the mean of ωr (t ) and ω j (t ) diverges, the
distribution displays distinct asymptotic property. While, if
α, β ∈ (1, 2), the mean of ωr (t ) and ω j (t ) is finite, which is
Tα and Tβ , respectively, but the variance still diverges, which
implies that the distribution displays a weak asymptotic
property. Indeed, the time distribution with power exponent
belonging to (0,1) displays quite different properties from
the one with the power exponent belonging to (1,2) [7,8,36].
For example, to describe the transport of a biased spreading
packet in disordered systems, within the CTRW scheme, a
fractional advection-diffusion-asymmetry equation has been
recently presented, in which a remarkable feature is that the
long-tailed PDF of trapping times, which for power exponent
belonging to (0,1) implies a fractional time derivative, is
transplanted into a spatial space derivative when power
exponent belonging to (1,2).

The jump length PDF λ(x) is considered to be Gaussian,

λ(x) = 1√
2πσ 2

exp

[
− x2

2σ 2

]
, (13)

in which σ 2 is the variance of jump length. For σ 2 = 0, the in-
trinsic random motion vanishes and the CTRW state becomes
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TABLE I. The specific values of the diffusion exponents of the TSRW model.

Specific cases 0 < β < α < 1 0 < α < β < 1 1 < α < 2, 1 < β < 2 1 < α < 2, 0 < β < 1 0 < α < 1, 1 < β < 2

Eq. (17) ∼t2+ ∼ tβ ∼t2+α−β+ ∼ tα ∼t3−β+ ∼ t1 ∼t2+ ∼ tβ ∼t2+α−β+ ∼ tα

Eq. (21) ∼t2+ ∼ t
2β
μ ∼t2+α−β+ ∼ t

2α
μ ∼t3−β+ ∼ t

2
μ ∼t2+ ∼ t

2β
μ ∼t2+α−β+ ∼ t

2α
μ

a mere rest state, and the TSRW model reduces to the LWR
model.

By numerical realization, the single trajectory of the TSRW
model is depicted in Fig. 1(c); for comparison, trajectories
of other random walk models are also displayed. In this pa-
per, the numerical calculation is implemented adopting the
Monte Carlo trajectory-simulating technique [37] along with
the number of trajectories N = 5 × 104, time step �t = 10−3,
and the velocity v = 1. We choose ωr (t ) = ατα

0 t−(1+α), t �
τ0, and ω j (t ) = βτ

β

0 t−(1+β ), t � τ0, and τ0 = 1 for the nu-
merical simulations. See Appendix C for the details of the
numerical simulations.

III. ANOMALOUS DIFFUSIVE BEHAVIORS
AND DISCUSSIONS

A. Anomalous diffusive behaviors

In the following, we focus on the diffusive behavior of the
process depicted by the TSRW model, which can be obtained

from calculating 〈xn(t )〉 = inL −1{ ∂n

∂kn P(k, s)}k=0, e.g.,

〈x(t )〉 = iL −1

{
∂P(k, s)

∂k

}
k=0

(14)

and

〈x2(t )〉 = −L −1

{
∂2P(k, s)

∂k2

}
k=0

, (15)

and the MSD 〈�x2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2 are obtained.
Apparently, without consideration of bias, 〈x(t )〉 = 0 and
〈�x2(t )〉 = 〈x2(t )〉. Note that, for the coupled random walk
models, the order in which the limits |k| → 0 and s → 0 are
performed usually matters [38]. A reasonable consideration is
first the limit of small k and then the limit s � 1 in calculating
the asymptotic form of the MSD, which is applied in this
paper.

As stated above, the time distribution with the power expo-
nent α, β ∈ (0, 1) decays much slower than that with α, β ∈
(1, 2). When performing the calculations, we notice that the
values of α and β determine the role and the form of local
random motion of the CTRW state and ballistic excursion of
the LW state in expressing the MSD, which can be specifically
categorized into four cases: 0 < α < 1, 0 < β < 1; 1 < α <

2, 1 < β < 2; 1 < α < 2, 0 < β < 1; and 0 < α < 1, 1 <

β < 2. After completing the calculations, we also find that
the results actually can be generally reformed into two cases:
0 < min{α, β} < 1, and 1 < min{α, β} < 2. See Appendix A
for the detailed calculations and results.

Based on the calculations, the propagator can be expressed
as

⎧⎪⎨
⎪⎩

P(k, s) � 1
s

τmin{α,β}smin{α,β}−bsβ−2k2

τmin{α,β}smin{α,β}+dsβ−2k2+σ 2k2 , 0 < min{α, β} < 1

P(k, s) � 1
s

(Tα+Tβ )s−bsβ−2k2

(Tα+Tβ )s+dsβ−2k2+σ 2k2 , 1 < min{α, β} < 2,

(16)

in which τmin{α,β} dedicates τβ (if α > β) or τα (if α < β), b = 1
2 |(β − 1)(β − 2)|τβv2, and d = 1

2 |β(β − 1)|τβv2. Correspond-
ingly, the expression of the MSD can be asymptotically expressed as

