
PHYSICAL REVIEW E 105, 014121 (2022)
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We consider an open (Brownian) classical harmonic oscillator in contact with a non-Markovian thermal
bath and described by the generalized Langevin equation. When the bath’s spectrum has a finite upper cutoff
frequency, the oscillator may have ergodic and nonergodic configurations. In ergodic configurations (when
they exist, they correspond to lower oscillator frequencies) the oscillator demonstrates conventional relaxation
to thermal equilibrium with the bath. In nonergodic configurations (which correspond to higher oscillator
frequencies) the oscillator in general does not thermalize but relaxes to periodically correlated (cyclostationary)
states whose statistics vary periodically in time. For a specific dissipation kernel in the Langevin equation,
we evaluate explicitly relevant relaxation functions, which describe the evolution of mean values and time
correlations. When the oscillator frequency is switched from a lower value to higher one, the oscillator may
show parametric ergodic to nonergodic transitions with equilibrium initial and cyclostationary final states. These
transitions are shown to resemble phase transitions of the second kind.
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I. INTRODUCTION: TWO MECHANISMS OF
NONTHERMALIZATION

Since thermodynamics is a very general theory, the cases
when it does not apply in the ordinary way are intriguing. A
thermodynamic description assumes that a system, large or
small, in contact with a macroscopic thermal bath at temper-
ature T will thermalize over the course of time, reaching a
state of thermodynamic equilibrium characterized by the same
temperature T . While this scenario is the most common, there
are certain types of open systems for which thermalization
does not occur. For a classical particle in contact with the
thermal bath we are aware of two mechanisms of relaxation
which does not end up with thermal equilibrium. The first
mechanism is due to the zero integral friction [1–5], the sec-
ond is related to the formation of a localized vibrational mode
[6–18]. While this paper concerns exclusively the latter, let us
start with a brief outline of the former.

Consider a free Brownian particle of mass m described by
the generalized Langevin equation [19]

v̇(t ) = −
∫ t

0
K (t − τ ) v(τ ) dτ + 1

m
ξ (t ), (1)

where v is the particle’s velocity, K (t ) is the dissipation ker-
nel, and ξ (t ) is the zero-centered stationary random force,
connected to K (t ) by the conventional fluctuation-dissipation
relation. Assuming the random force does not correlate with
v(0), one finds from Eq. (1) that the normalized correlation
function R(t ) = 〈v(t )v(0)〉/〈v2(0)〉 satisfies the homogeneous
(and deterministic) equation

Ṙ(t ) = −
∫ t

0
K (t − τ ) R(τ ) dτ, (2)

*aplyukhin@anselm.edu

with the initial condition R(0) = 1. In the Laplace domain the
solution is

R̃(s) =
∫ ∞

0
e−st R(t ) dt = 1

s + K̃ (s)
. (3)

Thermalization implies that the system eventually forgets ini-
tial conditions, so that R(t ) vanishes at long times. On the
contrary, the condition of nonthermalization implies that R(t )
does not vanish at long times, which leads to the asymptotic
condition on the dissipation kernel in the Laplace domain

lim
t→∞ R(t ) = lim

s→0
s R̃(s) = lim

s→0

s

s + K̃ (s)
�= 0, (4)

provided the limit exists. This condition is satisfied when the
Laplace transform of the kernel has the asymptotic form

K̃ (s) ∼ sδ, δ � 1, s → 0. (5)

In that case the integral of the kernel vanishes

γ =
∫ ∞

0
K (t ) dt = K̃ (s = 0) = 0. (6)

This may be called the condition of zero integral friction,
because γ = ∫ ∞

0 K (t )dt is just the friction (dissipation) co-
efficient in the expression for the damping force −γ p in the
Markovian limit of the Langevin Eq. (1), v̇ = −γ v + m−1ξ .

The lack of thermalization in the case γ = 0 is remarkable
but appears to be a rather exotic phenomenon. One can show
that under condition Eq. (5) Brownian motion shows not only
the lack of thermalization but also another anomalous phe-
nomenon, namely super-diffusion (which actually takes place
for a broader condition δ > 0) [1–5].

At first glance it may appear that the condition of
nonthermalization Eq. (5) is both sufficient and necessary.
Actually it is not necessary because the above discussion
assumes, when the relation limt→∞ R(t ) = lims→0 sR̃(s)
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is exploited, that the correlation function R(t ) possesses a
well-defined long time limit. That is not necessarily the case
in general: It is easy to construct a dissipation kernel K (t )
with reasonable properties (such as K (t ) → 0 at long times)
for which Eq. (2) for R(t ) has an oscillating solution and
limt→∞ R(t ) does not exists [20]. Can such mathematical
possibility be realized in any physical system?

One such system is well-known: it is the harmonic lattice
with a light impurity atom. Such atom can be viewed as
a lattice defect which is known to generate a localized
vibrational mode whose frequency (we shall denote it ω∗)
lies outside the spectrum of the unperturbed lattice [6–9].
The localized mode involves the impurity atom and a few
neighboring atoms of the lattice, the participation of other
atoms is small and decreases exponentially with the distance
from the impurity. The formation of the localized mode
can be attributed to destructive wave interference and is
analogous to localization of the electron wave function near
the impurity in the otherwise ideal crystal, see Ref. [10] for
a pedagogical discussion. For a review of localized modes
in anharmonic lattices (called breathers) see Ref. [11]. The
localized mode does not exchange energy with the bath; as
a result the light impurity atom (the system) does not reach
thermal equilibrium with the lattice (the bath).

In earlier studies, localized vibrational modes and their
unusual relaxation properties were studied by direct solving
the equations of motion of the lattice. Later the topic was
addressed using the generalized Langevin Eq. (1), which often
offers a more compact, though less detailed, consideration
[12–18]. Within that method, the condition of nonthermaliza-
tion due to localized modes does not imply condition Eqs. (5)
and (6), yet it puts strong restrictions on the properties of the
bath and the system-bath coupling. As mentioned above, the
frequency of the localized mode lies outside the spectrum of
the bath, which necessarily implies that the latter must have
a finite upper cutoff frequency ω0. That condition is satisfied
neither for Markovian models with K (t ) ∼ δ(t ), nor for mod-
els with monotonically (e.g., exponentially) decaying K (t ).

Nonthermalization due to localized modes was demon-
strated not only for a light isotope in the harmonic lattice, but
for a number of other models [12–16]. While the latticelike
structure of the bath is probably the necessary ingredient
(which guarantees that the bath spectrum has a finite up-
per bound ω0), the system of interest may be of different
nature. The earlier studies mostly concerned lattice models
with mass and spring defects and their combinations. More
recently, nonthermalization of the Brownian oscillator (both
linear and nonlinear) in the presence of localized modes was
demonstrated by Dhar and Wagh [16].

The Brownian oscillator in contact with a Markovian bath
and described by the standard Markovian Langevin or Fokker-
Planck equations is an exemplary system, whose relaxation
to thermal equilibrium can be analytically described in full
details. However, when the bath is not Markovian and has
the frequency spectrum with an upper cutoff ω0, the oscillator
may thermalize or not thermalize depending on the values of
the oscillator frequency ω and parameters of the oscillator-
bath coupling. In the model studied in Ref. [16], the oscillator
thermalizes for ω � ωc and does not thermalize for ω > ωc,
where ωc is a critical frequency of order of ω0. In configura-

tions with ω > ωc the oscillator evolves at long times into a
nonequilibrium and nonstationary state in which the mean val-
ues and correlation functions of dynamical variables oscillate
with time with the localized normal mode frequency ω∗.

Stochastic processes with periodically varying statistics
are called periodically correlated, or cyclostationary [21–24].
They are present in a great variety of physical, biological,
meteorological, and technological processes, involving an in-
terplay of randomness and periodicity. While both ingredients
are obviously present in the Brownian oscillator, the emer-
gence of cyclostationary states instead of stationary (equi-
librium) states is rather unexpected from a thermodynamics
point of view. Cyclostationary stochastic processes are not
stationary and are therefore manifestly nonergodic: their en-
semble and time averages cannot be equal since the former are
time periodic and the latter are constant. If the oscillator, due
to the formation of a localized mode, does not thermalize, then
it evolves in a cyclostationary and hence nonergodic state.

Since the type of relaxation may depend on the oscillator
frequency ω, we shall use the following nomenclature. We
will say that the oscillator with a given frequency is in an
ergodic configuration if the oscillator relaxes to thermal
equilibrium. If the oscillator with a given frequency does
not thermalize (with the exception of equilibrium initial
conditions) but evolves in a cyclostationary state, then we
shall say that the oscillator is in a nonergodic configuration.
Based on the results of [16] one would expect ergodic
(resp. nonergodic) configurations to correspond to lower
(respectively, higher) oscillator frequencies. We call a
Brownian oscillator nonergodic if it has both ergodic and
nonergodic configurations, or only nonergodic ones. The
oscillator with only ergodic configurations (which will hardly
appear in this text) may be referred as ergodic.

Note that, in general, the condition of thermalization is
stronger than that of ergodicity and nonthermalization does
not necessarily imply nonergodicity. But for the nonergodic
Brownian oscillator, this is indeed the case: If the oscillator
at given frequency fails to thermalize, then it will evolve to
a nonstationary (cyclostationary) and therefore nonergodic
state.

The purpose of this paper is to evaluate explicitly the
relaxation and correlation functions describing a nonergodic
Brownian oscillator. Compared to the work by Dhar and Wagh
[16], where spectral properties of the bath are not specified
(except the part addressing a nonlinear oscillator), in this
paper we shall focus on a case study of the oscillator described
by the generalized Langevin equation with a specific dissipa-
tion kernel K (t ). We believe such a study, though not generic,
would be of interest since it may share many essential features
and technicalities with a variety of similar and extended mod-
els. With explicit expressions for relaxation and correlation
functions at hands, one can explore quantitatively a variety
of nonergodic processes. As an application, we consider (in
Sec. XIV) the optical trap like setting when the oscillator
frequency is instantaneously switched from a lower to higher
value, bringing the oscillator from an ergodic to nonergodic
configuration. In that transition, the nonergodic oscillator may
get and, in contrast to its ergodic counterpart (whose energy
eventually relaxes to kBT ), store forever an arbitrary amount
of energy. That property may be of interest for designing
microscopic machines [25,26].
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We have given the paper a mostly linear structure, with two
Appendices. For the reader’s convenience, Secs. VIII through
X, which are fairly technical, conclude with brief summaries
that suffice for comprehending the following sections. The
results of Secs. III and IV are generic and do not depend on a
specific form of the dissipation kernel K (t ); in the rest of the
paper the kernel K (t ) is adopted in the form Eq. (9).

