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We study the full distribution of A = ∫ T
0 xn(t )dt , n = 1, 2, . . . , where x(t ) is an Ornstein-Uhlenbeck process.

We find that for n > 2 the long-time (T → ∞) scaling form of the distribution is of the anomalous form
P(A; T ) ∼ e−T μ fn (�A/T ν ) where �A is the difference between A and its mean value, and the anomalous exponents
are μ = 2/(2n − 2) and ν = n/(2n − 2). The rate function fn(y), which we calculate exactly, exhibits a first-
order dynamical phase transition which separates between a homogeneous phase that describes the Gaussian
distribution of typical fluctuations, and a “condensed” phase that describes the tails of the distribution. We also
calculate the most likely realizations of A(t ) = ∫ t

0 xn(s)ds and the distribution of x(t ) at an intermediate time t
conditioned on a given value of A. Extensions and implications to other continuous-time systems are discussed.
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I. INTRODUCTION

The study of fluctuations in stochastic systems is of cen-
tral importance in nonequilibrium statistical mechanics and
probability theory. Rare events, or large deviations, are of
particular interest [1–13]. A standard way to characterize fluc-
tuations in dynamical systems is by considering distributions
of “dynamical observables” which are given by integrating the
stochastic process over time,

A =
∫ T

0
u(X (t ), Ẋ (t ))dt, (1)

where X (t ) is the stochastic process and u(X, Ẋ ) is an ar-
bitrary function. For ergodic systems, in the long-time limit
T → ∞ the time average A/T converges to its ensemble-
average value, but the fluctuations from this value depend
on the temporal correlations of the process, and can exhibit
nonequilibrium features even if the system is in equilibrium.
A general theory for the study of such fluctuations was devel-
oped, based on the Feynman-Kac formula [5–7,13–15]. This
theory is sometimes referred to as the Donsker-Varadhan (DV)
theory. Under quite general conditions, capturing a broad class
of physical systems, the theory predicts that at long times
the probability density function (PDF) P(A; T ) of A obeys a
large-deviation principle,

P(A; T ) ∼ e−T I (A/T ), T → ∞, (2)

i.e., the limit − limT →∞ ln P(aT ν ; T )/T μ = I (a), with the
standard exponents μ = ν = 1 exists with a “rate function”
I (a) that is nonnegative, convex, and vanishes when its ar-
gument a = A/T equals its corresponding ensemble-average
value. Thus, I (a) quantifies large deviations of a which
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become exponentially unlikely in T . The rate function is cal-
culated from the dominant eigenvalue of the Feynman-Kac
equation for the generating function of A. The calculation
boils down to solving an auxiliary problem of finding the
largest eigenvalue of a “tilted operator,” and then applying a
Legendre-Fenchel transform to the result. In particular cases,
the DV auxiliary problem can be cast as that of finding the
ground-state energy of a quantum system consisting of a par-
ticle in a potential well [13].

However, the scaling (2) has recently been observed to
break down in numerous instances [16–19], where “anoma-
lous” scalings were found. Nickelsen and Touchette (NT) [16]
considered an Ornstein-Uhlenbeck (OU) process,

ẋ(t ) = −γ x(t ) + ση(t ). (3)

Here x(t ) is the position of the particle at time t , γ > 0
is the damping, η(t ) is white noise with 〈η(t )〉 = 0 and
〈η(t )η(t ′)〉 = δ(t − t ′) where angular brackets denote ensem-
ble averaging, and σ > 0 is the noise intensity. They studied
the distribution of the observable [20],

A =
∫ T

0
xn(t )dt, (4)

where n = 1, 2, . . . . For n = 1, A can represent the work that
laser tweezers perform when pulling on a Brownian particle
[21], or the power dissipated in a noisy circuit [22]. For
n = 2, 3 and higher, A is related to studies of fluctuations
in turbulence velocity fields and small-scale intermittency
[23,24].