〈�x2(t )〉 �
⎧⎨
⎩

D1t2−β+min{α,β} + D′
1tmin{α,β}, 0 < min{α, β} < 1

D2t3−β + D′
2t, 1 < min{α, β} < 2,

(17)

in which D1 = (1 − β )v2 for α > β or D1 = 2|1−β|τβv2

�(3+α−β )τα
for

α < β, D′
1 = 2σ 2

�(1+β )τβ
for α > β or D′

1 = 2σ 2

�(1+α)τα
for α < β,

D2 = 2(β−1)τβv2

�(4−β )(Tα+Tβ ) , and D′
2 = 2σ 2

Tα+Tβ
. The specific values of

the diffusion exponent are displayed in Table I. Actually, the
first term on the right-hand side of Eq. (17) originates from
LW state (the LW term) and the second one originates from
CTRW state (the CTRW term) [39]. In other words, the LW
state and CTRW state each plays its own role in contributing
the diffusion. In addition, consider that the LW term possesses
the bigger diffusion exponent, which should be the leading

term at large timescales, and the MSD can be approximately
expressed by

〈�x2(t )〉 ∝
⎧⎨
⎩

t2−β+min{α,β}, 0 < min{α, β} < 1

t3−β, 1 < min{α, β} < 2
(18)

at large timescales.
Moreover, though the form of Eq. (17) can be classified

as a LW term and CTRW term, it can be seen that the time
distribution (with the smaller power exponent) of the two
states which decays slower determines its expression. For the
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FIG. 2. MSD 〈�x2(t )〉 as a function of time t with various α and
β. (a) 0 < α < 1, 0 < β < 1, which includes 0 < β < α < 1 and
0 < α < β < 1; (b) 1 < α < 2, 1 < β < 2; (c) 1 < α < 2, 0 < β <

1; (d) 0 < α < 1, 1 < β < 2. The asymptotic diffusive behaviors
(i.e., the diffusion exponents from the linear fit) are in good agree-
ment with the theoretical results at large timescales. The parameters
applied in the numerical simulations are σ = 100, σ = 1, σ = 100,
and σ = 10 for the four subgraphs.

CTRW state (with 0 < min{α, β} < 1), the MSD is ∼tα for
α < β and ∼tβ for α > β. For the LW state, if α < β, differ-
ent from the pure LW process, it is not ballistic diffusion ∼t2

(0 < β < 1) and subballistic diffusion ∼t3−β (1 < β < 2), it
is ∼t2+α−β instead, which can even behave as subdiffusion
if β − α > 1. The long traps of the CTRW state drastically
affect the diffusion of the LW state, which is supposed to be
the super one.

With medium σ , considering various α and β, which are
on behalf of the cases stated in Eqs. (17) and (18), the MSDs
〈�x2(t )〉 varying with time t are displayed in Fig. 2. It can
be seen that since more than one diffusive process coexists
at an intermediate timescale, crossover appears in between
the diffusion processes. However, as expected, the crossover
is always followed by a steady state which is characterized
by the biggest exponent, just as given in Eq. (18). Crossover
phenomena can be observed in various systems as long as
there is more than one diffusive process or mechanism in
the evolutions, for example, intracellular transport in bio-
logical systems [10], the transport of granular gases in a
homogeneous cooling state or glass-forming liquids [40,41],
correlated CTRW transporting in a velocity field [42,43], and
anomalous diffusion of correlated Lévy flight [44].

B. Discussions

1. Comparison with LWR model

Indeed, the asymptotic diffusive behavior Eq. (18) is ex-
actly the same as the LWR model; the ballistic excursion of
the LW and time distribution with a smaller power exponent
jointly determine the diffusion’s asymptotic behavior [8]. This
is not surprising and is understandable. As is known, diffusion
is characterized in the limit of a large timescale, and the term
with the largest diffusion exponent prevails in the expression
of MSD. Since the jump length PDF of the CTRW state is
the trivial Gaussian distribution while the LW state performs

ballistic excursion, the diffusion originating from the CTRW
state cannot compete with the diffusion from the LW state—
the diffusion exponent of CTRW term is always smaller than
the one of the LW term. Hence, the diffusion of the CTRW
state may contribute at the intermediate timescale but the
MSD’s asymptotic behavior is always determined by the LW
state (and time distribution with smaller exponent).

However, we want to mention that considering the bifrac-
tional characteristic of the TSRW model (the two fractional
diffusions originate from different mechanisms), it can display
quite different phenomena from the LWR model: instead of
the diffusion exponent, diffusion can be temporarily charac-
terized by the diffusion coefficient even at large timescales
and does not obey the previous definition. In addition, the state
occupation caused by the time distribution with the smaller
exponent of the two states can determine its final behavior
at ultimate large timescales. In this sense, the CTRW state
may dominate in the TSRW process; see below. Besides,
after considering bias, the diffusion of the CTRW state also
becomes very important; see Sec. IV.

2. The role of diffusion coefficient

Compared with the velocity v = 1, medium and large σ is
applied in numerically depicting the single trajectory of the
TSRW process, which is displayed in Fig. 3(a)—the applied
exponents are α = 0.6 and β = 0.8. For the medium σ such
as σ = 1, σ = 10, and σ = 102, the CTRW state and LW
state can be easily distinguished, but for the large σ such as
σ = 104 (in this case, D′

1 � D1 and D′
2 � D2), the LW state

has become indistinguishable. Surely, the LW state is not kind
of being erased, but suppressed by strong fluctuations of the
CTRW state. The MSDs varying with time are depicted at the
same time, which is displayed in Fig. 3(b). It can be seen that
for medium σ , the diffusion exponents are all well consistent
with the expected value 2 + α − β at large timescales, i.e.,
the diffusion exponent of the LW term in Eq. (17). However,
for large σ such as σ = 104, even at large timescales, the
diffusion exponent is contrarily consistent with the diffusion
exponent of the CTRW term.

Apparently, for σ = 104, instead of the LW term which
has the largest diffusion exponent, the diffusion is charac-
terized by the CTRW term which has the largest diffusion
coefficient, which does not obey the previous conclusion. The
intrinsic reason is the two-state nature of the the TSRW model.
Specifically speaking, the CTRW term and LW term originate
from different mechanisms: If one mechanism fluctuates so
strongly that the corresponding diffusion coefficient is much
larger than the other one, the process originating from the
other mechanism can be suppressed. Then, in contrast with
expressing the diffusion using the LW term having the largest
diffusion exponent, the diffusion can be expressed using the
CTRW term which has the largest diffusion coefficient.