II. MODEL

We consider a classical Brownian particle of mass m
and coordinate q, trapped in the harmonic potential V (q) =
−mω2 q2/2, and in contact with a single thermal bath with
temperature T . The particle’s dynamics is governed by the
generalized Langevin equation [19]

q̈(t ) = −ω2 q(t ) −
∫ t

0
K (t − τ ) q̇(τ ) dτ + 1

m
ξ (t ). (7)

The stationary fluctuating force (the noise) ξ (t ) is zero-
centered and related to the dissipation kernel K (t ) via the
standard fluctuation-dissipation relation,

〈ξ (t )〉 = 0, 〈ξ (t ) ξ (τ )〉 = m kB T K (|t − τ |). (8)

We shall assume that the kernel has a specific form,

K (t ) = μω2
0

4
[J0(ω0t ) + J2(ω0t )] = μω0

2

J1(ω0t )

t
, (9)

where μ and ω0 are arbitrary positive parameters, Jn(x) are
Bessel functions of the first kind, and the second expression
is defined at t = 0 by continuity. The kernel Eq. (9) oscillates
and decays at long times rather slowly as t−3/2. Otherwise,
it has all properties one expects from the dissipation kernel of
the generalized Langevin equation: the function K (t ) given by
Eq. (9) is even, has a maximum at t = 0, and vanishes at long
times.

There are two reasons to pay a special attention to the
kernel Eq. (9). First, it is one of the simplest kernels for
which the Langevin equation may have periodically correlated
solutions. Indeed, the corresponding spectral density [27]

J (ω) = M ω

∫ ∞

0
K (t ) cos(ωt ) dt

= mω0

2
ω

√
1 −

( ω

ω0

)2
θ (ω0 − ω), (10)

where θ (ω) is the step function, has the upper cutoff bound
ω0. As was mentioned in Introduction, this is expected to be
the necessary condition of the localized mode formation and
nonergodic configurations. The model with the dissipation
kernel decaying according to the power law, K (t ) = K0t−α ,
was considered earlier in Refs. [28,29]. In that case the oscil-
lator is ergodic and thermalizes for any values of the oscillator
frequency ω.

The second special feature of the kernel Eq. (9) is that it
corresponds to a specific and familiar physical model, namely
Rubin’s model, where the thermal bath is the infinite harmonic
chain of atoms of mass m0 and the system of interest is an
isotope atom of mass m [9,19,27]. The Langevin Eq. (7) de-
scribes the original Rubin’s model modified by the presence of
the external harmonic potential applied to the impurity atom.

The parameter ω0 has the meaning of the highest normal mode
frequency of the infinite chain, ω0 = 2

√
k/m0, where k is the

stiffness of the spring force connecting atoms of the chain (and
also the impurity atom). There are two versions of Rubin’s
model. In the first version the isotope of mass m is attached
to the end of the semi-infinite chain of atoms of mass m0,
see Fig. 3.1 in Ref. [27]. In that case the parameter μ has the
meaning of the mass ratio μ = m0/m. In the second version,
the isotope is embedded in the bulk of the infinite chain,
i.e., attached to two semi-infinite chains. For that version μ

is the doubled mass ratio, μ = 2m0/m. The connection to
Rubin’s model facilitates computer simulations, which may be
helpful for extended models (e.g., the oscillator is nonlinear,
the oscillator frequency is subjected to a time variation, etc.)
when an analytical solution of the Langevin equation is not
feasible.

For the given model, it will be shown that for μ < 2 the
oscillator has both ergodic and nonergodic configurations.
Ergodic configurations correspond to lower frequencies,

ω � ωc, ωc =
√

1 − μ/2 ω0, (11)

while nonergodic configurations correspond to higher fre-
quencies ω > ωc. However, for μ � 2 the oscillator is
nonergodic and does not thermalize for any frequency ω. Our
goal is to evaluate the relaxation and correlation functions
(defined in the next two sections) describing the oscillator’s
dynamics for both ergodic and nonergodic configurations.

III. SOLVING LANGEVIN EQUATION

The solution of the generalized Langevin Eq. (7) for the
harmonic oscillator with an arbitrary kernel K (t ) has been
addressed in several studies, see [28–31]. To make the paper
self-contained we outline in this section the main points.

Solving Eq. (7) with initial conditions q(0) = qi and
v(0) = vi using the method of Laplace transform one finds
for the coordinate and velocity of the particle the following
expressions:

q(t ) = qi S(t ) + vi G(t ) + 1

m
{G ∗ ξ}(t ),

v(t ) = −qi ω
2G(t ) + vi R(t ) + 1

m
{R ∗ ξ}(t ). (12)

Here the asterisk denotes the convolutions, e.g.,

{G ∗ ξ}(t ) =
∫ t

0
G(t − τ ) ξ (τ ) dτ, (13)

the relaxation functions G(t ) is defined by its Laplace
transform

G̃(s) =
∫ ∞

0
e−st G(t ) dt = 1

s2 + sK̃ (s) + ω2
, (14)

and the other two relaxation functions R(t ) and S(t ) are de-
rived from G(t ) as follows:

R(t ) = d

dt
G(t ), S(t ) = 1 − ω2

∫ t

0
G(τ ) dτ. (15)

As obvious from Eq. (12), the initial values of the relaxation
functions are

G(0) = 0, R(0) = S(0) = 1. (16)
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Note that G(t ) has the dimension of time, while R(t ) and S(t )
are dimensionless.

In the Laplace domain the relaxation functions are con-
nected as

R̃(s) = s G̃(s), S̃(s) = 1

s
[1 − ω2G̃(s)]. (17)

Using Eqs. (14) and (17) one can directly verify the validity
of relations

s G̃(s) = S̃(s) − K̃ (s) G̃(s),

s R̃(s) − 1 = −ω2 G̃(s) − K̃ (s) R̃(s). (18)

In the time domain they give expressions for derivatives of G
and R:

Ġ(t ) = S(t ) − {K ∗ G}(t ),

Ṙ(t ) = −ω2G(t ) − {K ∗ R}(t ). (19)

The derivative of S, according to Eq. (15), is

Ṡ(t ) = −ω2G(t ). (20)

As follows from Eq. (12), the relaxation to thermal equi-
librium implies the asymptotic vanishing of the relaxation
functions

G(t ), R(t ), S(t ) → 0, as t → ∞, (21)

which guarantees that the particle forgets the initial conditions
at long times. One can show that the second moments of q and
v under conditions Eq. (21) relax to the equilibrium values.
Indeed, by squaring solutions Eq. (12), averaging over the
initial parameters qi, vi, and assuming that

〈qi〉 = 〈vi〉 = 〈qi vi〉 = 0, (22)

one gets the following expressions for the second moments:

〈q2(t )〉 = 〈
q2

i

〉
S2(t ) + 〈

v2
i

〉
G2(t ) + 1

m2
〈{G ∗ ξ}2(t )〉,

〈v2(t )〉 = 〈
q2

i

〉
ω4 G2(t ) + 〈

v2
i

〉
R2(t ) + 1

m2
〈{R ∗ ξ}2(t )〉,

〈q(t ) v(t )〉 = −〈
q2

i

〉
ω2G(t )S(t ) + 〈

v2
i

〉
G(t ) R(t )

+ 1

m2
〈{G ∗ ξ} {R ∗ ξ}〉. (23)

Here the average squares of the convolutions can be readily
evaluated using the fluctuation-dissipation relation Eq. (8) and
also relations Eqs. (19) and (20),

〈{G ∗ ξ}2(t )〉 = m kBT

ω2
[1 − S2(t )] − m kBT G2(t ),

〈{R ∗ ξ}2(t )〉 = m kBT [1 − R2(t ) − ω2 G2(t )]. (24)

(A common trick to derive these results is to write the double
integral over the square region (0, t ) × (0, t ) of the (t1, t2)-
space as two times the integral over the triangle bounded by
the lines t2 = t1, t2 = 0 and t1 = t .) The average product of
the convolutions is easier to find by noticing that

〈{G ∗ ξ} {R ∗ ξ}〉 = 1

2

d

dt
〈{G ∗ ξ}2〉. (25)

Then, recalling that Ṡ(t ) = −ω2G(t ) and Ġ(t ) = R(t ), one
obtains

〈{G ∗ ξ} {R ∗ ξ}〉 = m kBT G(t )[S(t ) − R(t )]. (26)

Finally, substituting Eqs. (24) and (26) into Eq. (23) yields

〈q2(t )〉 = 〈
q2

i

〉
S2(t ) + 〈

v2
i

〉
G2(t ) + kBT

mω2
[1 − S2(t )]

− kBT

m
G2(t ),

〈v2(t )〉 = 〈
q2

i

〉
ω4 G2(t ) + 〈

v2
i

〉
R2(t )

+ kBT

m
[1 − R2(t ) − ω2 G2(t )],

〈q(t ) v(t )〉 = −〈
q2

i

〉
ω2G(t ) S(t ) + 〈

v2
i

〉
G(t ) R(t )

+ kBT

m
G(t )[S(t ) − R(t )]. (27)

One observes that under conditions Eq. (21) the second mo-
ments relax at long times, for any initial conditions, to the
equilibrium values,

〈q2(t )〉 → kBT

m ω2
,

〈v2(t )〉 → kBT

m
,

〈q(t ) v(t )〉 → 0. (28)

However, if conditions Eq. (21) are not satisfied, then it fol-
lows from the above relations that the oscillator does not
thermilize in the general case.

An exception is the case of equilibrium initial conditions.
As one observes from Eqs. (27), if the oscillator at t = 0 is
prepared in the state of equilibrium with 〈q2

i 〉 = kBT/(mω2)
and 〈v2

i 〉 = kBT/m (that can be arrange by connecting the
oscillator at t < 0 to an additional thermal bath with no upper
frequency cuttoff) then the terms with relaxation functions are
canceled and the moments keep the equilibrium values for
t > 0 regardless of whether asymptotic conditions Eq. (21)
hold or not.

IV. TIME CORRELATIONS

Let us show that the relaxation functions G(t ), R(t ), S(t ),
introduced in the previous section, not only govern the time
dependence of the moments 〈q2(t )〉, 〈v2(t )〉, 〈q(t )v(t )〉, but
also determine the time correlation functions 〈q(t )q(t ′)〉,
〈v(t )v(t ′)〉, 〈q(t )v(t ′)〉. The general expressions for the latter,
valid for arbitrary initial conditions, can be obtained from
Eqs. (12) using the method of double Laplace transforms
[29,31]. Here we consider only the case of equilibrium ini-
tial conditions, i.e., when the initial coordinate and velocity
(qi, vi ) of the oscillator are drawn from the equilibrium en-
semble with the moments

〈qi〉 = 〈vi〉 = 〈qivi〉 = 0,〈
q2

i

〉 = kBT/(mω2),〈
v2

i

〉 = kBT/m. (29)

First, consider the oscillator in an ergodic configuration.
With equilibrium initial conditions the oscillator remains in
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equilibrium also for t > 0, and the correlation functions de-
pend on time only through the time difference. Then, for
t, t ′ > 0, we get from Eq. (12)

〈q(t ) q(t ′)〉 = 〈qi q(|t − t ′|)〉 = kBT

m ω2
S(|t − t ′|),

〈v(t ) v(t ′)〉 = 〈vi v(|t − t ′|)〉 = kBT

m
R(|t − t ′|). (30)

Here the averaging is taken over the noise and also over the
equilibrium distribution for initial values qi, vi. Similarly, for
the cross-correlation we get from Eq. (12)

〈q(t )v(t ′)〉 =
{〈qi v(t ′ − t )〉 = − kBT

m G(t ′ − t ), if t ′ > t,
〈viq(t − t ′)〉 = kBT

m G(t − t ′), if t > t ′.