NT probed the weak-noise limit σ → 0+ by employing
the optimal fluctuation method (OFM) (sometimes also called
the weak noise theory) [25–28]. They found that for n > 2,
the scaling (2) breaks down and instead one observes an

2470-0045/2022/105(1)/014120(9) 014120-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4855-7206
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.014120&domain=pdf&date_stamp=2022-01-19
https://doi.org/10.1103/PhysRevE.105.014120


NAFTALI R. SMITH PHYSICAL REVIEW E 105, 014120 (2022)

anomalous scaling,

P (A; T, σ, γ ) ∼ exp

[
−cn

γ (n+2)/nA2/n

σ 2

]
, σ → 0+, (5)

where cn is an n-dependent constant that they calculated ex-
actly. The physical mechanism behind this result is that the
dominant contribution to P (A; T ) comes from an instanton—
an optimal (most likely) trajectory x(t ). The instanton is the
minimizer of the dynamical action 1

2

∫ T
0 [ẋ(t ) + x(t )]2dt con-

strained on a given value of A, and it was found explicitly
in [18] [for completeness, we give the instanton in (C3)].
The instanton is (temporally) localized, that is, x(t ) � 0 at
all times except for a short time window around t = t∗ for
some 0 < t∗ < T . The weak-noise limit σ → 0+ corresponds
to the far tail |A| → ∞ of the distribution [18]. However, the
full long-time distribution P (A; T )—including typical fluctu-
ations in addition to the distribution tails—has been unknown,
and its calculation is the main result of the current work.

We first point out that a similar anomaly can occur when
considering distributions P(S; N ) of sums S = ∑N

i=1 xi of
independent and identically distributed (i.i.d) random vari-
ables x1, . . . , xN , in the limit N 
 1. Here, the usual scaling
is P(S; N ) ∼ e−NI (S/N ) in analogy with (2). However, if the
distribution tails of each of the xi’s decays slower than ex-
ponentially, the usual scaling breaks down [29], and in the
far tail of P(S; N ) the “big-jump” principle holds: The dom-
inant contribution to P(S; N ) comes from realizations where
S � xi for some 1 � i � N [30–34]. The big-jump princi-
ple has been observed in a wide range of systems including
anomalous transport in quenched disorder [35–37] and Lévy
walks [37–40]. A “condensation” transition that separates be-
tween the typical-fluctuation regime, where the central limit
theorem applies, and the distribution tail(s) where the big-
jump principle applies, is a general phenomenon that has been
observed in many instances [41,42]. Examples include the
zero-range process [43,44], the discrete nonlinear Schrödinger
equation [45–49], economic and financial models [50–52],
mass-transport models [53–61], and run-and-tumble active
particles [62–64]. Above a critical point in the tail of P(S; N ),
a condensate appears meaning that one of the xi’s contributes
a macroscopic fraction to S. In the far tail this fraction ap-
proaches unity, so the big-jump principle is recovered. The
condensation transition was shown to be universal for i.i.d
random variables whose distribution decays slower than ex-
ponentially [64,65].

We observe a striking similarity between the big jump
in discrete-time systems and the instanton of NT in the
continuous-time system [16]. Both are localized events that
dominate the contribution to the observable in question in
the far distribution tail. It is therefore appealing to search
for a condensation transition in the distribution P (A; T ). In-
deed, since the stationary distribution of the OU process is
Gaussian, we can gain intuition by considering an analogous
discrete-time problem of the distribution of

∑N
i=1 xn

i where
x1, . . . , xN are i.i.d. Gaussian random variables. This analo-
gous problem exhibits a condensation transition, as can be
shown using the general results of [63–65]. As we now show,
such a transition is indeed present in our system, too.

II. RESCALING AND SUMMARY OF MAIN RESULTS

We begin by rescaling γ t → t , x
√

γ /σ → x, leading to
the rescaled Langevin equation ẋ = −x + η and to the (exact)
scaling form,

P (A; T, σ, γ ) = γ (n+2)/2

σ n
P

(
γ (n+2)/2A

σ n
; γ T

)
, (6)

of the distribution, where P(A; T ) is dimensionless and so
are its (rescaled) arguments. The weak-noise limit σ → 0+
is mathematically equivalent to the limit |A| → ∞ in P(A; T )
[18]. Therefore, the weak-noise results of [16] describe the far
tail(s) |A| → ∞ of the distribution.

Let us state the main result of this paper. We study, for
n > 2, the distribution P(A; T ) in the long-time limit T 
 1.
For A > 〈A〉 for even n, and all A for odd n, we find that the
distribution obeys a large-deviation principle with anomalous
scaling exponents μ = 2/(2n − 2), and ν = n/(2n − 2):

P(A; T ) ∼ exp

[
−T 2/(2n−2) fn

(
�A

T n/(2n−2)

)]
, (7)

where �A = A − 〈A〉,

fn(y) = min
z∈[0,y]

Fn(y, z), (8)

Fn(y, z) = cnz2/n + βn(y − z)2, (9)

cn was calculated in [16] [and for completeness, is given
in Eq. (C2)] and we calculate βn [see Eq. (11)] through a
perturbative treatment of the DV auxiliary quantum problem;
see Appendix B for the details. For instance, for n = 3, c3 =
(9/10)1/3 [16] and we find β3 = 2/11, whereas for n = 4,
c4 = 2/

√
3 [16] and we find 〈A〉 � 3T/4 and β4 = 2/21.