Stochastic transport disturbed by multiple origins can
be widely observed in physical and biological systems
[42,43,45–49]. Take an active particle’s random intracellular
transport, for example: The stochastic motion comes from
not only thermal agitation from the surroundings, but also
the actively fluctuating forces such as the (de)polymerization
of cytoskeletal filaments, the active motion of molecular
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FIG. 3. The applied exponents are α = 0.6 and β = 0.8. (a) Single trajectory of the TSRW process with various σ . For σ = 104, the LW
state becomes very hard to distinguish. (b) MSD 〈�x2(t )〉 as a function of time t with various σ . For σ = 1, σ = 10, and σ = 102, the diffusion
exponents from linear fit are well consistent with the expected value 2 + α − β (the diffusion exponent of the LW term), whereas, for σ = 104,
the diffusion exponent is consistent with α (the diffusion exponent of the CTRW term).

motors along these filaments, and the kinesin-driven transport
of cargo along linear microtubule tracks [46–48]. In healthy
cells, transport of cargo can be maintained to almost behave as
ballistic motion, however, it is not strong enough and usually
covered by other effects, and the diffusion behaves as a sub
or normal type. Undoubtedly, separating the superdiffusive
process from others and studying its transport property, such
as the mechanism of preventing and avoiding traffic jams, is
meaningful [48,49]. We hope that the TSRW model and the
results discussed in this paper could provide some clue for it.

Lastly, we want to stress that, considering the diffusion
coefficient is just a constant, diffusion determined by the
term which has the largest diffusion coefficient is still just
a transient phenomenon, even if it holds for a number of
timescales as the results displayed in Fig. 3(b). For extremely
long-time limit t → ∞, theoretically, the term which has the
largest diffusion exponent can certainly defeat the term which
has the largest diffusion coefficient, and finally dominates the
diffusion. However, for experimental research, the timescale
of this long-last transient phenomenon can go beyond the

timescale of the experimental observation and may mislead
the research. In this sense, we consider that the TSRW model
deserves further study and may be able to help avoid this
possible not readily noticeable mistake.

3. Nontrivial jump length

One more thing worthy of discussion is that, instead of
Gaussian distribution, if the jump length PDF is considered
to be a power law shape, e.g., the Lévy distribution λ(x) ∼
σ−μ|x|−(1+μ) whose Fourier form is

λ(k) = exp(−σμ|k|μ) � 1 − σμ|k|μ, (19)

with 1 < μ < 2 being the Lévy index [50], the diffusion of
the CTRW state could be stronger than the LW state. After
inserting Eq. (19) into Eq. (9), the following calculations are
very similar to the procedure of calculating Eqs. (16) and
(17). Following the previous thoughts, the propagator can be
expressed as

⎧⎪⎨
⎪⎩

P(k, s) � 1
s

τmin{α,β}smin{α,β}−bsβ−2k2

τmin{α,β}smin{α,β}+dsβ−2k2+σμ|k|μ , 0 < min{α, β} < 1

P(k, s) � 1
s

(Tα+Tβ )s−bsβ−2k2

(Tα+Tβ )s+dsβ−2k2+σμ|k|μ , 1 < min{α, β} < 2,

(20)

and the MSD can be expressed as [51]

〈�x2(t )〉 ∝
⎧⎨
⎩

∼ t2−β+min{α,β}+ ∼ t
2min{α,β}

μ , 0 < min{α, β} < 1

∼ t3−β+ ∼ t
2
μ , 1 < min{α, β} < 2.

(21)

The specific values of the diffusion exponent are given in
Table I. It can be seen that the second diffusion exponent
certainly can be larger than the first one. Considering that the
Lévy flight itself is a strong nonlocal diffusive process, we
have to say, in this sense, the TSRW model must be describing
a drastic fluctuating stochastic process.

IV. DIFFUSION OF THE PARTICLE TRANSPORTING
IN A VELOCITY FIELD

A. The diffusive behaviors

One topic relating to the CTRW model is the diffusion
of random diffusive particles traveling in a constant velocity
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field, including the fluid flowing freely and the fluid flowing
through porous media [5,42,43,52,53]. In particular, for the
latter case, the particle could get stuck in pores or jump out
and move freely with the fluid. The scheme of the process
described by the CTRW is as follows.

The particle getting stuck in pores implies that it stays
at its present position, which can be precisely described by
the waiting time. After staying still for a time period, the
particle jumps out and accomplishes a jump length, while the
jump length shall be corrected by the bias from the velocity
field. But in the CTRW theory, each jump is accomplished
instantaneously and does not cost any time—the bias from
the velocity field in each jump cannot be directly measured.
The comprised method is from the viewpoint of clock time
of experimental observation (see Fig. 1 of Ref. [42] for the
schematic description of the time lines of CTRW), once the
particle jumps, it is measured and recorded within the exper-
imental constant time interval �t , hence the bias μ can be
estimated as the product of the fluid’s constant velocity v and
the constant time interval �t : μ = v�t . In other words, after
staying still for a random waiting time, the following jump
length of the particle is corrected by the distance covered by
the moving fluid during the measurement time interval �t .

