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Mpemba effect of a mean-field system: The phase transition time
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The counterintuitive phenomenon—that an initially hotter water freezes faster than initially cooler water—is
named the “Mpemba effect.” Although it has been known for centuries, the underlying mechanism remains
unclear. Recently, the Mpemba effect rekindled the interest of researchers since several studies identified that
it might occur in some Markovian systems, and a general statistical-physical Mpemba effect framework was
correspondingly proposed. In our previous study [Z.-Y. Yang and J.-X. Hou, Phys. Rev. E 101, 052106 (2020)],
we observed the non-Markovian Mpemba effect in a mean-field system (MFS), where the Mpemba effect
originates from the back-reaction of the thermal reservoir. Naturally, the phase transition time is the key to
the occurrence of the Mpemba effect, which, however, has not been quantitatively described. Following the
direction of previous work, this study rigorously derives the phase transition time under different conditions,
and quantitatively describes the mechanism of the non-Markovian Mpemba effect in a MFS. In addition, the
validation of our theory was further verified via the microcanonical Monte Carlo simulation. An accurate
description of the underlying mechanism of our proposed MFS facilitates the generalization of the Mpemba
effect framework in statistical physics and may benefit in answering the riddle of the century, the original
Mpemba effect in water.

DOI: 10.1103/PhysRevE.105.014119

I. INTRODUCTION

The Mpemba effect originally refers to the phenomenon
that a beaker of initially hot water freezes faster than an
initially cooler one. Although the earliest noted observation
can be dated back to ancient times [1,2], the exact underly-
ing mechanism of this counterintuitive phenomenon remains
unclear [3–12]. Even its existence has been questioned after
careful experimental analysis [13]. However, recent studies
have found that the Mpemba effect may occur in several
nonwater substances, which has again aroused interest in
this field [14–23]. Subsequently, a general statistical-physical
Mpemba effect framework has been proposed. The framework
refers to the study of the phenomenon that two samples of
the substance are in the same macroscopic state (except for
their initial temperature), and the substance with the higher
initial temperature quenches faster to the lower temperature.
In this way, the Mpemba effect has been reported in many
Markovian systems, such as nanotube resonators [24], spin
glasses [25], granular fluids [26], and the Ising model [15].
However, the underlying mechanisms of the effect vary. For
example, the Mpemba effect in granular fluids and spin
glasses arises from additional factors controlling the tempera-
ture relaxation [25,26]. In the Ising model and the three-state
system, the effect is caused by quenching along different
trajectories for systems with different initial preparations [15].

Our previous study [27] observed the Mpemba effect
in a non-Markovian system. Completely different from
the Markovian process, the Mpemba effect in our model
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originates from the back-reaction of the thermal reservoir.
Thus, it is the embodiment of the non-Markovianness in re-
laxation. Simply put, we investigated a mean-field system
(MFS) placed in a staggered magnetic field. As the tem-
perature of the MFS decreases, the system experiences the
first-order phase transition from the paramagnetic state to the
ferromagnetic state. Experimentally, when an MFS prepared
to a high-temperature ferromagnetic state contacts with a huge
cold thermal reservoir, the system will rapidly cool and then
trap into a mid-temperature metastable ferromagnetic state. To
evolve to the final low-temperature ferromagnetic state, the
MFS needs to cross an energy barrier via thermal fluctuation.
An initially hotter MFS has a stronger back-reaction to the
thermal reservoir than an initially cooler one, which leads to a
smaller energy barrier. As a result, an initially hotter MFS may
spend less time in the metastable state and, correspondingly,
spend less time to finish the phase transition. Our previous
work successfully observed such a phenomenon but only em-
ployed an empirical formula—the Arrhenius law [28,29]—to
estimate the metastable state lifetime. However, the formula
becomes invalid when the size of the thermal reservoir con-
tinues to increase. Therefore, our previous work only revealed
the phenomenon, but lacked a rigorous quantitative descrip-
tion. Another natural but unresolved question is whether the
Mpemba effect will still occur when the reservoir becomes
superlarge, where the back-reaction from the MFS becomes
negligible. Collectively, the principle of the non-Markovian
Mpemba effect in the MFS needs to be further investigated,
and a more accurate description of the phase transition time
needs to be provided.