The functions f3(y) and F3(y, z) are plotted in Fig. 1. The
result (7)–(9) is valid in the limit T → ∞ with constant
�A/T n/(2n−2). Remarkably, the first derivative of the rate
function fn(y) has a discontinuity that can be interpreted as a
first-order dynamical phase transition. For example, for n = 3
this transition occurs at the critical values y = ±yc where
yc(n = 3) = 113/4

151/4 = 3.069 . . . , and for n = 4 the transition

occurs at y = yc(n = 4) = 34/372/3

25/3 = 4.987 . . . . In the sub-
critical regime |y| < yc the rate function is purely parabolic
fn(y) = βny2, describing a Gaussian distribution of typical
fluctuations. Interestingly, fn(y) is nonconvex.

As pointed out in [16], for even n > 2, DV theory is valid
at 0 < A < 〈A〉 [66], so the scaling (2) holds. We now turn
to the derivation of the results (7)–(9). We treat only the
anomalous case n > 2, as for n � 2 the scaling (2) holds at
all A, and I (a) is found from DV theory [16]. Our strategy
in the derivation is first to use a perturbative DV approach in
order to treat the regime of typical fluctuations, and then to use
this result in conjunction with the result for the tail |A| → ∞
which is known from [16]. Remarkably, this enables us to
extract the entire intermediate regime �A ∼ T n/(2n−2). This is
achieved by exploiting the separation of time scales between
the duration of the instanton and the (much longer) duration
T of the entire dynamics.
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FIG. 1. (a) Solid line is the rate function f3(y) that describes the full distribution P(A; T ) for n = 3; see Eqs. (7)–(9). Dotted lines are the
continuations of the two branches of f (y) into the regimes in which they are not optimal. Dot-dashed line is the instanton’s action c3y2/3 which
is strictly larger than f (y), but gives the correct leading asymptotic behavior in the far tail of the distribution y 
 1. (b) F3(y, z) as a function
of z/y for three different values of y: subcritical y = 5/2 (dashed), critical y = yc (solid), and supercritical y = 7/2 (dotted). In the subcritical
regime, the minimum of F3(y, z) is at z = 0 whereas in the supercritical regime it is at z = z∗(y) 
= 0 given in Eq. (16).

III. TYPICAL FLUCTUATIONS

We begin by considering the regime |�A| � T n/(2n−2)

which includes typical fluctuations. The quantum potential
whose ground-state energy one must calculate for a particle of
unit mass (in units where h̄ = 1) when using the DV method
is

Vk (x) = x2

2
− 1

2
− kxn, (10)

where k is the tilt parameter and is related to the DV rate func-
tion I (a) through a Legendre-Fenchel transform. As pointed
out in [16], the potential (10) has no ground state due to the
xn term (for n > 2), signaling that the DV method breaks
down. However, we notice that at |k| � 1, the potential is
effectively confining for |x| � 1/|k|, and its effective ground-
state energy −λ(k) can be found perturbatively in k. Using
second-order perturbation theory, we find (see Appendix B)
λ(k) = αnk + k2/4βn + . . . , where

αn = 〈0|xn|0〉, βn =
(

4
∞∑

m=1

|〈m|xn|0〉|2
Em − E0

)−1

. (11)

Here the |m〉’s are the energy eigenstates of the unperturbed
(k = 0) quantum oscillator with corresponding energies Em =
m. The Legendre-Fenchel transform then yields the quadratic
approximation of the DV rate function around its minimum,
I (a) = βn(a − αn)2 + . . . . This predicts Gaussian fluctua-
tions,

P(A; T ) ∼ e−βn (�A)2/T , (12)

around the mean value 〈A〉 � αnT implying, in particular,
that the variance of the distribution is Var(A) � T/2βn. Note
that αn is simply the nth moment of the Gaussian distribu-
tion Ps(x) = e−x2

/
√

π , so αn = 2n/2�( n+1
2 )/

√
π in agreement

with [16]. The prediction (12) shows excellent agreement
with a computation of P(A; T ) using Monte Carlo simula-
tions with n = 3 and T = 100; see Fig. 2(a). The simulations

were performed using an Itô discretization of the (rescaled)
Langevin equation (3) with time steps of size 0.01. Finally,
the Legendre-Fenchel transform also yields the connection
a = αn + k/2βn + . . . .