Compared with the above comprised method, the scheme
depicted by the TSRW model may provide a more natural
scenario. The random diffusive particle is captured by pores
and stays still for a random time period τ2 drawn from ωr (τ2),
then jumps out and flows with the velocity field for another
random time period τ1 drawn from ω j (τ1) until it is captured
again; the process iterates. Apparently, the excursion in each
flowing is just the sum of the particle’s intrinsic random fluc-
tuation �x2 drawn from the jump length PDF λ(�x2) and the
distance traveling with the fluid �x1 = vτ1. In this sense, the

bidirectional motion of the LW state reduces to the directed
one, i.e., instead of Eq. (1), the coupled transition PDF is now
expressed as

φ(x, t ) = δ(x − vt )ω j (t ). (22)

After considering Eq. (22) in the expressions of Eqs. (2)–
(5), we have

η(k, s) = ωr (s)P0(k)

1 − ω j (s + ivk)ωr (s)λ(k)
, (23)

Pr (k, s) = 
r (s)P0(k)

1 − ω j (s + ivk)ωr (s)λ(k)
, (24)

Pj (k, s) = ωr (s)
 j (k, s)P0(k)

1 − ω j (s + ivk)ωr (s)λ(k)
, (25)

and

P(k, s) = 
r (s) + 
 j (k, s)ωr (s)

1 − ω j (s + ivk)λ(k)ωr (s)
, (26)

in which δ(x) at t = 0 being the initial condition is still taken
into account. Note that if the particle traveling in the velocity
field does not have intrinsic random fluctuations, σ 2 = 0, then
the transport of the particle can be precisely described by the
directed LWR model.

In the following, we restrict ourselves to the typical asymp-
totic regime α, β ∈ (0, 1); a brief discussion on the other cases
is presented in Appendix B 2. For α, β ∈ (0, 1), the first mo-
ment 〈x(t )〉 and second moment 〈x2(t )〉 are (see Appendix B 1
for detailed derivations)

〈x(t )〉 �
{
vt, α > β

τβv

�(2+α−β )τα
t1+α−β, α < β

(27)

and

〈x2(t )〉 �

⎧⎪⎨
⎪⎩

v2t2 + 2σ 2

�(1+β )τβ
tβ, α > β

2(1−β )τβv2

�(3+α−β )τα
t2+α−β + 2σ 2

�(1+α)τα
tα + 2βτ 2

β v2

�(3+2α−2β )τ 2
α
t2+2α−2β, α < β,

(28)

respectively. Correspondingly the MSD can be expressed as

〈�x2(t )〉 �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2σ 2

�(1+β )τβ
tβ, α > β

2(1−β )τβv2

�(3+α−β )τα
t2+α−β + 2σ 2

�(1+α)τα
tα

+ τ 2
β v2

τ 2
α

[ 2β

�(3+2α−2β ) − 1
�2(2+α−β )

]
t2+2α−2β, α < β.

(29)

Considering ∼t2+α−β is the leading term for the α < β case,
it can be approximately expressed as

〈�x2(t )〉 �

⎧⎪⎨
⎪⎩

2σ 2

�(1+β )τβ
tβ, α > β

2(1−β )τβv2

�(3+α−β )τα
t2+α−β, α < β

(30)

at large timescales. For both α > β and α < β case, the MSDs
〈�x2(t )〉 varying with time t are displayed in Fig. 4, it can
be seen that the diffusion exponents from numerical simula-

tion are in good agreement with the expected ones at large
timescales.

From Eqs. (29) and (30), it can be seen that for the α > β

case, the MSD behaves as a subdiffusive behavior and the
particle’s intrinsic random motion (described by the jump
length of the CTRW state) plays the key role in expressing
the diffusion. This is understandable. For α > β, ω j (τ1) dom-
inates the whole process and, consequently, the first moment
〈x(t )〉 which can only be obtained from the LW state increases
linearly with time t , see Eq. (27), and the second moment of
LW state is proportional to t2, see Eq. (28). In other words, the
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FIG. 4. MSD 〈�x2(t )〉 as a function of time t with (a) α > β, and
(b) α < β. The diffusion exponents from liner fit are all in agreement
with the theoretical ones at large timescales. The parameters applied
in the numerical simulations are σ = 1000 and σ = 100 for the two
subgraphs, respectively.

directed excursion of the LW state is only responsible for the
particle’s standard advection, and the diffusion is only deter-
mined by λ(�x2) and ω j (τ1) especially, i.e., 〈�x2(t )〉 ∼ tβ .
For α < β, ωr (τ2) dominates; the longer power law traps of
ωr (τ2) make the first moment obtained from the LW state
increase sublinearly with time 〈x(t )〉 ∼ t1+α−β , which makes
the term having the largest diffusion exponent preserved in
expressing the MSD, therefore the diffusion is still the sub-
ballistic form 〈�x2(t )〉 ∼ t2+α−β at large timescales.

Within the CTRW scheme, the diffusion of the particle
moving in the velocity field flowing through porous media
is 〈�x2(t )〉 ∼ t2α [5,42,52,53]. Apparently, the results of the
particle moving in the velocity field described by the TSRW
model are distinctly different from the results described by
the CTRW model. In our opinion, the two-state nature of the
process of which the particle moves in the velocity field flow-
ing through porous media makes the TSRW model feasible
to describe it. However, we state that the CTRW and TSRW
models should both be applicable for the relevant topics, and
which one to apply shall depend on the problem studied.

B. Discussions

As mentioned above, if σ 2 = 0, the process can be pre-
cisely described using the directed LWR model; in this case,
for α > β, ω j (τ1) dominates the whole process, which re-
sults in 〈x(t )〉 ∼ t and 〈x2(t )〉 ∼ t2, and, correspondingly,
〈�x2(t )〉 ∼ 0 for the long-time limit, and the process can
be regarded just as a directional flow. For α < β, ωr (τ2)
dominates, ∼t2+α−β is still the leading term in expressing
the MSD. Additionally, the discussion on the diffusion co-
efficient in Sec. III is also applicable in this section; we
do not repeat it here. Furthermore, not just limited to the
velocity field, any environment which can bring bias, the
process can be also described by the TSRW model. In
describing the asymmetry, the coupled transition PDF can
be expressed as φ(x, t ) = aδ(x − vt )ω j (t ) + (1 − a)δ(x +
vt )ω j (t ), 0 � a � 1, in which a measures the asymmetry.