(31)

Next, from Eqs. (12) and (15) one can observe that the relax-
ation function G(t ) must be odd, and R(t ) and S(t ) are both
even. Then the above results can be written as

〈q(t ) q(t ′)〉 = kBT

m ω2
S(t − t ′),

〈v(t ) v(t ′)〉 = kBT

m
R(t − t ′),

〈q(t )v(t ′)〉 = kBT

m
G(t − t ′). (32)

Thus, the relaxation functions not only determine the mo-
ments of coordinate and velocity, but also coincide with the
time correlation functions in thermal equilibrium: S(t ) and
R(t ) are the normalized autocorrelation functions for the co-
ordinate and velocity, respectively, while G(t ) determines the
cross-correlation.

Now consider the oscillator in a nonergodic configuration,
and the initial conditions are still equilibrium ones, satisfying
Eq. (29). As was noted at the end of the previous section,
in that case the moments 〈q2(t )〉, 〈v2(t )〉, 〈q(t )v(t )〉 do not
change with time and keep their equilibrium values for t > 0.
However, whether the time correlations depend only on the
time difference may be a priori unclear. Then one may argue
that the simple evaluation of the correlations exploited above
for ergodic configurations may not apply. Nevertheless, by
direct evaluation of correlation functions one can prove that
the results (32) remain valid for nonergodic configurations as
well.

Let us demonstrate that for the cross-correlation
〈q(t )v(t ′)〉. From Eqs. (12) and (29) we get

〈q(t )v(t ′)〉 = kBT

m
[G(t )R(t ′) − S(t )G(t ′) + X (t, t ′)], (33)

where X (t, t ′) is the average product of two convolutions:

X (t, t ′) = 1

m kBT
〈{G ∗ ξ}(t ) {R ∗ ξ}(t ′)〉. (34)

We can express this function in terms of the relaxation func-
tions as follows. Using the fluctuation-dissipation relation
Eq. (8), one can write X (t, t ′) as a double convolution

X (t, t ′) = { f ∗∗ g}(t, t ′)

=
∫ t

0
dτ

∫ t ′

0
dτ ′ f (t − τ, t ′ − τ ′) g(τ, τ ′), (35)

with

f (t, t ′) = G(t )R(t ′), g(t, t ′) = K (t − t ′). (36)

Applying the double Laplace transform

L2{· · · } =
∫ ∞

0
dt e−st

∫ ∞

0
dt ′ e−s′t ′ {· · · }, (37)

and the convolution theorem L2{ f ∗∗ g} = L2{ f }L2{g}, we
get

L2 {X (t, t ′)} = L2{G(t )R(t ′)}L2{K (t − t ′)}
= G̃(s) R̃(s′)L2{K (t − t ′)}, (38)

where the tilde still denotes the one variable Laplace trans-
form. Referring to the properties of double Laplace transforms
(see, e.g., Ref. [32]) and noticing that the dissipation kernel
K (t ) is an even function one gets

L2{K (t − t ′)} = K̃ (s) + K̃ (s′)
s + s′ , (39)

and therefore

L2 {X (t, t ′)} = G̃(s) R̃(s′)
K̃ (s) + K̃ (s′)

s + s′ . (40)

Using Eq. (18), we can make here the following replacements:

G̃(s)K̃ (s) = S̃(s) − s G̃(s),

R̃(s′)K̃ (s′) = 1 − s′ R̃(s′) − ω2G̃(s′) (41)

to get

L2 {X (t, t ′)} = 1

s + s′ [S̃(s)R̃(s′) + G̃(s) − ω2G̃(s)G̃(s′)]

− G̃(s)R̃(s′). (42)

Next, using Eq. (17) one can make the replacements

R̃(s′) = s′G̃(s′), ω2G̃(s) = 1 − s S̃(s), (43)

which yields

L2 {X (t, t ′)} = S̃(s)G̃(s′) − G̃(s)R̃(s′) + G̃(s) − G̃(s′)
s + s′ . (44)

Recalling that G(t ) is an odd function and referring again to
the properties of double Laplace transform one notices that
the last term in the above expression if the double Laplace
transform of G(t − t ′),

L2 {X (t, t ′)} = S̃(s)G̃(s′) − G̃(s)R̃(s′) + L2{G(t − t ′)}.
(45)

Therefore, in the time domain X (t, t ′) has the form

X (t, t ′) = S(t )G(t ′) − G(t )R(t ′) + G(t − t ′). (46)

Finally, substituting this expression into Eq. (33) we obtain

〈q(t )v(t ′)〉 = kBT

m
G(t − t ′), (47)

which coincides with the result Eq. (32) for the ergodic oscil-
lator in equilibrium.

In a similar manner one can derive the results Eq. (32) for
autocorrelations 〈q(t )q(t ′)〉 and 〈v(t )v(t ′)〉. Thus, the results
Eq. (32), connecting the relaxation and correlation functions,
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FIG. 1. Left: Polar coordinates used in Eq. (63) to define two branches of the function f (s) = √
s2 + ω2

0. Right: The integration contour 	

for integral Eq. (108). The poles at ±iω∗ exist only for nonergodic configurations with ω � ωc.

hold for both ergodic and nonergodic configurations, provided
initial conditions are the equilibrium ones.

V. RELAXATION FUNCTIONS IN LAPLACE DOMAIN

As was shown in the previous sections, the oscillator’s
dynamics can be described in terms of the relaxation functions
G(t ), R(t ), S(t ). Our goal is to find that functions in explicit
forms for the specific dissipation kernel K (t ) given by Eq. (9).
We shall focus on finding G(t ), the other two functions can be
found by differentiating and integrating G(t ), see Eq. (15).

The Laplace transform of the kernel Eq. (9) is

K̃ (s) = μ

2

(√
s2 + ω2

0 − s
)
. (48)

Substituting it into Eq. (14) yields the Laplace transform for
G(t ),

G̃(s) = 2

(2 − μ) s2 + μ s
√

s2 + ω2
0 + 2 λ ω2

0

, (49)

where we introduce the parameter

λ = (ω/ω0)2 (50)

as a dimensionless alias for the square of the oscillator fre-
quency ω. In what follows, we shall use λ and ω concurrently.

The inversion of transform Eq. (49) can be expressed in
terms of standard functions only for a few special cases, see
the next section. For arbitrary values of λ and μ, the inversion
must be performed by evaluating the Bromwich integral

G(t ) = 1

2π i

∫ γ+i∞

γ−i∞
est G̃(s) ds (51)

in the complex plane. The character of relaxation (thermaliz-
ing or nonthermalizing) is determined by analytical properties
of G̃(s). This can be anticipated as follows. Suppose transform
G̃(s), in addition to the branch points at ±iω0, also has two
simple conjugated poles on the imaginary axis ±iω∗ with
ω∗ > ω0. Evaluating the Bromwich integral by closing the

integration contour, see the right part of Fig. 1, and using
Cauchy’s residue theorem one expects to get contributions
e±iω∗t which may result in the oscillatory behavior G(t ) ∼
sin ω∗t . In that case the condition of thermalization Eq. (21)
is not satisfied. However, if G̃(s) has no poles, or has poles
on the real axis, then one expects the relaxation to thermal
equilibrium.

According to Eq. (49), the pole positions must be solutions
of the equation

(2 − μ) s2 + μ s
√

s2 + ω2
0 + 2 λ ω2

0 = 0. (52)

The above consideration suggests that the necessary condition
of nonergodicity is that Eq. (52) has purely imaginary solu-

tions. The subtlety is that the function f (s) =
√

s2 + ω2
0, and

therefore G̃(s), has two branches and only one of the branches
is physically meaningful. Therefore, special care is needed to
identify the poles of the physical branch of G̃(s) and to discard
the poles for the unphysical branch.

VI. SPECIAL CASES

Let us first consider two cases when the inversion of the
transform G̃(s) given by Eq. (49) is known in closed analytical
form. In both cases the oscillator’s configuration is ergodic,
so from the perspective of this paper those cases are not
of particular interest. Yet the special cases can be useful as
reference points to verify the validity of the general results.

For the first case,

μ = 1, λ = (ω/ω0)2 = 1/2, (53)

and transform Eq. (49) has the form

G̃(s) = 2

s2 + s
√

s2 + ω2
0 + ω2

0

. (54)

The inverse transform of this expression is given by the Bessel
function,

G(t ) = 2

ω0
J1(ω0t ). (55)
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The other two relaxation functions, given by Eq. (15), are

R(t ) = J0(ω0t ) − J2(ω0t ), S(t ) = J0(ω0t ). (56)

All three relaxation functions vanish at long times and thus
satisfy the condition of ergodic relaxation to thermal equilib-
rium Eq. (21).

The second special case corresponds to the parameter val-
ues

μ = 1, λ = (ω/ω0)2 = 1/4 (57)

when

G̃(s) = 4

2 s2 + 2 s
√

s2 + ω2
0 + ω2

0

= 4(
s +

√
s2 + ω2

0

)2
.

(58)

The inverse transform of this expression is known to be

G(t ) = 8

ω2
0t

J2(ω0t ), (59)

and the other relaxation functions, according to Eq. (15), are

R(t ) = 8

ω0t
J1(ω0t ) − 24

(ω0t )2
J2(ω0t ), S(t ) = 2

ω0t
J1(ω0t ).

(60)

Again, the relaxation functions describe the ergodic relaxation
since G(t ), R(t ), S(t ) → 0 as t → ∞. It will be shown below
that for μ < 2 the condition of nonergodic relaxation reads
λ > λc = 1 − μ/2. For both special cases considered in this
section λc = 1/2, and the condition is not satisfied.

VII. EQUATIONS FOR POLES

As was noted in Sec. V, the character of the oscillator’s
relaxation is governed by analytical properties of the function
G̃(s) given by Eq. (49). That function has two branch points at
±iω0 and possibly a number of poles. The positions of poles
must satisfy Eq. (52) which we rewrite here as

(2 − μ) s2 + 2λ ω2
0 = −μ s f (s), (61)

where the function

f (s) =
√

s2 + ω2
0 =

√
(s − iω0)(s + iω0), (62)

has two branches, which we denote as f1(s) and f2(s). Only
one of the branches is physically relevant, and our immedi-
ate goal is to define and present it in a form convenient for
calculations.