In this work, we aim to quantitatively describe the
underlying mechanism of the non-Markovian Mpemba ef-
fect in the MFS. Specifically, we rigorously derived the
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theoretical expression of metastable state lifetime based on
the fundamental statistical theory. Moreover, the validation of
our derivation was examined via microcanonical Monte Carlo
simulation. This paper is structured into four sections. The
first section gives the mean-field system model and derives its
fundamental physical quantity; the second section investigates
the cooling process of the MFS and demonstrates the emer-
gence of the Mpemba effect in the MFS; the third section gives
the theoretical expression of the phase transition time of the
MFS, which is then verified by the Monte Carlo simulation;
and the final section summarizes the finding of this study. Our
proposed MFS is a confirmed model in which the Mpemba
effect occurs in a non-Markovian process. An accurate de-
scription of the phase transition time helps in understanding
its underlying mechanism and facilitates the generalization of
the Mpemba effect framework in statistical physics.

II. THE MEAN-FIELD SYSTEM

We consider an MFS composed of NM fermions placed in
a staggered magnetic field. The Hamiltonian reads

HM = −
N
2∑

n=1

K

2
Sn +

N∑
n= N

2 +1

K

2
Sn − J

2N

(
N∑

n=1

Sn

)2

, (1)

where Sn = ±1. The first two terms on the right-hand side
represent the interaction with a staggered magnetic field, and
K is the intensity of the magnetic field. The last term denotes
the long-range mean-field coupling [30].

The main thermodynamic properties of the proposed MFS,
including its entropy, energy, temperature, and phase diagram,
can be obtained analytically in the microcanonical ensemble.
Specifically, let the NL−

M and NR+
M be the downward spins

on the left side (1 � n � NM/2) and upward spins on the
right side (NM/2 + 1 � n � NM) of the MFS, respectively.
The compliance number and the magnetization of the MFS are
UM ≡ (NR+

M + NL−
M ) and MM ≡ 2(NR+

M − NL−
M ), respectively.

Therefore, the total number of the microstates reads

�M =
(

NM/2
NL−

M

)(
NM/2
NR+

M

)
. (2)

Denoting uM = UM/NM and mM = MM/NM, we have the en-
ergy per spin and the entropy per spin as

εM = EM
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− K

2
= K (uM − 1) − J

2
m2

M, (3)

and
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, (4)

respectively. Note that the constant −K/2 is added to Eq. (3)
to shift the energy zero for the convenience of the following
discussion. Finally, we have the temperature of the system as

TM = 1

∂sM(εM)/∂εM
. (5)

The behavior of the MFS varies with the choice of
Hamiltonian parameters K and J [31–38]. In the context of
the Mpemba effect, we set {K = −0.93, J = 1} to observe
the first-order phase transition. Figure 1(a) shows the entropy
sM(εM, mM) of the above setting, where blank regions are
inaccessible to the MFS. Such inaccessibility makes it so
that the magnetization of this system cannot vary within the
interval [−1,+1] for any given energy εM, and thus ergodicity
is broken. The global maximum of sM(εM) at any given energy
corresponds to the equilibrium state, highlighted as black
and gray solid lines. And the local maximum entropy values,
marked as black and gray dashed lines, can be regarded as the
possible metastable states. Moreover, the black and gray cor-
respond to the paramagnetic and ferromagnetic states. As the
εM decreases, the system evolves from the paramagnetic state
(mM = 0, solid black line) to the ferromagnetic state (mM �= 0,
solid gray lines), through a first-order phase transition at εM =
0.122. Figures 1(b) and 1(c) show the corresponding final
entropy evolution (sM-εM) path and caloric (TM-εM) curve,
respectively.

III. THE MPEMBA EFFECT

To investigate the cooling behavior of the MFS in detail,
we employe the microcanonical Monte Carlo (MC) simulation
[39]. Specifically, the coupling between a hot MFS and a huge
low-temperature thermal reservoir is simulated. For simplic-
ity, the noninteractive two-level thermal reservoir (TTR) is
adopted in this study. We initialize the MFS as a spin chain
with NM = 50, and the TTR is set as 20 times larger than MFS
(i.e., NR = αNM, α = 20). Without loss of generality, the
energy of TTR is set to 0 K, and the energy splitting between
the two states is set to be unity. According to Eq. (3), we can
set the MFS to any temperature or energy by manipulating the
spin-up and spin-down ratio. Here, for illustration purposes,
the energy εM is initiated to its maximum value 0.475, and
correspondingly TM → ∞. The TTR is initially prepared to
0 K (εR,i = 0), suggesting that all the spins stayed at the
lowest energy state.

Figure 2(a) shows the microcanonical MC simulation
schematic diagram. In the simulation, the thermal contact
between the MFS and the TTR was achieved by an additional
degree of freedom, named “demon.” The demon was intro-
duced to carry a small amount of energy εD. εD is initially
set to zero and always stays non-negative. In each MC step,
one spin from the MFS or TTR is randomly selected and
flipped. If the energy change of the full system �Efull < 0,
the movement is accepted, and εD is increased by |�Efull|. If
0 � �Efull � εD, the trial move is also accepted, and εD =
εD − |�Efull|. Otherwise, the movement is rejected.