When flowing with the constant velocity field in the di-
rected LW state, one can expect that instead of moving freely
with the fluid, the particle may travel in a frictional environ-
ment. In this case, the motion in each directed LW state can
be described by

ẋ(t ) = v(t ), v̇(t ) = −γ v(t ), (31)

in which γ describes the friction coefficient. Correspondingly,
the excursion in each directed LW step becomes x = v

γ
(1 −

e−γ t ) and, instead of Eq. (22), the coupled transition PDF is
now expressed as φ(x, t ) = δ[x − v

γ
(1 − e−γ t )]ω j (t ).

Considering the long-tailed property of the power law dis-
tribution ω j (t ), the excursion actually can be approximately
expressed as x � v

γ
, and the joint transition PDF is φ(x, t ) �

δ(x − v
γ

)ω j (t ) of which the distinctive space-time correlation
feature of LW is actually smoothed out. Instead of the ballistic
excursion in each directed LW step, the distance now becomes
trivial just like the Gaussian jump length in the CTRW state.
In this case, the diffusion is predictable and the MSD has
the same scaling as the result described by the CTRW model
[5,42,52,53], i.e., the time distribution with the smaller power
exponent determines the expression of the MSD: 〈�x2(t )〉 ∼
t2min{α,β}. Considering the same α and β which are applied in
Fig. 4, the MSDs 〈�x2(t )〉 varying with time t are displayed
in Fig. 5(a). It can be seen that the diffusion exponents from
numerical simulation are in good agreement with the expected
ones, which are distinctly different from the results displayed
in Fig. 4.

The discussion can be naturally extended to the TSRW
model. After considering friction in the LW state, instead of
Eq. (1), the coupled transition PDF becomes φ(x, t ) � δ(|x| −
v
γ

)ω j (t ). Still, the distinctive space-time correlation feature of
the LW is smoothed out and the distance in each LW step
becomes a trivial term. The diffusion is entirely determined
by the time distribution with the smaller power exponent at
large timescales, i.e.,

〈�x2(t )〉 ∼
⎧⎨
⎩

tmin{α,β}, 0 < min{α, β} < 1

t, 1 < min{α, β} < 2.

(32)

Considering the same α and β applied in Fig. 2, the MSDs
〈�x2(t )〉 varying with time t are displayed in Fig. 5(b); it
can be seen that the numerical results are in good agreement
with Eq. (32) at large timescales, which are distinctly different
from the results displayed in Fig. 2.

V. SUMMARY

In this paper, we presented a TSRW model, which is
a renewal two-state process alternating between the CTRW
state and LW state. The waiting time distribution ωr (t ) of
the CTRW state and the jump time distribution ω j (t ) of the
LW state are both considered to follow power laws with the
power exponents α, β ∈ (0, 2). By calculating the MSD ana-
lytically and numerically, the anomalous diffusive behaviors
of this model were discussed. Results revealed that the local
random motion of the CTRW state and ballistic excursion
of the LW state both contribute the diffusive behaviors in
the form of two anomalous diffusion terms (the CTRW term
and LW term) coexisting in the expression of the MSD. In
addition, we found that the time distribution with the heavier
tail dominates and determines the two MSD’s forms, espe-
cially if ωr (t ) dominates (α < β), the ballistic or subballistic
diffusion of the LW state can be suppressed by the long traps
of the CTRW state, e.g., 〈�x2(t )〉 ∼ t2+α−β . Moreover, since
the two diffusion terms originate from different mechanisms,
the diffusion can be characterized by the LW term which

014122-8



STRONG ANOMALOUS DIFFUSIVE BEHAVIORS OF THE … PHYSICAL REVIEW E 105, 014122 (2022)

FIG. 5. MSD 〈�x2(t )〉 as a function of time t with LW state considering friction. (a) Diffusion of the particle transporting in the velocity
field described by the TSRW model; the exponents α and β are the same as the ones applied in Fig. 4. (b) Diffusion of the TSRW model; the
exponents α and β are the same as those applied in Fig. 2. The diffusion exponents from linear fit are in good agreement with the expected
ones. The applied parameters are σ = 1 and γ = 1.

owns the largest diffusion exponent or the CTRW term which
owns the largest diffusion coefficient even at large timescales.
Such classification of diffusion implies that for realistic sys-
tems or experimental observations, the original definition of
diffusion, e.g., from a single-state process, is not applicable
for the two-state process, and shall draw attention.

Within the TSRW scheme, the diffusion of the particle
moving in a velocity field flowing through porous media is
discussed. The two-state nature of the process means that
the TSRW model can comfortably describe the process. The
results reveal that the scenario and the diffusions are distinctly
different from the known results depicted by the single-state
CTRW model. Still, if α < β, the long traps of the CTRW
state drag out the diffusion of the LW state, but for the α > β

case, the LW state can only supply a standard advection ef-
fect for the process—the diffusion behaves as a subdiffusion
determined by the jump length of the CTRW state and jump
time of the LW state.

There are more and more two-state processes observed in
physical and biological systems [33–35,54,55], of which the
single-state model can not flexibly describe them [55]. For
now, some two-state models such as the two-state Langevin
equation with fast and slow diffusion modes [56,57], the two-
state process with Brownian motion and LW [58,59], have
been recently presented. We believe that these two-state mod-
els including the TSRW model presented in this paper have
potential applications in describing the two-state phenomena.
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APPENDIX A: DERIVATION OF EQS. (16)–(18)

Let’s first give the expressions of λ(x), ωr (t ), ω j (t ), 
r (t ), and 
 j (x, t ) in Fourier-Laplace space, which are frequently called
in the derivations of Eqs. (16)–(18).