To this end, let us write the factors s ± iω0 in Eq. (62) in
terms of polar coordinates (r1, θ1) and (r2, θ2),

s − iω0 = r1 eiθ1 , s + iω0 = r2 eiθ2 , (63)

see the left part of Fig. 1. Then f (s) takes the form

f (s) = √
r1r2 ei θ1+θ2

2 . (64)

Let us define the first branch f1(s) of f (s) by Eq. (64) with
both polar angles in the interval (−3π/2, π/2],

−3π

2
< θ1 � π

2
, −3π

2
< θ2 � π

2
. (65)

The second branch f2(s) is defined by Eq. (64) with the
interval for θ2 shifted by 2π ,

−3π

2
< θ1 � π

2
,

π

2
< θ2 � 5π

2
. (66)

The first branch f1(s) has, in particular, the following mapping
properties:

(a) If s = x is real and positive (negative), then f1(s) is also
real and positive (negative);

(b) If s = ±iω∗ with real ω∗ � ω0, then f1(s) = ±iz with
real z � 0.

One can further elaborate property (b): Suppose s = ±iω∗
with ω∗ � ω0, then

f1(±iω∗) = ±i
√

ω2∗ − ω2
0, (67)

where the square root is the unique positive root of a positive
real number.

As follows from Eqs. (64)–(66), for any s the two branches
of f (s) are connected by the relation f2(s) = eiπ f1(s) =
− f1(s). Therefore, the mapping properties of the second
branch f2(s) are algebraically opposite to that of the first
branch, namely:

(a) If s = x is real and positive (negative), then f2(s) is real
and negative (positive);

(b) If s = ±iω∗ with real ω∗ � ω0, then f2(s) = ∓iz with
real z � 0.

Keeping in mind the mapping properties of f (s), one can
verify that the physically meaningful branches of K̃ (s) and
G̃(s) must involve the first branch f1(s), because only in that
case one recovers the correct initial conditions for K (t ) and
G(t ),

K (0) = lim
s→∞ s K̃ (s) = μω2

0

4
, G(0) = lim

s→∞ s G̃(s) = 0.

(68)

Therefore, in the equation for poles Eq. (61) one has to replace
the function f (s) by its first (physical) branch,

(2 − μ) s2 + 2λ ω2
0 = −μ s f1(s). (69)

Note that symbolic calculation systems like Wolfram Math-
ematica by default evaluate the function f (s) using its first
branch.

Squaring both sides of Eq. (69) and moving all terms to the
left-hand side, one gets

4(1 − μ) s4 + [4λ(2 − μ) − μ2] ω2
0 s2 + 4λ2ω4

0 = 0. (70)

Each solution of Eq. (69) for poles is also a solution of the
squared Eq. (70), but not vice versa. In other words, positions
of the poles of G̃(s) must be among solutions of the squared
Eq. (70), but not every solution of Eq. (70) determines a pole
of G̃(s). A detailed analysis of analytical properties of G̃(s) is
somewhat different for different ranges of μ; below we shall
consider those ranges separately starting with the simpler case
μ = 1.

VIII. POLES FOR μ = 1

For μ = 1 Eq. (69) for the poles of G̃(s) takes the form

s2 + 2λ ω2
0 = −s f1(s), (71)
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while the squared Eq. (70), in general of order four, is reduced
to a quadratic equation

(4λ − 1) ω2
0 s2 + 4λ2ω4

0 = 0. (72)

First, consider the case λ > 1/4 when Eq. (72) has two imag-
inary solutions

s1,2 = ±iω∗, ω∗ = 2λ√
4λ − 1

ω0 � ω0. (73)

Let us show that s1,2 are also solutions of Eq. (71), i.e., G̃(s)
has the poles at s1,2, but only under the additional constraint
λ � 1/2.

To prove that the roots s1,2 of the squared Eq. (72) also
satisfy Eq. (71) it is sufficient to show that the left- and
right-hand sides of Eq. (71) for s = s1,2 have consistent signs.
Substituting s1 = iω∗ into Eq. (71) one gets for the left-hand
side

l.h.s. = 2λ (2λ − 1)

4λ − 1
ω2

0. (74)

This expression is nonnegative for λ � 1/2. However, the
right-hand side of Eq. (71) for s = s1 is always nonnegative,

r.h.s. = −iω∗ f1(iω∗) � 0. (75)

This follows from the mapping property (b) for f1(s) men-
tioned in Sec. IV, or from Eq. (67). Therefore, the signs of the
left- and right-hand sides of Eq. (71) for s = s1 are consistent
only for λ � 1/2. A similar consideration applies for s = s2.
Thus, we conclude that s1,2 given by Eq. (73) are solutions of
the equation for poles Eq. (71) provided λ � 1/2.

The same conclusion can be arrive at by the direct evalua-
tion of the right-hand side of Eq. (71) for s = s1,2 taking into
account Eqs. (67) and (73). For instance, for s = s1 one gets

r.h.s. = −iω∗ f1(iω∗) = ω∗
√

ω2∗ − ω2
0 = 2λ |2λ − 1|

4λ − 1
ω2

0.

(76)

For λ � 1/2 this expression equals to the left-hand side
Eq. (74). This proves that s1, and by similar argument s2, are
solutions of Eq. (71) for poles under condition λ � 1/2.

Next, consider the case λ < 1/4 when the squared Eq. (72)
has two real solutions

s3,4 = ± 2λ√
1 − 4λ

ω0. (77)

One observes that s3,4 are not solutions of Eq. (71) for poles.
Indeed, for s = s3,4 the left-hand side of Eq. (71) is still given
by Eq. (74) which is positive for λ < 1/4. However, recalling
the mapping property (a) for f1(s), see Sec. VII, one finds
that the right-hand side of Eq. (71) is negative for any real
s, including s = s3,4. Thus, s3,4 do not satisfy Eq. (71) and
therefore the physical branch of G̃(s) has no poles at s3,4.

For the remaining case λ = 1/4 the Eq. (71) for poles takes
the factorized form

s2 + s
√

s2 + ω2
0 + ω2

0

2
= 1

2

(
s +

√
s2 + ω2

0

)2 = 0, (78)

which has no solutions.

Summarizing, for μ = 1 the physical branch of G̃(s) has
the poles at s1,2 = ±iω∗ under the condition

λ � λc = 1/2, (79)

i.e., for the oscillator frequency ω � ωc = ω0/
√

2. The poles
are located on the imaginary axis and for λ > λc the corre-
sponding frequency ω∗, given by Eq. (73), is outside the bath
spectrum, (ω∗ > ω0). As was discussed above and will be
shown explicitly below, under these conditions the relaxation
is nonergodic. For λ < λc the function G̃(s) has no poles but
only the branch points at ±iω0. In that case the relaxation is
expected and will be shown to be ergodic. For λ = λc = 1/2
we get ω∗ = ω0, and the poles coincide with the branch points,
s1,2 = ±iω0. That is one of the special cases (μ = 1 and
λ = 1/2) considered in Sec. VI. The relaxation was shown
there to be ergodic. Thus, we conclude that for μ = 1 the re-
laxation is expected to be ergodic for λ � λc = 1/2 (for lower
oscillator frequencies ω � ωc = ω0/

√
2) and nonergodic for

λ > λc (for higher oscillator frequencies ω > ωc).

IX. POLES FOR μ < 1

For μ �= 1 the squared Eq. (70) is of order four and has four
roots which we present as two pairs

s1,2 = ±
√

z+(λ,μ) ω0, s3,4 = ±
√

z−(λ,μ) ω0, (80)

where

z±(λ,μ) = 1

8(1 − μ)
[μ2 + 4λ(μ − 2) ± μ

√
D], (81)

D = 16λ2 + 8λ(μ − 2) + μ2. (82)

We need to verify which of these roots, if any, are also solu-
tions of the (unsquared) equation for poles Eq. (69). Below we
show that G̃(s) has poles only at s1,2, but not at s3,4, and only
under the condition

λ � λc = 1 − μ/2. (83)

Properties of the roots s1,2 and s3,4 depend on the sign of
the discriminant D. Consider first the case D � 0 when the
functions z±(λ,μ) are both real. For the considered domain
μ < 1, the inequality D � 0 holds when

λ � λ−, or λ � λ+, (84)

where

λ± = 1

4
(2 − μ ± 2

√
1 − μ) < λc. (85)

One can verify that for λ � λ− both functions z± are positive,
so that all four roots Eq. (80) are real. But it is easy to see,
recalling mapping rule (a) for f1(s) in Sec. VII, that Eq. (69)
for poles

(2 − μ) s2 + 2λ ω2
0 = −μ s f1(s) (86)

cannot have real solutions for the given domain μ < 1 since
the left- and right-hand sides of the equation for real s have
the opposite signs. Thus, we find that for λ � λ− the function
G̃(s) has no poles.

However, for λ � λ+ both functions z± can be shown to
be negative, and all four roots Eq. (80) are purely imaginary.
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Consider the first pair of roots, writing it as

s1,2 = ±i ω∗, ω∗ = β∗(λ,μ) ω0, (87)

where the dimensionless function β∗(λ,μ) reads

β∗(λ,μ) =
√

−z+(λ,μ)

=
{ −1

8(1 − μ)
[μ2 + 4λ(μ − 2) + μ

√
D]

}1/2

. (88)

Here the square roots are the unique positive roots of positive
real numbers. Let us define the critical value λc for which
β∗(λ,μ) = 1,

β∗(μ, λc) = 1 ⇒ λc = 1 − μ/2. (89)

Note again that λc > λ+. One can verify that for the consid-
ered domain μ < 1 the function β∗(λ,μ) for any fixed μ has
a minimum at λ = λc, so that

β∗(λ,μ) � β∗(λc, μ) = 1, (90)

and the equality β∗ = 1 holds only for λ = λc. Therefore, the
roots s1,2 have the structure s1,2 = ±iω∗ with ω∗ = β∗ω0 �
ω0. Then according to Eq. (67)

f1(s1,2) = f1(±iω∗) = ±i
√

ω2∗ − ω2
0. (91)

Taking this into account and substituting s1,2 into Eq. (86) for
poles we find that the right-hand side of the equation is real
and nonnegative

−μ s1,2 f1(s1,2) = μω∗
√

ω2∗ − ω2
0 � 0. (92)

The equation is satisfied by s1,2 only if the left-hand side is
also nonnegative,

(2 − μ)(s1,2)2 + 2λω2
0 = −(2 − μ) ω2

∗ + 2λω2
0 � 0, (93)

which gives the condition

λ �
(

1 − μ

2

) (ω∗
ω0

)2
= λc β2

∗ (λ,μ). (94)

Writing this as

λ

λc
� β2

∗ (λ,μ), (95)

one observes that, since β∗(λ,μ) � 1, the condition necessar-
ily implies λ � λc. Further, one can directly verify that the
condition λ � λc is not only necessary but also sufficient for
the validity of inequality Eq. (95): the latter holds for any
λ � λc. Thus, we find that the first pair of roots s1,2 of the
squared Eq. (70) also satisfy the equation for poles Eq. (86),
and therefore G̃(s) has poles at s1,2 under the condition λ �
λc. The same conclusion one gets directly evaluating the left-
and right-hand sides of Eq. (86) for poles at s = s1,2.