Figure 2(b) shows the simulated cooling path in the εM-mM

plane. The MFS’s temperature from high to low is represented
by the gradient of red (dark gray) to yellow (light gray).
As shown, the path does not strictly follow the theoretical
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FIG. 1. Thermodynamic properties of the proposed mean-field system with {K = −0.93, J = 1}. (a) The entropy sM(εM, mM) of the
system, where the blank regions are inaccessible. The black and gray lines indicate the nonmagnetized and the ferromagnetic states,
respectively. The solid lines are the global maximum of sM(εM) at any given energy (i.e., equilibrium state), while the dashed lines are
the local maximum (i.e., possible metastable states). (b) The final entropy sM of equilibrium and metastable states as a function of energy εM.
(c) The corresponding caloric curve (TM-εM).

equilibrium states in Fig. 1(a). Specifically, starting at the
high-energy paramagnetic state (state I), the MFS first cools
rapidly along the paramagnetic line. Due to the finiteness
of the reservoir, the back-reaction from the MFS heats the
reservoir during this process. Consequently, the MFS in the
ferromagnetic state reaches a temporary equilibrium, i.e.,
the metastable state (state II), with the reservoir. It is useful
to introduce an energy threshold εth, which corresponds to
the topmost boundary of the inaccessible area 3 in Fig. 1(a).
Here, εth = 0.111. Note that, for an isolated MFS in the
metastable state with the energy εM < εth, it is impossible
to spontaneously evolve from the paramagnetic state to the
ferromagnetic state. However, for an MFS coupled with the
thermal reservoir, the MFS can absorb additional energy �ε

from the reservoir through thermal fluctuations within a cer-

tain time period, thereby getting across the threshold (state III)
to the final equilibrium ferromagnetic state (state IV).

For a given finite cold thermal reservoir, the back-reaction
of an initially hotter MFS heats it more than the initially cooler
one. The free-energy barrier �ε is thus reduced, and less time
will be spent in the metastable state. Suppose the total phase
transition time τ depends primarily on the metastable state
lifetime. In that case, an initially hot MFS can be quenched
faster than the initially cooler one to the final ferromagnetic
state. Consequently, the non-Markovian Mpemba effect can
emerge. Figure 2(c) illustrates the time evolution of mag-
netization and energy of an initially hotter and an initially
cooler MFS. Two independent MFSs are identical except for
their initial temperature. The simulation configurations are
were as above, that is, NM = 50, NR = 20 × 50, and εR,i = 0.
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FIG. 2. (a) The microcanonical Monte Carlo simulation schematic diagram. (b) Time evolution path of an initially hot MFS coupled to
a large cold reservoir. The MFS’s temperature from high to low is represented by the gradient of red (dark gray) to yellow (light gray).
Specifically, the MFS, initiated at a high-energy paramagnetic state (state I), first cools along the paramagnetic path to a metastable state
(state II). After a certain period of time, the MFS absorbs additional energy via thermal fluctuations and gets across the threshold (state III) to
the final equilibrium ferromagnetic state (state IV). (c) The emergence of the Mpemba effect in the MFS.
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The black and gray lines represent the initially hotter and
the initially cooler MFSs, which were initialized to {TM =
4.790, εM = 0.419} and {TM = 1.521, εM = 0.326}, respec-
tively. The sudden jump of |m| declares the first-order phase
transition from the paramagnetic to the ferromagnetic state.
The abscissa MC steps are proportional to the time evolu-
tion [30,32]. Evidently, the Mpemba effect emerges in this
experiment.

IV. TRANSITION TIME

The above experiments illustrate that the total phase transi-
tion time τ depends primarily on the metastable state lifetime
of the MFS. However, the metastable state lifetime is affected
by many factors, e.g., the initial temperature of the MFS,
the size of the reservoir, etc. Naturally, for an MFS with a
given initial temperature, a smaller reservoir will be heated
to a higher temperature, corresponding to a smaller energy
barrier and a faster phase transition. A fundamental theoretical
derivation of phase transition time is desired to describe the
phase transition of the MFS more accurately and comprehen-
sively. Note that all the above derivation assumes that the total
phase transition time τ is approximately equal to the lifetime
of the MFS trapped in the metastable state.