We now analyze the regime of validity of the perturbative
DV result (12). The last term in the tilted potential (10) be-
comes of the same order as the first term at x ∼ 1/|k|1/(n−2).
One expects the DV calculation to be valid as long as the prob-
ability for the particle to reach this position is much smaller
than P(A; T ) itself and therefore trajectories which reach such
a position can be neglected when evaluating P(A; T ). Since
the stationary distribution of the particle’s position (for the OU
process) is Ps(x) = e−x2

/
√

π , this validity condition yields
1/|k|2/(n−2) 
 (�A)2/T which, using the connection k ∼ a −
αn = �A/T , becomes |�A| � T n/(2n−2). As we will show
shortly, we found that the perturbative DV result (12) is actu-
ally valid in the entire subcritical regime |�A|/T n/(2n−2) � yc.
Finally, in this regime one easily checks that |k| � 1 (since
|�A| � T ), justifying the use of perturbation theory above.

IV. FULL DISTRIBUTION

A. Mixed scenario

We now have P(A; T ) at hand in two distinct regimes: in
the far tail(s) |A| → ∞, the result P(A; T ) ∼ e−cnA2/n

of [16],
and for typical fluctuations, the perturbative DV result (12).
As we show below, the transition between the two regimes
occurs at �A ∼ T n/(2n−2) where the two results predict proba-
bilities of the same order. In order to study the full distribution,
it is therefore useful to take the scaling limit T → ∞ with
�A/T n/(2n−2) constant. The two regimes correspond to two
different physical mechanisms for creating the large devia-
tion. The instanton is a localized burst where the dominant
contribution to the integral (4) comes from a narrow temporal
window. Defining

�A(t ) =
∫ t

0
[xn(s) − 〈xn(s)〉]ds (13)
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FIG. 2. (a) Bars represent a computation of P(A; T ) for n = 3 and T = 100 over 109 Monte Carlo simulations. Solid line is the Gaussian
asymptotic (12) with the normalization factor accounted for. (b) An illustration of the optimal �A(t ) from (14) for two different values of �A:
subcritical 0 < �A1 < ycT 3/4 for which �Ains = 0, and supercritical �A2 > ycT 3/4 for which �Ains 
= 0. In the supercritical case, zooming
in around the time t∗ where the instanton occurs, the discontinuity in (14) is smoothened out over a time scale of order unity, in which the
corresponding trajectory x(t ) is described by the instanton [16,18].

[so �A = �A(T )], the OFM (weak-noise) prediction corre-
sponds to trajectories for which �A(t ) = �Aθ (t − t∗) where
t∗ ∈ [0, T ] is the time when the instanton occurs and θ (t ) is
the Heaviside function. To the contrary, the DV prediction
corresponds to the opposite scenario, where the contribution
to the integral (4) is homogeneous throughout the entire dy-
namics because in the DV formalism, the conditioned process
[i.e., the process x(t ) conditioned on a given value of A] be-
comes stationary in the large-T limit. This leads to the linear
behavior �A(t ) = �At/T .

The optimal scenario, however, can combine the two sce-
narios described above, as we now show. One part �Ains of the
integral (4) could come from an instanton and the remainder,
�ADV = �A − �Ains, could come from the DV mechanism,
corresponding to

�A(t ) = �Ainsθ (t − t∗) + (�A − �Ains)t/T ; (14)

see Fig. 2(b). Let us now calculate the probability of this
mixed scenario. A key observation is that, since the instanton
is temporally localized while the DV mechanism is homo-
geneous over the entire duration of the dynamics, the two
mechanisms (instanton and DV) work independently from
each other, so that the probability of this mixed scenario is

∼ exp

[
−cn�A2/n

ins − βn(�A − �Ains)2

T

]
. (15)