From Eqs. (13), the Fourier form of λ(x) can be easily obtained:

λ(k) = exp(−σ 2k2) � 1 − σ 2k2. (A1)

The expression of ωr (s) is given in Eqs. (11) and (12), and 
r (s) can be obtained from


r (s) = 1 − ωr (s)

s
, (A2)

correspondingly.
The expressions of ω j (s) and 
 j (k, s) should take care of the value of β—besides, to calculate the MSD, we are interested in

the behaviors of P(k, s) for s fixed and k → 0 [38].
For 0 < β < 1,

ω j (s + ivk) = 1 − τβ (s + ivk)β � 1 − τβ

[
sβ + iβvsβ−1k − 1

2β(β − 1)v2sβ−2k2], (A3)

ω j (s − ivk) = 1 − τβ (s − ivk)β � 1 − τβ

[
sβ − iβvsβ−1k − 1

2β(β − 1)v2sβ−2k2], (A4)

014122-9



LIU, ZHU, BAO, AND CHEN PHYSICAL REVIEW E 105, 014122 (2022)

and, correspondingly,

1
2

[
ω j (s + ivk) + ω j (s − ivk)

] � 1 − τβsβ + 1
2β(β − 1)τβv2sβ−2k2. (A5)

Considering 
 j (x, t ) = 1
2δ(|x| − vt )
 j (t ) and 
 j (t ) = 1 − ∫ t

0 dt ′ω j (t ′), and invoking Eqs. (A3) and (A4) at the same time,
there is


 j (k, s) = 1

2

[

 j (s + ivk) + 
 j (s − ivk)

]
= 1

2

[
1 − ω j (s + ivk)

s + ivk
+ 1 − ω j (s − ivk)

s − ivk

]
� τβsβ−1 − 1

2
(β − 1)(β − 2)τβv2sβ−3k2. (A6)

For 1 < β < 2, based on Eq. (12) and similar to the procedure Eqs. (A3)–(A6), we can arrive at

1
2 [ω j (s + ivk) + ω j (s − ivk)] � 1 − Tβs + Cβsβ − 1

2β(β − 1)Cβv2sβ−2k2 (A7)

and


 j (k, s) � Tβ − Cβsβ−1 + 1
2 (β − 1)(β − 2)Cβv2sβ−3k2. (A8)

As stated in the main text of the paper, the MSD can be calculated from Eqs. (14) and (15), while the value of α and β should
be considered. Our calculations can be categorized into four cases: 0 < α < 1, 0 < β < 1; 1 < α < 2, 1 < β < 2; 1 < α < 2,
0 < β < 1; and 0 < α < 1, 1 < β < 2. After completing the calculations, we notice that the results actually can be recategorized
into two cases: 0 < min{α, β} < 1; 1 < min{α, β} < 2. The specific calculations are presented as follows.

1. 0 < α < 1, 0 < β < 1

After inserting Eqs. (11), (A1), (A2), (A5), and (A6) into Eq. (9), and after omitting the higher order terms, we have

P(k, s) � 1

s

ταsα + τβsβ − 1
2 (β − 1)(β − 2)τβv2sβ−2k2

ταsα + τβsβ − 1
2β(β − 1)τβv2sβ−2k2 + σ 2k2

. (A9)

By invoking Eq. (15), the MSD can be expressed as

〈�x2(t )〉 = 〈x2(t )〉 = L −1

{
2(1 − β )τβv2

s3−β

1

ταsα + τβsβ
+ 2σ 2

s

1

ταsα + τβsβ

}
. (A10)

Indeed, the term 1
ταsα+τβ sβ in Eq. (A10) implies that the asymptotic form of the MSD will be determined by the long-tailed

property of ωr (t ) and ω j (t ). The following calculations should take care of the value of α and β.
For α > β,

1

ταsα + τβsβ
= 1

τβsβ
(
1 + τα

τβ
sα−β

) ∼ 1

τβsβ
, s → 0, (A11)

and, correspondingly, the MSD can be asymptotically expressed as

〈�x2(t )〉 � (1 − β )v2t2 + 2σ 2

�(1 + β )τβ

tβ. (A12)

Since diffusion is characterized in the limit of the large timescale and the term with the largest exponent prevails in the expression
of MSD, considering 2 > β, the MSD can be approximately expressed by

〈�x2(t )〉 � (1 − β )v2t2. (A13)

For α < β,

1

ταsα + τβsβ
= 1

ταsα
(
1 + τβ

τα
sβ−α

) ∼ 1

ταsα
, s → 0, (A14)

and the MSD can be asymptotically expressed as

〈�x2(t )〉 � 2(1 − β )τβv2

�(3 + α − β )τα

t2+α−β + 2σ 2

�(1 + α)τα

tα. (A15)

Considering 2 + α − β > α, it can be approximately expressed by

〈�x2(t )〉 � 2(1 − β )τβv2

�(3 + α − β )τα

t2+α−β. (A16)
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Combing Eqs. (A9), (A11), and (A14), the P(k, s) can be expressed as

P(k, s) � 1

s

τmin{α,β}smin{α,β} − bsβ−2k2

τmin{α,β}smin{α,β} + dsβ−2k2 + σ 2k2
, (A17)

in which τmin{α,β} dedicates τβ (if α > β) or τα (if α < β), b = 1
2 |(β − 1)(β − 2)|τβv2, and d = 1

2 |β(β − 1)|τβv2. Combing
Eqs. (A12) and (A15), it is

〈�x2(t ) � D1t2−β+min{α,β} + D′
1tmin{α,β}. (A18)

Combing Eqs. (A13) and (A16), it is

〈�x2(t ) � D1t2−β+min{α,β}, (A19)

in which D1 = (1 − β )v2 for α > β, or D1 = 2|1−β|τβv2

�(3+α−β )τα
for α < β, and D′

1 = 2σ 2

�(1+β )τβ
for α > β, or D′

1 = 2σ 2

�(1+α)τα
for α < β.