For the TTR placed in an external magnetic field, its energy
εR is equal to ±1, as its spin can be the same as or the reverse
of the direction of the magnetic field [40]. Let NR represent the
total spin of the TTR, and N+

R and N−
R be the downward and

upward spins, respectively. Obviously, the total energy ER =
ε(N+

R − N−
R ). Easily, we have

N+
R = NR

2

(
1 + ER

NRεR

)
, N−

R = −NR

2

(
1 − ER

NRεR

)
. (6)

Correspondingly, the entropy of the system is

SR = ln �R = ln
NR!

N+
R !N−

R !
. (7)

By shifting the energy zeros of the TTR to its energy
minimum, the entropy per particle, sR, with respect to its
energy εR is easily found as

sR(εR) = ln 2 − 1
2εR ln εR − 1

2 (2 − εR) ln (2 − εR). (8)

From Eq. (4), the entropy of the MFS in the paramagnetic
(mM = 0) metastable state, sM,meta, is governed by

sM,meta(εM) = −
(

1 + εM

K

)
ln

(
1 + εM

K

)
+ εM

K
ln

(
−εM

K

)
.

(9)

The total energy of the full system, composed of the TTR and
the MFS in the metastable state, is contributed by the initial
energy of the MFS, εM,i, only, i.e., NRεR + NMεM = NMεM,i.
Keeping the total energy constant, we express the total entropy
of the full system, Sfull, as

Sfull (εM, εR) = NMsM,meta(εM) + NRsR(εR),

that is,

Sfull (εM) = NMsM,meta(εM) + NRsR

[
NM

NR
(εM,i − εM)

]
. (10)

Based on the second law of thermodynamics, the metastable
state of the MFS is located where the total entropy of the full

system, Sfull, reaches its maximum. Here, εM,i is conserved
and εM changes, so the energy of the MFS in the metastable
state, εM,meta, can be obtained by letting ∂Sfull (εM)/∂εM =
0. To get across the energy threshold εth and trigger the
phase transition, the MFS needs to draw the energy with the
amount of �ε = εth − εM,meta from the TTR, which leads to
the entropy of the full system being decreased by �Sfull =
Sfull (εM,meta ) − Sfull (εth ). Finally, the transition time τ is gov-
erned by

τ ∼ exp(�Sfull ). (11)

Such exponential dependence on NM has also been reported in
the XY model [41] and gravitational systems [42].

A. The MFS coupling with a large TTR

Define α ≡ NR/NM. If the MFS is coupled with a large
TTR, e.g., 10 < α < 30, the first term on the right-hand side
of Eq. (10) will be about ten times smaller than the second
term, and thus it can be ignored. We have

Sfull (εM) ≈ NRSR

[
NM

NR
(εM,i − εM)

]
. (12)

Then, �Sfull can be rewritten as
�Sfull

NR
≈ SR

[
NM

NR
(εM,i − εM,meta )

]
− SR

[
NM

NR
(εM,i − εth )

]
.

(13)

Based on our previous experiments [27], for the case where
the MFS couples with a TTR that is only ten times larger,
the back-reaction from the MFS will heat the reservoir to
a relatively high temperature. Consequently, the temporary
equilibrium between the MFS and the TTR is maintained at
a high-energy state, leading to the energy of metastable state
εM,meta ≈ εth. Then we can perform the Taylor expansion on
Eq. (13) and only keep its largest term,

�Sfull

NR
≈ NM

NR

∂sR

∂εR
(εth − εM,meta ),

that is, �Sfull ∝ NM(εth − εM,meta ). Based on Eq. (11),
we have

τ ∼ exp[NM(εth − εM,meta )] = exp (NM�ε), (14)

where �ε is the amount of the energy barrier. Obviously,
the initially hotter and larger MFS relaxes faster than the
initially cooler and smaller MFS when coupled to a TTR
that is only about ten times larger. Here, Eq. (14) coincides
with the Arrhenius law. Such a law was utilized empirically
in our previous work [27], where we set the TTR to be
15 times larger than the MFS. The above derivations prove
the rationality of our previous adoption.

Note that the precise value of �ε can be obtained by
calculating the exact location of the MFS’s metastable state.
Specifically, under the weak-coupling condition, the interac-
tion energy between the MFS and the TTR is negligible, so
the two subsystems remain isolated. And correspondingly, the
energy of the full system equals the sum of the energies of
two subsystems, i.e., εfull = (εM,meta + αεR)/(1 + α). The en-
tropy per spin of the full system becomes sfull(εM,meta, εR) =
(sM,meta + αsR)/(1 + α). The sM,meta has been obtained in
Eq. (9). The equilibrium state is where the total entropy
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reaches its maximum. Thus the entropy per spin of the full
system is

sfull(εfull ) = max
εM,meta

sfull(εM,meta, εfull )

= max
εM,meta

(
sM,meta + αsR

1 + α

)
. (15)

By optimizing Eq. (15), each subsystem’s energy, entropy, and
temperature can be obtained. Thus, when giving the initial
energy of the full system and the size of each subsystem, the
exact amount of the energy barrier can be numerically derived.