Importantly, for �Ains ∼ �A ∼ T n/(2n−2), the two terms in
the exponent in (15) are of the same order. Integrating the
probability (15) over �Ains while using the saddle-point ap-
proximation (see Appendix A for details), we obtain our
main result reported above in Eqs. (7)–(9), describing a large-
deviation principle with anomalous scaling and a rate function
fn(y) which exhibits a first-order phase transition. The opti-
mal value of �Ains in (14) is �Ains = z�A/y where z is the
minimizer in Eq. (8). In the subcritical regime |y| < yc, the
minimizer is at z = 0, so fn(y) = βny2 is exactly parabolic,
and the system is in a (temporally) homogeneous state. In the

supercritical regime |y| > yc, the minimizer is at a nonzero
value z = z∗, with the requirement ∂Fn/∂z = 0 giving fn(y)
in a parametric form,

y = cn

nβn
z(2−n)/n
∗ + z∗, fn(y) = cnz2/n

∗ + c2
n

n2βn
z2(2−n)/n
∗ , (16)

and the system is in a “condensed” state. For n = 3, these
equations can in fact be solved to find fn(y) explicitly but the
result is very cumbersome so we do not give it here (a similar
calculation was performed in [63]). At y = yc, fn(y) is contin-
uous but its first derivative is not; see Fig. 1 and Appendix A.
The asymptotic behavior (obtained in Appendix A),

fn(|y| 
 1) � cny2/n − c2
n

n2βn
y2(2−n)/n, (17)

describes the far tail(s) of the distribution, the leading-order
term coinciding with the OFM prediction of [16].

We now show that higher-order corrections to the DV per-
turbative result do not affect the result (7)–(9). Higher-order
perturbation theory in the DV formalism will produce cor-
rection terms of order (�A)m/T m−1 with m > 2 which will
be added to Eq. (7) in the exponent. However, when taking
the limit T → ∞ with �A/T n/(2n−2) constant, these correc-
tion terms will have a vanishing contribution to fn, i.e., the
correction terms do not affect the limit − limT →∞ ln P(〈A〉 +
yT n/(n−2); T )/T 2/(n−2) = fn(y).

B. Optimality of the mixed scenario

Strictly speaking, the mixed scenario described above
gives, at this point, only an upper bound for the rate function
fn(y) since we haven’t yet shown that this scenario is optimal
(i.e., that no other, likelier scenario exists). We now give a
strong theoretical argument in favor of the optimality of the
mixed scenario. Let us rewrite A in the form A = A1 + · · · +
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AN where

Ai =
∫ iT/N

(i−1)T/N
xn(t )dt, (18)

and N is chosen such that 1 � N � T . The Ai’s are cor-
related, but weakly so—the correlation between Ai and Aj

decays with |i − j| over a characteristic scale that is much
smaller than N . It is natural to expect the general result of [65],
obtained for i.i.d. random variables, to be valid for weakly
correlated random variables, too. Indeed, using that the vari-
ance of each of the Ai’s is Var(Ai ) � T

2βnN and that the tail
of the PDF’s of their distributions Pi(Ai ) behaves as Pi(Ai →
∞) ∼ e−cnA2/n

i , our Eqs. (7)–(9) are in perfect agreement with
the calculation that uses the result of [65]; see Appendix D.

C. Conditioned process

DV theory also predicts that the distribution p(x|A) of x =
x(t ) at some arbitrary intermediate time [67], conditioned on a
given value of A, is given by the squared absolute value of the
ground-state eigenfunction of the tilted potential (10) [13]. As
stated above, for our system the tilted potential has no ground
state, but using the same logic as we used above, we obtain the
effective ground state by treating k perturbatively. This yields
(see Appendix B for details)

p(x|A) � Ps(x) − 2k
∞∑

m=1

〈m|xn|0〉
Em − E0

〈m|x〉〈0|x〉

+ instanton contribution, (19)

where using the connection between a and k found above,
k =2βn�ADV/T . Due to the localization of the instan-
ton, the last term in Eq. (19) is of order 1/T �1. For
n=3 Eq. (19) reads p(x|A) � [1 − k( 2

3 x3 + 2x)]e−x2
/
√

π +
instanton contribution (the calculation is performed explicitly
in Appendix B).

V. SUMMARY AND DISCUSSION

We calculated the distribution P(A; T ) for n > 2 in the
long-time limit T 
 1 for A > 〈A〉 for even n, and all A for
odd n; see Eqs. (7)–(9). We showed that the two main generic
tools in the study of large deviations, namely DV and the
OFM, correspond to scenarios that describe the fluctuations of
A in different regimes. We uncovered a remarkable first-order
dynamical phase transition, corresponding to a jump in the
first derivative of the rate function fn(y). In the subcritical
regime the fluctuations of A are Gaussian, while in the super-
critical regime the optimal scenario leading to a given value
of A is a combination of the DV and instanton scenarios,
described by (14), that dominates the contribution to P(A; T ).
We also calculated the conditional distribution of x(t ) at an
intermediate time, conditioned on a given value of A.