2. 1 < α < 2, 1 < β < 2

Similar to the calculations on Eqs. (A9) and (A10), after inserting Eqs. (12), (A1), (A2), (A7), and (A8) into Eq. (9), and after
omitting the higher order terms, we have

P(k, s) � 1

s

(Tα + Tβ )s − bsβ−2k2

(Tα + Tβ )s + dsβ−2k2 + σ 2k2
(A20)

and

〈�x2(t )〉 � L −1

{
2(β − 1)τβv2

s3−β

1

(Tα + Tβ )s
+ 2σ 2

s

1

(Tα + Tβ )s

}
= D2t3−β + D′

2t, (A21)

in which D2 = 2(β−1)τβv2

�(4−β )(Tα+Tβ ) and D′
2 = 2σ 2

Tα+Tβ
. Considering 3 − β > 1, it can be approximately expressed by

〈�x2(t )〉 � D2t3−β. (A22)

3. 1 < α < 2, 0 < β < 1

Still, similar to the calculations in Eqs. (A9) and (A10), after inserting Eqs. (12), (A1), (A2), (A5), and (A6) into Eq. (9), and
after omitting the higher order terms, we have

P(k, s) � 1

s

τβsβ − bsβ−2k2

τβsβ + dsβ−2k2 + σ 2k2
(A23)

and

〈�x2(t )〉 � L −1

{
2(1 − β )τβv2

s3−β

1

τβsβ
+ 2σ 2

s

1

τβsβ

}
= D1t2 + D′

1tβ. (A24)

Considering 2 > β, it can be approximately expressed by

〈�x2(t )〉 � D1t2. (A25)

4. 0 < α < 1, 1 < β < 2

Still, similar to the calculations in Eqs. (A9) and (A10), after inserting Eqs. (11), (A1), (A2), (A7), and (A8) into Eq. (9), and
after omitting the higher order terms, we have

P(k, s) = 1

s

ταsα − bsβ−2k2

ταsα + dsβ−2k2 + σ 2k2
(A26)

and

〈�x2(t )〉 � L −1

{
2(β − 1)τβv2

s3−β

1

ταsα
+ 2σ 2

s

1

ταsα

}
= D1t2+α−β + D′

1tα. (A27)

Considering 2 + α − β > α, it can be approximately expressed by

〈�x2(t )〉 � D1t2+α−β . (A28)

In conclusion, it can be seen that Eqs. (A17), (A23), and (A26) actually can be expressed as

P(k, s) � 1

s

τmin{α,β}smin{α,β} − bsβ−2k2

τmin{α,β}smin{α,β} + dsβ−2k2 + σ 2k2
, 0 < min{α, β} < 1. (A29)
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Correspondingly, Eqs. (A18), (A24), and (A27) can be expressed as

〈�x2(t ) � D1t2−β+min{α,β} + D′
1tmin{α,β}, 0 < min{α, β} < 1, (A30)

and Eqs. (A19), (A25), and (A28) can be expressed as

〈�x2(t ) � D1t2−β+min{α,β}, 0 < min{α, β} < 1. (A31)

Compared to Eq. (A29), Eq. (A20) now can be expressed as

P(k, s) � 1

s

(Tα + Tβ )s − bsβ−2k2

(Tα + Tβ )s + dsβ−2k2 + σ 2k2
, 1 < min{α, β} < 2. (A32)

Combining Eqs. (A29) and (A32), Eq. (16) is performed. Combining Eqs. (A30) and (A21), Eq. (17) is performed; combining
Eqs. (A31) and (A22), Eq. (18) is performed.

APPENDIX B: DERIVATION OF EQ. (27)–(30)

1. 0 < α < 1, 0 < β < 1

Considering 
 j (k, s) = 
 j (s + ivk) now, Eq. (25) can be expressed as

P(k, s) =
1−ωr (s)

s + 1−ω j (s+ivk)
s+ivk ωr (s)

1 − ω j (s + ivk)λ(k)ωr (s)
. (B1)

After inserting Eqs. (11), (A1), and (A3) into Eq. (B1), and after omitting the higher order terms, the propagator can be
approximately expressed as

P(k, s) � 1

s

τmin{α,β}smin{α,β} + i(β − 1)τβvsβ−1k − bsβ−2k2

τmin{α,β}smin{α,β} + iβτβvsβ−1k + dsβ−2k2 + σ 2k2
. (B2)

After inserting Eq. (B2) into Eqs. (14) and (15), we have

〈x(t )〉 = L −1

{
τβv

s2−β

1

τmin{α,β}smin{α,β}

}
(B3)

and

〈x2(t )〉 = L −1

{[
2(1 − β )τβv2

s3−β
+ 2σ 2

s

]
1

τmin{α,β}smin{α,β} + 2βτ 2
βv2s2β−3

τ 2
min{α,β}s2min{α,β}

}
. (B4)

The following calculations on MSD should take care of the value of α and β.
For α > β, after invoking Eq. (A11), we can get the asymptotic behavior of the first moment 〈x(t )〉 and second moment

〈x2(t )〉, which can be expressed as

〈x(t )〉 � vt (B5)

and

〈x2(t )〉 � v2t2 + 2σ 2

�(1 + β )τβ

tβ. (B6)