B. The MFS coupling with a superlarge TTR

When the MFS is coupled with a superlarge TTR, e.g., α >

100, the finite back-reaction from the MFS lets the energy
allocated to each particle in the TTR become close to zero, i.e.,
εR ≈ 0. Correspondingly, the temporary equilibrium between
the MFS and the TTR is maintained at a very low-energy state.
In this case, we can perform Taylor expansion on Eq. (8), and
keep the leading term, so as to get

sR(εR) ≈ −εR

2
ln (εR). (16)

Note that Eq. (12) and Eq. (13) still hold here. Substituting
Eq. (16) into Eq. (13) and keeping the largest term, we have

�Sfull ≈ −1

2
NMεth ln

[
NM

NR
(εM,i − εth )

]
.

And finally, based on Eq. (11), we have

ln τ ∼ 1

2
NMεth ln

[
NR

NM

1

εM,i − εth

]

= 1

2
NMεth

[
ln

(
1

εM,i − εth

)
+ ln α

]
. (17)

Obviously, the result confirms that the transition time
τ depends on both the initial energy or temperature of the
MFS and the particle ratio α. Consequently, the Mpemba
effect can still be observed when the reservoir becomes su-
perlarge.

C. Monte Carlo simulation verification

The microcanonical MC simulation is again employed to
examine the relationships in Eq. (14) and Eq. (17). The above
theoretical calculations are all carried out under the thermody-
namic limit. We also estimated the fit of the simulation with
the theory under different particle numbers. If the number
of particles is less than 30, there will be a great deviation
from the theoretical value. Here we choose the number of
particles to be 50. The same as the above experiment, we set
εR,i = 0. The temperature and energy of the MFS was initiated
to {TM = 4.010, εM = 0.342} or {TM = 1.664, εM = 0.418}
to represent an initially hotter or initially cooler system, re-
spectively.

Figure 3 shows the relationships between average transi-
tion time τ and ratio α in logarithmic scale, and the inset
shows the first several points in Cartesian coordinates. The
black circles and gray diamonds correspond to the experi-
mental values of the initially hotter and initially cooler MFSs,
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FIG. 3. The relationships between average transition time τ and
ratio α in logarithmic scale. The inset shows the first several points
in Cartesian coordinates. The black circles and gray diamonds cor-
respond to experimental values of the initially hotter {TM = 4.010,
εM = 0.342} and initially cooler {TM = 1.664, εM = 0.418} MFSs,
respectively. The theoretical transition times obtained by Eq. (14) and
Eq. (17) are shown with dashed lines and solid lines, respectively.

respectively. The transition time, which refers to the Monte
Carlo steps, was measured by 5000 independent MC simu-
lations. The theoretical transition time obtained by Eq. (14)
and Eq. (17) was shown in Fig. 3 with dashed lines and
solid lines, respectively. Obviously, our theoretical frame-
work agrees well with the experiment when 10 < α < 30
and α > 100.

V. SUMMARY

The Mpemba effect has kept attracting researchers’ interest
for centuries. Our previous work [27] introduced the Mpemba
effect into the non-Markovian process. This study is in line
with the track of our previous work and describes the effect
in more detail and more accurately. Naturally, the phase tran-
sition time τ is the key to eliciting the Mpemba effect. In
this work, we derived the expressions of the phase transition
time in detail for two cases: (1) when the MFS couples with
a TTR that is only around ten times larger, τ depends both
on the magnitude of the energy barrier and the number of
the particles in the MFS; (2) when the MFS couples with a
TTR that is more than 100 times larger, τ depends on the ratio
of particle number in the TTR to the MFS. And the accurate
mathematical expression of τ in both cases was given. Fur-
thermore, the microcanonical Monte Carlo simulation verifies
the above relationships. And the simulation results highly
agree with our theoretical expressions.

Experimentally, our proposed MFS can be realized in a sys-
tem constituted by a photon-mediated fermion gas arranged in
a one-dimensional optical lattice by using the quantum-optical
technique [43–46]. The simplicity of this model makes it
an ideal prototype for studying the non-Markovian Mpemba
effect in other, more complex, systems. And ultimately,
the presented study may facilitate the generalization of the
Mpemba-like effect framework and benefit in answering the
riddle of the century, the original Mpemba effect in the water.
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