For even n, at 0 < A < 〈A〉, P(A; T ) is described by Eq. (2)
where I (a) is found from DV theory [16]. At A � 〈A〉 the
two results (2) and (7) match smoothly due to the parabolic
behaviors (with the same coefficient βn) of the rate functions
fn(y) and I (a) around their minima.

It is worth noting that our anomalous exponents, μ =
2/(2n − 2) and ν = n/(2n − 2), are different to those found
by NT [16]. In contrast to NT’s result which is valid only in
the very far tail, the rate function fn(y) given in the present
work describes the entire distribution P(A; T ): from typical
Gaussian fluctuations up to the far tail that is dominated by
the instanton in the leading order.

It would be interesting to observe the regime of the tran-
sition in numerical simulations. As shown in Fig. 2(a), the
theory shows good agreement with the simulations in the
typical-fluctuations regime. The far-tail result showed good
agreement with simulations in [16], which were performed
with T = 30. However, capturing the transition regime is
far more challenging: We found that T = 100 was not large
enough to observe the convergence to (7) in the transition
regime (not shown), so longer simulation times and special
sampling methods [68] are needed in order to observe this
regime.

It would be interesting to explore a possible universality
of the condensation transition found here in a broader class
of continuous-time systems, in analogy with that found in
[63–65] for the distribution of sums of N i.i.d. random vari-
ables. Remarkably, our rate function fn(y) coincides, up to
the constants cn and βn, with those found in [63–65]. This
connection may be related to the argument given in Sec. IV B,
formulating our problem in terms of the distribution of a sum
of weakly correlated random variables. Our perturbative DV
approach appears to be a general method for calculating the
variance of typical, Gaussian fluctuations in a broad class of
continuous-time systems even when the DV tilted operator
has no ground state. In fact, the perturbative approach is well
known in the context of quantum mechanics, as it describes
long-lived bound states with a complex energy describing a
decay [69,70]. Similarly, the OFM appears to be a general
method for calculating the far tail(s) in such systems, and the
two methods together give the full rate function.

In particular, one could search for a similar transition
in a class of Gaussian, but not necessarily Markovian, pro-
cesses (which includes the OU process as a particular case)
studied in [18], whose fluctuations were also shown to ex-
hibit anomalous scaling. For these processes the anomalous
scaling P(A; T ) ∼ e−T μ f (�A/T ν ) was conjectured and it was
shown that from the behavior in the far tail, one can deduce
the relation ν = nμ/2 [18] which is indeed satisfied by our
anomalous exponents in (7).
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APPENDIX A: OBTAINING Fn(y, z) AND fn(y) AND
DERIVING SOME OF THEIR PROPERTIES

In order to obtain our results (7)–(9) from (15) (all in the
main text), we first rewrite the latter equation in the form
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e−S(�Ains ) where

S(�Ains) = cn�A2/n
ins + βn

(�A − �Ains)2

T

= T 2/(2n−2)Fn

(
�A

T n/(2n−2)
,

�Ains

T n/(2n−2)

)
. (A1)

P(A; T ) is now obtained by integrating

P(A; T ) ∼
∫ �A

0
e−S(�Ains )d�Ains

∼
∫ y

0
e−T 2/(2n−2)Fn(y,z)dz, (A2)

where we are considering here the large-T limit with y =
�A/T n/(2n−2) constant (because in this limit that the two
terms in S are of the same order). In the long-time limit, the
large parameter T 2/(2n−2) 
 1 in the exponent ensures that
the dominant contribution to the integral (A2) comes from
saddle-point approximation, P(A; T ) ∼ e−T 2/(2n−2)Fn(y,z∗ ) where
z∗ is the minimizer of Fn(y, z) over z, which is precisely
Eqs. (7)–(9) in the main text.

We now analyze properties of the functions Fn(y, z) and
fn(y), and in particular we focus on the first-order dynam-
ical phase transition in fn(y). For odd n, the distribution
is clearly symmetric P(A; T ) = P(−A; T ) so that fn(y) =
fn(−y), whereas for even n, the scaling form (7) in the main
text is only valid at y > 0. Therefore, for simplicity, let us
assume here that y > 0.