Correspondingly, it is

〈�x2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2 = 2σ 2

�(1 + β )τβ

tβ. (B7)

For α < β, similarly, after invoking Eq. (A14), we have

〈x(t )〉 � τβv

�(2 + α − β )τα

t1+α−β (B8)

and

〈x2(t )〉 � 2(1 − β )τβv2

�(3 + α − β )τα

t2+α−β + 2σ 2

�(1 + α)τα

tα + 2βτ 2
βv2

�(3 + 2α − 2β )τ 2
α

t2+2α−2β . (B9)

Correspondingly, it is

〈�x2(t )〉 = 2(1 − β )τβv2

�(3 + α − β )τα

t2+α−β + 2σ 2

�(1 + α)τα

tα + τ 2
βv2

τ 2
α

[
2β

�(3 + 2α − 2β )
− 1

�2(2 + α − β )

]
t2+2α−2β . (B10)
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It can be seen that ∼t2+α−β is the leading term of Eq. (B10), hence the MSD can be approximately expressed as

〈�x2(t )〉 � 2(1 − β )τβv2

�(3 + α − β )τα

t2+α−β (B11)

at a large timescale.

2. Other cases

For 1 < α < 2 and 1 < β < 2, similar to the calculations in Eq. (B2), from Eq. (B1) we can arrive at

P(k, s) � 1

s

(Tα + Tβ )s − i(β − 1)τβvsβ−1k − bsβ−2k2

(Tα + Tβ )s + iTβvk + dsβ−2k2 + σ 2k2
. (B12)

Correspondingly, the first moment 〈x(t )〉 and second moment 〈x2(t )〉 can be approximately expressed by

〈x(t )〉 � Tβv

Tα + Tβ

t + (β − 1)τβv

�(3 − β )(Tα + Tβ )
t2−β (B13)

and

〈x2(t )〉 � T 2
β v2

(Tα + Tβ )2
t2 + 2(β − 1)(Tα + 2Tβ )τβv2

�(4 − β )(Tα + Tβ )2
t3−β + 2σ 2

Tα + Tβ

t, (B14)

respectively. From Eqs. (B13) and (B14), it can be seen that ∼t3−β is the leading term in expressing the MSD at the long-time
limit.

For 0 < α < 1 and 1 < β < 2, the propagator can be expressed as

P(k, s) � 1

s

ταsα − i(β − 1)τβvsβ−1k − bsβ−2k2

ταsα + iTβvk + dsβ−2k2 + σ 2k2
, (B15)

and

〈x(t )〉 � (β − 1)τβv

�(2 + α − β )τα

t1+α−β + Tβv

�(1 + α)τα

tα, (B16)

〈x2(t )〉 � 2(β − 1)τβv2

�(3 + α − β )τα

t2+α−β + 2T 2
β v2

�(1 + 2α)τ 2
α

t2α + 2(β − 1)Tβτβv2

�(2 + 2α − β )τ 2
α

t1+2α−β + 2σ 2

�(1 + α)τα

tα. (B17)

From Eqs. (B16) and (B17), it can be seen that ∼t2+α−β (2 − β > α) or ∼t2α (2 − β < α) is the leading term in expressing the
MSD at the long-time limit.

For 1 < α < 2 and 0 < β < 1, the propagator can be expressed as

P(k, s) � 1

s

τβsβ + i(β − 1)τβvsβ−1k − bsβ−2k2

τβsβ + iβτβvsβ−1k + dsβ−2k2 + σ 2k2
(B18)

and

〈x(t )〉 � vt, (B19)

〈x2(t )〉 � v2t2 + 2σ 2

�(1 + β )τβ

tβ. (B20)

From Eqs. (B19) and (B20), it can be seen that the MSD 〈�x2(t )〉 ∼ tβ which is a subdiffusion.

APPENDIX C: DETAILS OF NUMERICAL SIMULATION

Generation of the waiting times and jump times: We choose
ωr (t ) = ατα

0 t−(1+α), t � τ0 and ω j (t ) = βτ
β

0 t−(1+β ), t � τ0,
and τ0 = 1 for the numerical simulations. The two random
time intervals are both generated as follows. First, a random
variable ξ1 with a uniform distribution in the interval [0,1]
is seeded, from which a random variable τ is constructed in
simulation as

τ = τ0(1 − ξ1)−1/α. (C1)

The required random time interval is then provided by τ for
τ � τ0, and 0 otherwise.

Generation of the jump lengths: The Gaussian-distributed
jump length can be generalized by using the Box-Müller
method,

x =
√

−2σ 2lnξ2cos(2πξ3), (C2)

in which ξ2 and ξ3 are the random variables with the uniform
distribution in the interval [0,1].

Generations of the LW steps: In numerical simulations, we
choose the velocity as v = 1 and v = −1 with equal probabil-
ity, and the excursion in each LW step is simply the product
of the velocity and jump time.

Numerical scheme: We initially release the random walker
at x = 0. The evolving time is t = m�t , where m = 0, 1,
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2, ..., M, M = 108, and �t = 10−3 is a constant time inter-
val between two consecutive recordings. The walker initially
enters the CTRW state. For the CTRW state, to record and
iterate the process, we followed the scheme introduced by
Ref. [37] (see Fig. 1 of Ref. [37] for a very nice schematic
description on the CTRW renewal process), e.g., the walker
first completes a waiting time; once the evolving time exceeds

the present waiting time, an instantaneous jump length is
generated and recorded and the walker then enters the LW
state. For the LW state, the iterations are much simpler—the
coordinate of the random walker is iterated with v�t . Once
the evolving time exceeds the present jump time, the iteration
terminates and the walker enters the CTRW state. The process
iterates.
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