Consider now the second pair of roots of the squared
Eq. (70), writing them as

s3,4 = ±i ω†, ω† = β†(λ,μ) ω0, (96)

with

β†(λ,μ)

=
√

−z−(λ,μ)=
{ −1

8(1 − μ)
[μ2 + 4λ(μ − 2)−μ

√
D]

}1/2

,

(97)

and assuming λ � λ+. One can verify that for the considered
domain μ < 1

β†(λ,μ) > 1, for λ � λ+, (98)

so that ω† = β† ω0 � ω0. Repeating the above arguments for
s1,2 we find that the roots s3,4 satisfy Eq. (86) for poles under
the condition

λ

λc
> β2

† (λ,μ), (99)

which is similar to condition Eq. (95) for s1,2. One can di-
rectly verify (for instance, graphically) that inequality Eq. (99)
cannot be satisfied for any λ � λ+ and μ < 1. Therefore, the
roots s3,4 do not satisfy Eq. (86) and G̃(s) has no poles at s3,4.

Finally, we need to consider the interval λ− < λ < λ+. In
that case the discriminant D in Eq. (81) is negative, and the
roots s1,2 and s3,4 have nonzero real and imaginary parts. In
that case the simple arguments we used above, based on the

mapping rules for the function f (s) =
√

s2 + ω2
0 for purely

real or imaginary s, do not apply. Yet, an explicit evaluation
(which is convenient to execute with Mathematica) shows that
the imaginary parts of the left- and right-hand sides of the
equation for poles Eq. (86) for s = s1,2, and also for s = s3,4,
have opposite signs. Real parts also have opposite signs ex-
cept one value of λ for which they are both zero. Thus, for
λ− < λ < λ+ neither s1,2 nor s3,4 give positions of poles of
the physical branch of G̃(s).

Summarizing, for μ < 1 the function G̃(s) under condition

λ � λc = 1 − μ/2 (100)

has two poles. The poles positions are given by Eqs. (87)
and (88) and have the form s1,2 = ±iω∗ with ω∗ � ω0. The
equality ω∗ = ω0 occurs for λ = λc; for λ > λc the poles
frequency ω∗ is higher than the maximal mode frequency of
the bath, ω∗ > ω0. Since λ = (ω/ω0)2, condition Eq. (100)
corresponds to higher values of the oscillator frequency ω.
For λ < λc, i.e., for lower frequencies, G̃(s) has no poles
and its only singularities are the two branch points at ±iω0.
These analytical properties are expected and will be shown
below to correspond to nonergodic behavior for λ > λc

(for the higher frequency domain) and ergodic relaxation
to thermal equilibrium for λ � λc (for the lower frequency
domain).

X. POLES FOR μ > 1

For μ > 1 the roots s1,2 and s3,4 of the squared Eq. (70) are
given by the same Eqs. (80)–(82) as for μ < 1, but now the
discriminant D = 16λ2 + 8λ(μ − 2) + μ2 is positive for any
λ and the functions z±(λ,μ) are both real. Further one finds
that z+(λ,μ) < 0 and z−(λ,μ) > 0. Therefore, the first pair
of roots s1,2 = ±√

z+ are purely imaginary, and the second
pair s3,4 = ±√

z− are real. As was noted in the previous
section, a real s cannot be a solution of Eq. (86) for poles.
Therefore, the roots s3,4 must be discarded, G̃(s) has no poles
there.
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Consider the purely imaginary roots s1,2. They are given by
the same Eqs. (87) and (88) as for μ < 1,

s1,2 = ±i ω∗, ω∗ = β∗(λ,μ) ω0,

β∗(λ,μ) =
√

−z+(λ,μ)

=
{ −1

8(1 − μ)
[μ2 + 4λ(μ − 2) + μ

√
D]

}1/2

.

(101)

As in the previous section, let us define the critical value λc

for which β∗(λ,μ) = 1,

β∗(μ, λc) = 1 ⇒ λc = 1 − μ/2. (102)

In contrast to the case μ � 1 discussed in the previous sec-
tions, a meaningful (nonnegative) λc exists only under the
additional constraint μ � 2. Thus, for μ > 1 we need to con-
sider separately the intervals 1 < μ < 2 and μ � 2.

For 1 < μ < 2, substituting s1,2 = ±iω∗ into Eq. (86) for
poles, one finds as in the previous section that the equation is
satisfied under condition Eq. (94),

λ � λc β2
∗ (λ,μ), (103)

which holds for λ � λc.
For μ � 2, the substitution of s1,2 = ±iω∗ into Eq. (86)

for poles leads again to condition Eq. (103), but now that
condition is trivially satisfied for any λ > 0 since λc = 1 −
μ/2 � 0 and the right-hand side of inequality Eq. (103) is
nonpositive.

Summarizing, for μ > 1 analytical properties of G̃(s) are
different for the intervals 1 < μ < 2 and μ � 2. For the inter-
val 1 < μ < 2 we find the properties similar to that for μ < 1,
that is G̃(s) has poles at s1,2 given by Eq. (101) under the
condition λ � λc = 1 − μ/2. For λ = λc the poles coincide
with the branch points at ±iω0. However, for μ � 2 the trans-
form G̃(s) has poles at s1,2 for any value of λ. These properties
suggest the following: For μ < 2 the relaxation is nonergodic
for λ > λc (for higher oscillator frequency ω) and ergodic for
λ � λc (for lower ω). For μ � 2 the relaxation is nonergodic
for any λ (for any ω). In what follows, these expectations will
be confirmed by explicit evaluation of the relaxation functions
in the time domain.

XI. RELAXATION FUNCTIONS FOR μ = 1

For μ = 1 the Laplace transform Eq. (49) of the relaxation
function G(t ) takes the form

G̃(s) = 2

s2 + s f1(s) + 2 λ ω2
0

, (104)

where f1(s) is the physical branch of the function f (s) =√
s2 + ω2

0 defined in Sec. VII. The inverse transform is given
by the Bromwich integral Eq. (51),

G(t ) = 1

2π i

∫ γ+i∞

γ−i∞
est G̃(s) ds. (105)

The singular points of G̃(s) are two branch points ±iω0 and
also possibly two poles. As was discussed in Sec. VIII, for

μ = 1 the poles exist under the condition

λ � λc = 1/2, or ω � ωc =
√

1/2 ω0, (106)

and have the form

s1,2 = ±iω∗, ω∗ = 2λ√
4λ − 1

ω0 � ω0. (107)

For λ = λc the poles and branch points coincide, and for λ <

λc the function G̃(s) has no poles. Since all singularities are
located on the imaginary axis, the integration path in Eq. (105)
is along a vertical line to the right of the origin, γ > 0. With
the nature of singular points established, the evaluation of
integral Eq. (105) is a standard exercise in complex variable
analysis; below we outline the main points.

The first step is to consider the auxiliary integral

I (t ) = 1

2π i

∫
	

est G̃(s) ds (108)

over a closed contour 	 shown in Fig. 1. As the radius of
the arc of 	 goes to infinity, the contribution from the arc
vanishes. The contributions from the paths above and below
the negative real axis are mutually canceled. The integrals
over the small circles around the branch points ±iω0 can be
shown to vanish as the circles radii goes to zero. The latter
is true for any λ including λ = λc = 1/2, when the branch
points coincide with the poles. The only nonzero contributions
to the integral I (t ) are those from the rightmost vertical path
and the two shores of the branch cut along the imaginary axis
connecting the branch points ±iω0. When the radius of the
arc of 	 goes to infinity, the contribution from the rightmost
vertical path, according to Eq. (105), equals G(t ), therefore

I (t ) = G(t ) + I0(t ), (109)

where

I0 = I+
0 + I−

0 = 1

2π i

∫
	+

0

est G̃(s) ds + 1

2π i

∫
	−

0

est G̃(s) ds

(110)

is the contribution from the path along the right (	+
0 ) and

left (	−
0 ) shores of the branch cut in the clockwise direction.

On the other hand, the integral I (t ) can be evaluated with
Cauchy’s integral and residue theorems:

I (t ) =
{

0, if λ � λc,∑
i=1,2 Res[est G̃(s), si], if λ > λc.

(111)

From Eqs. (109) and (111) one gets

G(t ) =
{−I0(t ), for λ � λc,

−I0(t ) + ∑
i=1,2 Res[est G̃(s), si], for λ > λc.

(112)
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FIG. 2. Left: The ergodic component Ge(t ) of the relaxation function G(t ), see Eqs. (117) and (118), for the mass ratio parameter μ = 1
and several values of the oscillator frequency parameter λ = (ω/ω0)2. Right: The amplitude G0 of the nonergodic time-periodic component of
G(t ) as a function of λ. It is zero for λ � λc = 1/2 and has a maximum at λ = 1.

The integral I0(t ) along the branch cut for arbitrary μ is
evaluated in Appendix A; for μ = 1 the result takes the form

I0(t ) = − 4

πω0

∫ 1

0

x
√

1 − x2 sin(x ω0t ) dx

(1 − 4λ) x2 + 4λ2
. (113)

The residues Res[est G̃(s), s1,2] are evaluated for arbitrary μ in
Appendix B; for μ = 1 we get

Res[est G̃(s), s1] + Res[est G̃(s), s2]

= 1

ω0

4
√

β2 − 1

(2β2 − 1) + 2 β
√

β2 − 1
sin(ω∗t ), (114)

where

β = β(λ) = ω∗
ω0

= 2λ√
4λ − 1

. (115)

This quantity has been denoted in the previous sections as β∗;
from now on we drop the asterisk subscript as superfluous.
From Eqs. (114) and (115) one gets a more explicit expression

Res[est G̃(s), s1]+Res[est G̃(s), s2]= 1

ω0

8λ − 4

(4λ − 1)3/2
sin(ω∗t ).

(116)

Finally, substituting Eqs. (113) and (116) into Eq. (112) yields

G(t ) =
{

Ge(t ), if λ � λc,

Ge(t ) + G0 sin(ω∗t ), if λ > λc,
(117)

where

Ge(t ) = 4

πω0

∫ 1

0

sin(x ω0 t ) x
√

1 − x2 dx

(1 − 4λ) x2 + 4λ2
,

G0 = 1

ω0

8 λ − 4

(4 λ − 1)3/2
, (118)

λc = 1/2, and the frequency of the oscillating (nonergodic)
term is ω∗ = β ω0 with β = β(λ) given by Eq. (115).