The local minimum of Fn(y, z) at the nonzero value z = z∗
only exists at y > y� where

∂2Fn(y�, z)

∂z2

∣∣∣∣
z=z�≡z∗(y� )

= 0, (A3)

leading to

y� = 2n − 2

n − 2

[
n2βn

(n − 2)cn

]n/(2−2n)

. (A4)

This local minimum becomes the global minimum at y > yc

which we find from the continuity of fn(y) at y = yc,

yc = c3

3β3
z−1/3

c + zc, β3y2
c = c3z2/3

c + c2
3

9β3
z−2/3

c . (A5)

We find

zc =
[

(n − 2)cn

nβn

]n/(2n−2)

, (A6)

yc = n − 1

n − 2

[
(n − 2)cn

nβn

]n/(2n−2)

. (A7)

For n ∈ {3, 4} this gives the critical values

yc(n = 3) = 2

(
c3

3β3

)3/4

= 113/4

151/4
= 3.069 . . . , (A8)

yc(n = 4) = 3

25/3

(
c4

β4

)2/3

= 34/372/3

25/3
= 4.987 . . . . (A9)

At y = yc, fn(y) is continuous but its first derivative jumps.
Indeed, f ′

n(y−
c ) = 2βnyc while, in the supercritical regime one

finds from the chain rule,

dfn

dy
= dfn/dz∗

dy/dz∗
= 2cn

n
z(2−n)/n
∗ , (A10)

so f ′
n(y+

c ) = (2cn/n)z(2−n)/n
c . Using Eq. (A7) one finds

f ′
n(y−

c ) = (n − 1) f ′
n(y+

c ) so the two one-sided derivatives in-
deed differ. Finally, at y 
 1, Eq. (16) yields z∗ � y −
cn

nβn
y(2−n)/n leading to the asymptotic behavior,

fn(y 
 1) � cny2/n − c2
n

n2βn
y2(2−n)/n, (A11)

given also in Eq. (17) of the main text.

APPENDIX B: PERTURBATION THEORY ON THE DV
QUANTUM POTENTIAL

The Donsker-Varadhan formalism [14] reduces the prob-
lem of finding the rate function I (a) from Eq. (2) of the
main text, to that of finding the largest eigenvalue λ(k) of
the “tilted” operator 1

2∂2
x − Vk (x). Equivalently, −λ(k) is the

ground-state energy for a quantum particle of unit mass in the
“tilted” potential Vk (x) (in units where h̄ = 1). According to
the Gärtner-Ellis theorem [15], the DV rate function I (a) is re-
covered from λ(k) by applying a Legendre-Fenchel transform,

I (a) = sup
k∈R

[ka − λ(k)]. (B1)

However, for the Ornstein-Uhlenbeck process and A defined
as in Eq. (4) in the main text, the potential is given by

Vk (x) = x2

2
− 1

2
− kxn. (B2)

As pointed out in [16], for n > 2, this potential clearly has no
ground state for k 
= 0, signaling that DV breaks down here.
Still, following the argument given in the main text, we can
calculate the effective ground-state energy perturbatively in
the parameter |k| � 1, and we expect the result to correctly
describe typical fluctuations of A.

At k = 0 the ground-state energy vanishes and the corre-
sponding wave function is 〈0|x〉 = π−1/4e−x2/2. Second-order
pertubation theory yields

λ(k) = k〈0|xn|0〉 + k2
∞∑

m=1

|〈m|xn|0〉|2
Em − E0

+ . . . , (B3)

where Em = m are the unperturbed energy levels. The ma-
trix elements 〈m|xn|0〉 are straightforward to calculate by
expressing x = (a + a†)/

√
2 using creation and annihilation

operators, and one finds that the sum in (B3) includes only
a finite number of nonzero terms. For n = 3 one finds, us-
ing (a + a†)3|0〉 = 3|1〉 + √

6|3〉, that λ(k) = 11k2/8 + . . . ,
and the Legendre-Fenchel transform (B1) then gives the con-
nection a = λ′(k) = 11k/4 + . . . leading to I (a) = 2a2/11 +
. . . , so β3 = 2/11. Similarly, for n = 4, λ(k) = 3k/4 +
21k2/8 + . . . , a(k) = 3/4 + 21k/4 + . . . and I (a) = 2(a −
3/4)2/21 + . . . , so β4 = 2/21. Here the minimum of I (a) is
at a = 3/4 which corresponds to the mean value 〈A〉 � 3T/4,
and it equals the value predicted by the stationary distribution
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〈A〉 = T
∫ ∞
−∞ x4Ps(x)dx. For general n one has