The function Ge(t ) for any λ vanishes at long times and
thus represents the ergodic component of G(t ) (hence the
subscript e), while G0 is the amplitude of the nonergodic
component. At long times G(t ) has the asymptotic form

G(t ) →
{

0, if λ � λc,

G0 sin(ω∗t ), if λ > λc.
(119)

As was discussed in Sec. III, see Eq. (21), the asymptotic long
time condition G(t ) → 0 corresponds to ergodic relaxation.
Thus, as anticipated, the results Eqs. (117) and (119) show
that the oscillator is ergodic (reaches thermal equilibrium with
the bath at long times) when λ � λc = 1/2. For λ > λc, the
time-periodic component of G(t ) develops; the oscillator is
nonergodic and does not thermalize.

For λ = 1/4 and λ = 1/2 the integral form of the ergodic
component Ge(t ) given by Eq. (118) can be expressed in terms
of the Bessel functions,

G(t ) = Ge(t ) =
{

8
ω2

0t
J2(ω0t ), for λ = 1/4,

2
ω0

J1(ω0t ), for λ = 1/2.
(120)

Those are two special solutions already found in Sec. VI using
a table of standard Laplace transforms.

For several values of λ < 1 the ergodic component Ge(t )
is presented on the left plot of Fig. 2. For λ > 1, Ge(t ) has
an oscillatory decaying shape similar to that for λ = 1/2, but
its range quickly decreases with increasing λ; for instance, for
λ = 5 the maximum value of Ge(t ) is of order of 10−3.

The amplitude G0(λ) of the nonergodic oscillatory compo-
nent, given by Eq. (118), as a function of λ is shown on the
right plot of Fig. 2. It is zero for λ � λc, while for λ > λc it
first quickly increases, reaches a maximum at λ = 1, and then
monotonically decreases as 1/

√
λ.

Differentiating and integrating Eq. (117) yield the other
two relaxation functions R(t ) and S(t ); see Eq. (15). They
have the structure similar to G(t ), i.e., have only ergodic
component for λ � λc and both ergodic and nonergodic com-
ponents for λ > λc. For R(t ) = d

dt G(t ) we get

R(t ) =
{

Re(t ), if λ � λc,

Re(t ) + R0 cos(ω∗t ), if λ > λc,
(121)

where the ergodic component Re(t ) and the amplitude R0 of
the nonergodic component are

Re(t ) = 4

π

∫ 1

0

cos(x ω0 t ) x2
√

1 − x2 dx

(1 − 4λ) x2 + 4λ2
,

R0 = βω0 G0 = 8 λ(2λ − 1)

(4 λ − 1)2
. (122)
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FIG. 3. Left: The ergodic component Re(t ) of the relaxation function R(t ), see Eqs. (121) and (122), for the mass ratio parameter μ = 1
and several values of the frequency parameter λ = (ω/ω0)2. Right: The amplitude R0 of the nonergodic time-periodic component of R(t ) as a
function of λ. The nonergodic component is zero for λ � λc = 1/2.

The functions Re(t ) and R0(λ) are presented in Fig. 3. Similar
to Ge(t ), Re(t ) vanishes at long times for any λ, and thus
can be interpreted as an ergodic component of R(t ). Note that
Re(0) = 1 for λ � λc and Re(0) + R0 = 1 for λ > λc, so that
R(0) = 1 for any λ. This is the correct initial condition which
can be found without inverting R̃(s); see Eq. (16).

For the relaxation function S(t ) = 1 − ω2
∫ t

0 G(t )dt we get

S(t ) =
{

Se(t ), if λ � λc,

Se(t ) + S0 [cos(ω∗t ) − 1], if λ > λc,
(123)

with

Se(t ) = 1 − 4λ

π

∫ 1

0

[1 − cos(x ω0 t )]
√

1 − x2 dx

(1 − 4λ) x2 + 4λ2
,

S0 = λω0G0

β
= 4 λ − 2

4 λ − 1
. (124)

The functions Se(t ) and S0(λ) are presented in Fig. 4. At long
times Se(t ) has the asymptotic time-independent form

Se(t ) → 1 − 4λ

π

∫ 1

0

√
1 − x2 dx

(1 − 4λ) x2 + 4λ2
, (125)

which takes different values for λ � λc and for λ > λc,
namely,

Se(t ) →
{

0, if λ � λc,

S0, if λ > λc.
(126)

As the result, similar to the other two relaxation functions,
S(t ) at long times vanishes for ergodic configurations and
oscillates about zero for nonergodic ones,

S(t ) →
{

0, if λ � λc,

S0 cos ω∗t, if λ > λc.
(127)

Summarizing, in this section we obtained explicit expres-
sions for the relaxation functions for the case μ = 1. For λ �
λc (for lower values of the oscillator frequency, ω � ωc =√

λc ω0 = ω0/
√

2), the relaxation functions vanish at long
times. As was discussed in Sec. III, such behavior corresponds
to the ergodic relaxation to thermal equilibrium. However, for
λ > λc (for higher frequencies ω > ωc) the relaxation func-
tions develop time-periodic terms which do not vanish at long
times but oscillate about zero. As a result, the oscillator does
not thermalize but reaches a cyclostationary nonequilibrium
state characterized by the oscillatory behavior of the relax-
ation functions. Below we show that similar results hold not
only for μ = 1 but for the entire domain μ < 2.

FIG. 4. Left: The ergodic component Se(t ) of the relaxation function S(t ), see Eqs. (123) and (124), for the mass ratio parameter μ = 1
and several values of the frequency parameter λ = (ω/ω0)2. Right: The amplitude S0 of the nonergodic component of S(t ) as a function of λ.
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XII. RELAXATION FUNCTIONS FOR μ < 2

In Secs. IX and X we found that for the intervals μ < 1 and
1 < μ < 2, and also under the condition

λ � λc = 1 − μ/2, or ω � ωc =
√

1 − μ/2 ω0 (128)

the Laplace transform G̃(s) of the relaxation function G(t ) has
two poles on the imaginary axis. The poles are given by the
following expressions:

s1,2 = ±i ω∗, ω∗ = β(α,μ) ω0,

β(α,μ) =
{

1

8(μ − 1)
[μ2 + 4λ(μ − 2)

+μ
√

16λ2 + 8λ(μ − 2) + μ2]

}1/2

, (129)

and λc is defined by the equation β(λc, μ) = 1. However, for
λ < λc the transform G̃(s) has no poles. To find G(t ) for the
combined domain

μ ∈ (0, 1) ∪ (1, 2) (130)

by inversion of G̃(s) we follow the same procedure as in the
previous section to find again Eq. (112),

G(t ) =
{−I0(t ), for λ � λc,

−I0(t ) + ∑
i=1,2 Res[est G̃(s), si], for λ > λc,

(131)

where the integral

I0 = I+
0 + I−

0 = 1

2π i

∫
	+

0

est G̃(s) ds + 1

2π i

∫
	−

0

est G̃(s) ds

(132)

is along the right (	+
0 ) and left (	−

0 ) shores of the branch
cut in the clockwise direction. As shown in Appendix A, for

arbitrary μ this integral has the form

I0(t )= − 4μ

πω0

∫ 1

0

x
√

1 − x2 sin(x ω0t ) dx

4(1 − μ) x4+[4λ(μ − 2) + μ2] x2 + 4λ2
.

(133)

The sum of residues is evaluated in Appendix B,

Res[est G̃(s), s1] + Res[est G̃(s), s2]

= 1

ω0

4
√

β2 − 1

μ (2β2 − 1) + 2(2 − μ)β
√

β2 − 1
sin(ω∗t ).

(134)

Substituting Eqs. (133) and (134) into Eq. (131) yields

G(t ) =
{

Ge(t ), if λ � λc,

Ge(t ) + G0 sin(ω∗t ), if λ > λc,
(135)

where the ergodic component Ge(t ) and the amplitude G0 of
the nonergodic oscillatory term are

Ge(t ) = 4μ

πω0

∫ 1

0

x
√

1 − x2 sin(x ω0t ) dx

4(1 − μ) x4 + [4λ(μ − 2) + μ2] x2 + 4λ2
,

G0 = 1

ω0

4
√

β2 − 1

μ (2β2 − 1) + 2(2 − μ)β
√

β2 − 1
, (136)

the frequency of the nonergodic term is ω∗ = βω0, and β is
given by Eq. (129).

For the relaxation function R(t ) = dG(t )/dt we get

R(t ) =
{

Re(t ), if λ � λc,

Re(t ) + R0 cos(ω∗t ), if λ > λc,

Re(t ) = 4μ

π

∫ 1

0

x2
√

1 − x2 cos(x ω0t ) dx

4(1 − μ) x4 + [4λ(μ − 2) + μ2] x2 + 4λ2
,

R0 = βω0G0 = 4 β
√

β2 − 1

μ (2β2 − 1) + 2(2 − μ)β
√

β2 − 1
.

(137)

FIG. 5. Left: The ergodic component Ge(t ) of the relaxation function G(t ), see Eqs. (135) and (136), for the mass ratio parameter μ = 0.1
and several values of the frequency parameter λ = (ω/ω0)2. Right: The amplitude G0 of the nonergodic component of G(t ) as a function of λ

for μ = 0.1. The nonergodic term is zero for λ � λc = 1 − μ/2 = 0.95.
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FIG. 6. Left: The ergodic component Re(t ) of the relaxation function R(t ), see Eq. (137), for the mass ratio parameter μ = 0.1 and several
values of the frequency parameter λ = (ω/ω0)2. Right: The amplitude R0 of the nonergodic component of R(t ) as a function of λ for μ = 0.1.

Finally, for the relaxation function S(t ) = 1 −
ω2

∫ t
0 G(t )dt we obtain

S(t ) =
{

Se(t ), if λ � λc,

Se(t ) + S0 [cos(ω∗t ) − 1], if λ > λc,

Se(t ) = 1 − 4λμ

π

∫ 1

0

×
√

1 − x2 [1 − cos(x ω0t )] dx

4(1 − μ) x4 + [4λ(μ − 2) + μ2] x2 + 4λ2
,

S0 = λ

β
ω0G0 = λ

β

4
√

β2 − 1

μ (2β2 − 1) + 2(2 − μ)β
√

β2 − 1
.

(138)

At long times the time-dependent contribution in the ex-
pression for Se(t ) vanishes, and Se(t ) takes the asymptotic
form

Se(t ) → 1 − 4λμ

π

×
∫ 1

0

√
1 − x2 dx

4(1 − μ) x4 + [4λ(μ − 2) + μ2] x2 + 4λ2
.

(139)

One can verify that, similar to the case μ = 1, the asymptotic
Eq. (139) vanishes for λ � λc and equals S0 otherwise,

Se(t ) →
{

0, if λ � λc,

S0, if λ > λc.
(140)

Then, as follows from Eqs. (138) and (140), S(t ) at long times
vanishes for ergodic configurations and oscillates about zero
for nonergodic ones,

S(t ) →
{

0, if λ � λc,

S0 cos ω∗t, if λ > λc.
(141)

Two other relaxation functions have the similar asymptotic
forms.

The behavior of the ergodic and nonergodic components
of the relaxation functions G(t ), R(t ), S(t ) for μ = 0.1 is il-
lustrated in Figs. 5, 6, and 7, respectively. The behavior is
qualitatively similar to that for the case μ = 1, discussed in
the previous section. However, the ergodic components as
functions of time decay faster, and the increase of the ampli-
tudes of the nonergodic components (the initial increase for
G0) as functions of λ is steeper than for μ = 1.

The above results for the relaxation functions hold for μ in
the interval Eq. (130), i.e., for 0 < μ < 2 except μ = 1. They
do not directly apply for μ = 1 because parameter β, given by
Eq. (129), is not defined for μ = 1. Yet one observes that the
limit

lim
μ→1

β(λ,μ) = 2λ√
4λ − 1

(142)

coincides with the result we found for β = ω∗/ω0 for μ =
1; see Eq. (107). With that value for β and μ = 1, one finds
that the expressions obtained in this section recover those we
found in Sec. XI for μ = 1. Therefore, if Eq. (129) for the
function β(λ,μ) is defined at μ = 1 by continuity,

β(λ,μ) =
⎧⎨
⎩

{
1

8(μ−1)

(
μ2 + 4λ(μ − 2) + μ

√
16λ2 + 8λ(μ − 2) + μ2

)}1/2
, if μ �= 1,

2λ√
4λ−1

, if μ = 1,
(143)

then the results of this sections hold for the whole range μ < 2
including μ = 1.

Summarizing, the results of this and previous sec-
tions, we found that for the whole interval μ < 2 the
relaxation is ergodic for λ � λc = 1 − μ/2 (the relaxation
functions vanish at long times) and nonergodic for λ >

λc (the relaxation functions at long times oscillate about
zero). The relaxation functions are given by Eqs. (135)–
(138), which hold for the whole interval μ < 2, while
the frequency of the nonergodic component is ω∗ =
β ω0, where β(α,μ) is a continuous function determined
by Eq. (143).
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FIG. 7. Left: The ergodic component Se(t ) of the relaxation function S(t ), see Eq. (138), for the mass ratio parameter μ = 0.1 and several
values of the frequency parameter λ = (ω/ω0)2. Right: The amplitude S0 of the nonergodic component of S(t ) as a function of λ for μ = 0.1.

XIII. RELAXATION FUNCTIONS FOR μ � 2

In Sec. X we found that for μ � 2 the function G̃(s) has
poles at s = ±iω∗ = ±iβω0 for any value of the frequency
parameter λ = (ω/ω0)2. For that case, we obtain

G(t ) = Ge(t ) + G0 sin ω∗t,

R(t ) = Re(t ) + R0 cos ω∗t,

S(t ) = Se(t ) + S0[cos ω∗t − 1], (144)

where the functions Ge(t ), Re(t ), Se(t ), the amplitudes
G0, R0, S0, and the frequency ω∗ are given by expressions of
the previous section. Thus, for μ � 2 the oscillator has only
nonergodic configurations and does not thermalize for any
λ, i.e., for any value of the oscillator frequency ω. Figure 8
illustrates the behavior of Ge(t ) and G0(λ) for μ � 2. Interest-
ingly, for larger values of μ the interval of the initial increase
of the function G0(λ) vanishes, and the function decreases
monotonically for all λ.

XIV. ERGODIC TO NONERGODIC TRANSITIONS

As an application of the results, let us consider a setting
when the oscillator frequency ω, and the frequency parameter
λ = (ω/ω0)2, can be changed instantaneously by an external

agent. Suppose that the mass ratio parameter is μ < 2. In that
case the oscillator has both ergodic configurations correspond-
ing to ω � ωc and nonergodic ones corresponding to ω > ωc,
and the critical frequency is

ωc =
√

λc ω0 =
√

1 − μ/2 ω0. (145)

Let assume that at t < 0 the oscillator is in an ergodic
initial configuration with the frequency ωi < ωc. Then at
t = 0 the oscillator is in thermal equilibrium with the av-
erage energy E (ωi ) = kBT and the coordinate’s variance
〈q2

i 〉 = kBT/(mω2
i ). At t = 0 the frequency is instantaneously

changed, ωi → ω. If the new frequency ω is lower than or
equal to ωc, then the new configuration is also ergodic, so
the oscillator, after some transient time, will reach again the
equilibrium state with the same energy as for the initial con-
figuration, E (ω) = kBT . We may call that process an ergodic
to ergodic transition. Its characteristic feature is that, except
for a transient initial relaxation, the oscillator average energy
does not change. Using an ergodic to ergodic transition, an ex-
ternal agent can temporarily supply the oscillator with a large
amount of energy, but the oscillator is unable to keep it for
long; in the course of time the energy surplus dissipates into
the bath. For an ergodic oscillator that is the only scenario.

FIG. 8. Left: The ergodic component Ge(t ) of the relaxation function G(t ) for the mass ratio parameter μ = 5.0 and several values of the
oscillator frequency parameter λ = (ω/ω0)2. Right: The amplitude G0 of the nonergodic component of G(t ) as a function of λ for several
values μ � 2.
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Now suppose the new frequency is higher than the critical
value, ω > ωc. In that case the oscillator does not thermal-
ize, but instead reaches at long times a cyclostationary state,
characterized by the oscillatory time dependence of the re-
laxation and correlation functions. The average energy also
oscillates in time and depends on both initial ωi and final
ω frequencies. One may say that the system undergoes an
ergodic to nonergodic transition. Clearly the properties of
such transition depend on the protocol of switching ωi → ω,
or λi → λ. The presented results allow us to discuss only the
case when the switching occurs instantaneously. If instead the
switching takes a finite time and is described by a smooth
function λ(t ), then the properties of the cyclostationary final
state would be different. That case is more difficult because
requires to solve the generalized Langevin equation with a
time-dependent oscillator frequency.

The average oscillator energy after the instantaneous
switching ωi → ω at time t = 0 is

E (t ) = m ω2

2
〈q2(t )〉 + m

2
〈v2(t )〉, (146)

where the second moments of the coordinate and velocity are
given by Eq. (27). With equilibrium initial conditions

〈
q2

i

〉 = kBT

mω2
i

,
〈
v2

i

〉 = kBT

m
(147)

that expressions take the form

〈q2(t )〉 = kBT

mω2
i

S2(t ) + kBT

mω2
[1 − S2(t )],

〈v2(t )〉 = kBT

m
[1 − ω2 G2(t )] + kBT

mω2
i

ω4 G2(t ). (148)

From Eqs. (146) and (148) we get

E (t ) = kBT + kBT

2

[( ω

ωi

)2
− 1

]
{S2(t ) + ω2G2(t )}.

(149)

In terms of λ = (ω/ω0)2 and λi = (ωi/ω0)2 the result reads

E (t ) = kBT + kBT

2

[
λ

λi
− 1

]{
S2(t ) + λ ω2

0G2(t )
}
.

(150)

For λ � λc = 1 − μ/2, the relaxation functions have only
ergodic components vanishing at long times

G(t ) = Ge(t ) → 0, S(t ) = Se(t ) → 0, as t → ∞.

(151)

In that case, as expected, Eq. (150) shows that the oscillator’s
energy relaxes to the equilibrium value kBT .

Now suppose λ > λc. In that case the relaxation functions
have both ergodic and nonergodic components,

G(t ) = Ge(t ) + G0 sin ω∗t,

S(t ) = Se(t ) + S0 [cos(ω∗t ) − 1], (152)

and the ergodic components have the asymptotic properties

Ge(t ) → 0, Se(t ) → S0, as t → ∞. (153)

Then, taking into account that S0 = λω0G0/β, see Eq. (138),
one finds in the limit of long times the oscillator energy in the
cyclostationary (cs) state:

Ecs(t ) = kBT + kBT

2

(
λ

λi
− 1

)
(ω0G0)2

×{(λ/β )2 cos2(ω∗t ) + λ sin2(ω∗t )}. (154)

Instead of relaxing to the equilibrium value kBT , the energy
oscillates with time, and its lower bound exceeds the equi-
librium value kBT . After the additional averaging over time
(denoted by the overbar), the energy of the oscillator in the
cyclostationary state takes the form

E cs = kBT + kBT

4

(
λ

λi
− 1

)[(
λ

β

)2

+ λ

]
(ω0G0)2. (155)

Here ω0G0 and β = β(λ,μ) are given by Eqs. (136) and
(143), respectively.

The physical interpretation of the above results is as
follows. When the external agent at t = 0 instantaneously
increases the oscillator frequency ωi → ω, the oscillator (po-
tential) energy is increased by the amount


E = m

2

(
ω2 − ω2

i

)〈
q2

i

〉 = kBT

2

[( ω

ωi

)2
− 1

]

= kBT

2

(
λ

λi
− 1

)
. (156)

Thus, at t = 0+ the oscillator, just kicked out of equilibrium,
has the energy

E (0+) = kBT + 
E = kBT + kBT

2

(
λ

λi
− 1

)
. (157)

Note that this expression is consistent with the result Eq. (150)
for E (t ) (taking into account that G(0) = 0 and S(0) = 1). If
the new frequency ω corresponds to an ergodic configuration
(ω � ωc), then the excess energy 
E is eventually dissipated
into the bath, and the oscillator (now with the new frequency
ω) returns to thermal equilibrium with the average energy
E = kBT . However, if the new frequency corresponds to a
nonergodic configuration (ω > ωc), then only a part of the ex-
cess energy 
E dissipates into the bath. The dissipated energy
Ediss = E (0+) − Ecs(t ) oscillates in time. Being averaged over
time, it takes the form

Ediss = E (0+) − E cs = f (λ,μ) 
E , (158)

with

f (λ,μ) = 1 − 1

2
[(λ/β )2 + λ] (ω0G0)2, (159)

and λ > λc. According to Eq. (158), the function f (λ,μ)
has the meaning of the fraction of the initial excess energy

E eventually dissipated into the bath, so one expects 0 <

f (λ,μ) � 1.
Consider specifically the case μ = 1 when the expressions

for β and G0, see Sec. XI, are less bulky,

ω0 G0 = 8 λ − 4

(4 λ − 1)3/2
, β = 2λ√

4λ − 1
, (160)
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FIG. 9. The order parameter η(λ), its first η′(λ) and second η′′(λ) derivatives for μ = 1 and λi = 0.25 near the critical point λc = 0.5.

and λc = 1 − μ/2 = 1/2. For that case f (λ) takes the form

f (λ) = 24λ2 − 12λ + 1

(4λ − 1)3
. (161)

One observes that f (λ) takes the value 1 for λ = λc and
monotonically decreases as 1/λ. This means that for a non-
ergodic configuration with λ > λc only a part f 
E of the
excess energy 
E is dissipated into the bath at long times,
another part (1 − f )
E remains localized in the oscillator.
The localized energy monotonically increases with λ and can
be arbitrary large.