I (a) = βn(a − 〈0|xn|0〉)2
, βn =

(
4

∞∑
m=1

|〈m|xn|0〉|2
Em − E0

)−1

,

(B4)
which is essentially equivalent to Eq. (11) of the main text.
Finally, the ground state, including its first-order perturbative
correction, is given by

|ψ〉 = |0〉 − k
∞∑

m=1

〈m|xn|0〉
Em − E0

|m〉 + . . . . (B5)

The conditional distribution p(x|A) defined in the main text
is then given by 〈x|ψ〉2, which, using Ps(x) = |〈0|x〉|2 and
keeping the leading-order term in k, yields Eq. (19) of the
main text without the last term on the right-hand side (which
is not accounted for by DV theory). For n = 3, using (a +
a†)3|0〉 = 3|1〉 + √

6|3〉 and plugging the wave functions of
the (unperturbed) harmonic oscillator,

〈0|x〉 = π−1/4e−x2/2, (B6)

〈1|x〉 = π−1/4
√

2 xe−x2/2, (B7)

〈3|x〉 = π−1/4 8x3 − 12x√
48

e−x2/2, (B8)

into Eq. (19) of the main text, we obtain the result reported
just below it.

APPENDIX C: ADDITIONAL DETAILS REGARDING
THE INSTANTON

In [16] the instanton’s action,

1

2

∫ T

0
[ẋ(t ) + x(t )]2dt = cn(�Ains)2/n, (C1)

was calculated. The expression for cn given there can in fact
be simplified a little and written as

cn = nBn

8
, Bn = 2

[
2
√

π �
(

n
n−2

)
(n − 2)�

(
3n−2

2(n−2)

)
](n−2)/n

, (C2)

where �(z) = ∫ ∞
0 t z−1e−t dt is the gamma function. In [18]

the instanton itself was also found:

x(t ) = (2Bn)1/(2−n)(�Ains)1/n

×
[

sech

(
(n − 2)(t − t∗)

2

)]2/(n−2)

. (C3)

As described in the main text, one indeed finds that the in-
stanton is (temporally) localized, that is, x(t ) � 0 except for

a short time window (whose duration, of order unity, is much
shorter than T ) around the time t∗. Note that Eqs. (C1) and
(C3) were originally given (in [16] and [18], respectively)
with �Ains replaced by A. The reason for the difference is that
they worked in the low noise limit σ → 0+ in the physical
variables, which, as shown in the present work, is equivalent
to the far distribution tail(s) |A| → ∞. In their limit |A| 
 〈A〉
and, as argued in the main text, the instanton dominates the
contribution to �A, so A � �A � �Ains. In this work, how-
ever, here we work in the scaling limit �A ∼ T n/(2n−2) and
thus it is important to leave �Ains as it is in Eqs. (C1) and
(C3).

APPENDIX D: COMPARISON WITH BROSSET ET AL.

In Ref. [65], distributions of sums S = X1 + · · · + XN of
i.i.d. random variables were studied. Assuming that each of
the Xi’s has zero mean and variance V and that the distribution
tails are stretched exponentials,

lnP (X � x) ∼ −qx1−ε . (D1)

They proved that for all C > 0,

lim
N→∞

N

C2N2/(1+ε)
lnP

(
S � CN1/(1+ε))

= − inf
0�t�1

{
q(1 − t )1−ε

C1+ε
+ t2

2V

}
. (D2)

In order to compare with our results, it is convenient to rewrite
this in the form,

P
( S

N1/(1+ε)
� C

)

∼ exp

[
−C2N2/(1+ε)

N
inf

0�t�1

{
q(1 − t )1−ε

C1+ε
+ t2

2V

}]
,

(D3)

which is valid in the limit N 
 1.
Using the argument in Sec. IV B, we now show that our

Eqs. (7)–(9) are in perfect agreement with [65]. For conve-
nience, let us first consider odd n, for which the means of the
Ai’s vanish. Replacing S → A, Xi → Ai [defined in Eq. (18)],
V → T

2βnN , 1 − ε → 2/n, and q → cn, and replacing the cu-
mulative distribution functions by the PDFs (because, in the
large-deviation regime they are equal up to a subleading pref-
actor), Eq. (D3) becomes

P(A) ∼ exp

[
− inf

0�t�1

{
cn(1 − t )1−εA1−ε + βnt2A2

T

}]
,

(D4)
which indeed coincides with our Eqs. (7)–(9). For even n, the
same argument with the replacement S = �A, Xi = Ai − 〈Ai〉
works.
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