In our view, the ability to keep permanently the energy
exceeding the thermal equilibrium value kBT , in violation of
the equipartition theorem, is the key property of the noner-
godic oscillator. It is tempting to view configurations with
λ � λc and λ > λc as two “phases” and to consider ergodic
to nonergodic transitions λi → λ (with λi < λc) as a phase
transition with the dimensionless order parameter

η(λ) = E cs(λ) − kBT

kBT
. (162)

In the ergodic phase (λ � λc) the order parameter vanishes,
while in the nonergodic phase (λ > λc) it is nonzero and
increases with λ,

η(λ) =
{

0, if λ � λc,
1
4

(
λ
λi

− 1
)[(

λ
β

)2 + λ
]

(ω0G0)2, if λ > λc.

(163)

For μ = 1, when G0 and β are given by Eq. (160) (and λc =
1/2), the explicit dependence of the order parameter on λ is

η(λ) =
{

0, if λ � λc,

c(λ, λi ) (λ − λc)2, if λ > λc,
(164)

with

c(λ, λi ) = 4(8λ − 1)

(4λ − 1)3

(
λ

λi
− 1

)
. (165)

Since η(λ) and its first derivatives η′(λ) are continuous and
the second derivative η′′(λ) is discontinuous at λ = λc, see
Fig. 9, there is a resemblance between ergodic to nonergodic
transitions and conventional phase transitions of second order.
Note that the presented study is limited to the case when
the switching λi → λ occurs instantaneously, and there is no
reason to believe that the exponent 2 in Eq. (164) would be
the same if the switching takes a finite time.

XV. CONCLUSION

In this paper we have evaluated the relaxation and corre-
lation functions for a Brownian oscillator described by the
generalized Langevin equation with the dissipation kernel
of the form of Eq. (9). The oscillator may have both er-
godic and nonergodic configurations (for μ < 2), or only
nonergodic configurations (for μ � 2). In ergodic configura-
tions, which correspond to lower oscillator frequencies ω �
ωc = √

1 − μ/2 ω0, the oscillator relaxes to thermal equilib-
rium with the external bath. In nonergodic configurations,
corresponding to higher oscillator frequencies ω > ωc, the
oscillator does not reach thermal equilibrium (unless prepared
in equilibrium initially), but evolves to nonequilibrium cy-
clostationary states in which the average oscillator’s energy
oscillates with time and exceeds the equilibrium value kBT
prescribed by the equipartition theorem.

In general, we observed that nonergodic configurations
emerge when the spectrum of the bath’s modes is bounded
from the above. That is not the case for gaslike environments,
but characteristic for lattices. The specific model considered
here corresponds to an isotope atom embedded in an infinite or
semi-infinite harmonic chain (Rubin’s model) and subjected
to the external harmonic potential.

In the limit of zero oscillator frequency ω → 0, or λ =
(ω/ω0)2 → 0, the presented results recover that for Rubin’s
model. In particular, for the relaxation function R(t ), which
is also the normalized velocity autocorrelation function in
equilibrium, in the limit λ → 0 the presented results take the
form

R(t ) =
{

Re(t ), if μ < 2,

Re(t ) + R0 cos(ω∗t ), if μ � 2.
(166)

This reflects that for μ < 2 the condition of nonergodic re-
laxation λ > λc = 1 − μ/2 cannot by satisfied when λ → 0,
and that for μ � 2 the relaxation is nonergodic for any λ,
including the limit λ → 0. As follows from Eq. (137), the
ergodic component of R(t ) in the limit λ → 0 reads

Re(t ) = 4μ

π

∫ 1

0

√
1 − x2 cos(x ω0t ) dx

4(1 − μ) x2 + μ2
. (167)

In particular, for μ = 2, which corresponds to the case of a
tagged atom in a bulk of the uniform harmonic chain, we
recover the well-known result [19]

R(t ) = Re(t ) = 2

π

∫ 1

0

cos(x ω0t ) dx√
1 − x2

= J0(ω0t ).
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For the amplitude and frequency of the nonergodic component
we get from Eqs. (129) and (137) in the limit λ → 0

R0 = μ − 2

μ − 1
, ω∗ = μ

2
√

μ − 1
ω0. (168)

As expected, Eqs. (166)–(168) coincide with the known re-
sults for Rubin’s model, see Eq. (A28) in Ref. [9] (note that
parameter Q of Ref. [9] and parameter μ used in this paper are
related as Q = 2/μ − 1).

The relaxation functions evaluated in the paper allow us
to describe the evolution of the oscillator for t > 0 with a
frequency which is either fixed or switched instantaneously
at t = 0. The latter setting allows one to study a particular
type of ergodic to nonergodic transitions. An interesting ex-
tension would be to study such transitions when the oscillator
frequency is tuned continuously during a finite time. Such an
extension would be of interest, in particular, from the per-
spective of the fluctuation theorems [33]. Their proofs often
assume that the system is ergodic for all values of the tunable
parameter λ(t ) [34,35]. Not much is currently known about
what happen if that is not the case (see, however, [36]). An-
other interesting application is Brownian engines [25,26,37].

A nonergodic oscillator in a cyclostationary state may store
an arbitrary amount of energy. That property may be used
beneficially in designing Brownian machines. More generally,
the parametric erodic to nonergodic transitions may be of
interest because algorithms involving periodically correlated
(cyclostationary) processes in nonergodic configurations are
often advantageous relative to those based on stationary pro-
cesses characteristic for ergodic regimes [24].

It might be tempting to seek implications of the presented
results in the context of experiments with colloidal particles
held in optical traps. In a version called the capture experiment
the strength of the optical trap (the oscillator frequency in
our model) is changed instantaneously, and the relaxation of
the particle’s position and velocity is recorded [38,39]. This
is precisely the setting described by the relaxation functions
obtained in this paper. However, when the bath is formed by
a lattice, nonergodic configurations correspond to frequencies
of order of ω0 which, even for soft lattices, is several orders
of magnitude higher than frequencies used in optical trap
experiments with colloidal particles in gaseous and aqueous
environments.

APPENDIX A: EVALUATION OF I0(t )

In this Appendix we evaluate the integral I0 defined by Eq. (110). Consider the integral

I+
0 (t ) = 1

2π i

∫
	+

0

est G̃(s) ds = 1

π i

∫
	+

0

est ds

(2 − μ) s2 + μ s f1(s) + 2 λ ω2
0

(A1)

along the right shore of the branch cut, see Fig. 1, in the direction from iω0 to −iω0. Recall that f1(t ) is the physical branch of

the function f (s) =
√

s2 + ω2
0 and can be evaluated as

f1(s) = √
r1r2 ei θ1+θ2

2 (A2)

in terms of polar coordinates defined in Fig. 1 with both polar angles θ1,2 in the range (−3π/2, π/2]; see Eqs. (64) and (65). For
points s ∈ 	+

0 once can use the parametrization s = iy + ε with −ω0 � y � ω0; then in the limit ε → 0 one finds

θ1 = −π

2
, θ2 = π

2
, r1 = ω0 − y, r2 = ω0 + y. (A3)

Therefore,

f1(s) =
√

ω2
0 − y2 for s ∈ 	+

0 , (A4)

and

I+
0 (t ) = − 1

π

∫ ω0

−ω0

eiyt dy

(μ − 2) y2 + iμ y
√

ω2
0 − y2 + 2 λ ω2

0

. (A5)

In a similar manner we can evaluate the integral

I−
0 (t ) = 1

2π i

∫
	−

0

est G̃(s) ds = 1

π i

∫
	−

0

est ds

(2 − μ) s2 + μ s f1(s) + 2 λ ω2
0

(A6)

along the left shore of the branch cut in the direction from −iω0 to iω0. In that case

θ1 = −π

2
, θ2 = −3π

2
, r1 = ω0 − y, r2 = ω0 + y. (A7)

This gives

f1(s) = −
√

ω2
0 − y2 for s ∈ 	−

0 , (A8)
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and

I−
0 (t ) = 1

π

∫ ω0

−ω0

eiyt dy

(μ − 2) y2 − iμ y
√

ω2
0 − y2 + 2 λ ω2

0

. (A9)

Considering the sum I0 = I+
0 + I−

0 and evaluating its real and imaginary parts, one finds that the latter is zero due to symmetry,
and the result is

I0(t ) = −4μ

π

∫ ω0

0

y
√

ω2
0 − y2 sin(yt ) dy

4(1 − μ) y4 + [4λ(μ − 2) + μ2] ω2
0 y2 + 4λ2ω4

0

. (A10)

It is convenient to present the result using the dimensionless integration variable x = y/ω0,

I0(t ) = − 4μ

πω0

∫ 1

0

x
√

1 − x2 sin(x ω0t ) dx

4(1 − μ) x4 + [4λ(μ − 2) + μ2] x2 + 4λ2
. (A11)

This result holds for arbitrary μ.

APPENDIX B: EVALUATION OF RESIDUES

Here we evaluate the residues in Eqs. (112) and (131) for the relaxation function G(t ). One can verify that for arbitrary μ the
poles s1,2 = ±iω∗ of the transform G̃(s) are of order one (simple poles). Then the residue of est G̃(s) at s1 is evaluated as follows:

Res[est G̃(s), s1] = lim
s→s1

est G̃(s) (s − s1) = eiω∗t lim
s→iω∗

G̃(s)(s − iω∗) = eiω∗t lim
s→iω∗

2(s − iω∗)

(2 − μ) s2 + μ s f1(s) + 2λω2
0

.

Applying L‘Hospital’s rule yields

Res[est G̃(s), s1] = eiω∗t lim
s→iω∗

2 f1(s)

μ s2 + 2(2 − μ)s f1(s) + μ f 2
1 (s)

. (B1)

Then, recalling Eq. (67), f1(iω∗) = i
√

ω2∗ − ω2
0, one gets

Res[est G̃(s), s1] =
2i

√
ω2∗ − ω2

0

μ
(
ω2

0 − 2ω2∗
) − 2(2 − μ)ω∗

√
ω2∗ − ω2

0

eiω∗t . (B2)

Similarly, for the residue at the second pole s2 = −iω∗ we obtain

Res[est G̃(s), s2] =
−2i

√
ω2∗ − ω2

0

μ
(
ω2

0 − 2ω2∗
) − 2(2 − μ)ω∗

√
ω2∗ − ω2

0

e−iω∗t . (B3)

The sum of residues is

Res[est G̃(s), s1] + Res[est G̃(s), s2] =
4

√
ω2∗ − ω2

0

μ
(
2ω2∗ − ω2

0

) + 2(2 − μ)ω∗
√

ω2∗ − ω2
0

sin(ω∗t ). (B4)

These expressions hold for arbitrary μ, although the frequency ω∗ = ω∗(λ) has different forms for μ = 1 and for μ �= 1.
Introducing the dimensionless function β(λ) = ω∗(λ)/ω0, the above expression can be written as

Res[est G̃(s), s1] + Res[est G̃(s), s2] = 1

ω0

4
√

β2 − 1

μ (2β2 − 1) + 2(2 − μ)β
√

β2 − 1
sin(ω∗t ). (B5)
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