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Multifractal analysis of birdsong and its correlation structure
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The time series recordings of typical songs of songbirds exhibit highly complex and structured behavior, which
is characteristic of their species and stage of development, and need to be analyzed by methods that can uncover
their correlation structure. Here we analyze a typical song of a canary using Hurst exponents and multifractal
analysis, which uncovers the correlation structure of typical song segments. These are then compared with the
corresponding quantities from shuffled data, which destroys the temporal correlations and iterative amplitude-
adjusted Fourier transform (IAAFT) data. It is seen that temporal correlations are responsible for the multifractal
behavior seen in the data and that two-point correlations, which are preserved by the transform, are important
in the high-fluctuation regime. Higher-order correlations and intersyllabic gaps dominate the behavior of the
low-fluctuation regime. These observations are supported by the simplicial characterization of the corresponding
time series networks. Complexity measures are also used to analyze the amplitude envelope time series. These
indicate that intersyllabic gaps contribute a significant fraction to the complexity of the birdsong. Our method
provides a detailed characterization of the data, which can enable the comparison of real and synthetic birdsong
and comparisons across stages of development and species. A brief comparison with the song of the zebra finch
supports this.

DOI: 10.1103/PhysRevE.105.014118

I. INTRODUCTION

The activity of birdsong constitutes an important example
of a process in which a neurophysiological process results in
complex audible output [1]. The study of the characteristics of
the birdsong, and the identification of a system that can pro-
duce a synthetic birdsong of the same characteristics, provides
important insights in the ways in which the neural architecture
in the brain can coordinate with a delicate vocal apparatus that
the birds can and must control with high precision [1–5]. It is
interesting to note that in the case of many species, birdsong
shares with human speech the feature that the acquisition of
vocalization matures with age and also requires exposure to
a tutor. The tools required for this analysis draw from mul-
tidisciplinary areas such as neuroscience, dynamical systems
theory, time series analysis, and, recently, machine learning
techniques. Different signal processing and time series anal-
ysis tools have been used to understand and characterize its
spectral features such as time-frequency responses, spectro-
grams [6], syllabic sequences [7,8], the rhythmic structure of
intensity, pitch, and onset timing of notes [9]. Multifractal
detrended fluctuation analysis has been used to study the
predictable and unpredictable patterns and the fluctuation of
the amplitude envelope, pitch, and intensity of the thrush
nightingale’s song [9].

We note that multifractal detrended fluctuation analysis
has been the technique of choice in analyzing nonstationary
time series and has been applied in diverse contexts such as
analyzing long-time weather records, neuron spiking, heart

rate dynamics, and others. The technique can identify the time
correlations in the data but avoids spurious correlations. It
can also identify crossover timescales with separate regimes
with distinct scaling exponents, e.g., long-range correlations
on small scales and other types of correlations or uncorre-
lated behavior on large scales. The scaling behavior in real
data can be even more complex, and different parts of the
time series can require different exponents. In some exam-
ples, different types of scaling behavior can be observed for
many interwoven fractal subsets and require a full range of
scaling exponents to characterize their behavior. This kind of
detailed description is of great utility in comparing real data
with surrogate data, synthetic data from models, or in applica-
tions that require detailed tracking of variations. For example,
age-related and disease-related changes in the scale-invariant
structure of heart rate variability are indicated by changes in
the multifractal spectrum. In the case of endogenous brain
dynamics and response times, the multifractal spectrum has
also become sensitive to cognitive performance. Thus, this
analysis can provide important information which can com-
plement information obtained from other techniques.

Here we analyze a typical song of a canary using Hurst ex-
ponents and detrended multifractal analysis, which uncovers
the correlation structure of typical segments of the complete
song. The spectrum of Hurst exponents obtained for individ-
ual segments is compared with the spectrum obtained for two
types of surrogate data generated from the original data, one
generated by shuffling the original data from the time series,
and the other generated by the iterative amplitude-adjusted
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FIG. 1. (a) A typical example of the song of a canary along with the corresponding sonogram. Three types of syllables are present from
left to right: an up-sweep (1), a small up-sweep followed by the tonal (2), and a down-sweep (3). (b) The amplitude envelope showing the
syllable and the intersyllabic gap (pause) for a canary song segment.

Fourier transform (IAAFT) [10,11] which preserves the power
spectrum and the distribution of the data. The temporally shuf-
fled data results in a flat monofractal spectrum for the Hurst
exponents, indicating the importance of the temporal correla-
tions. The spectrum and scaling properties for the surrogate
data generated by the IAAFT match well with the original
data in the high-fluctuation regime but show significant de-
viations in the low-fluctuation regime. Thus, preserving the
power spectrum is sufficient to preserve the characteristics
of the time series in the high-fluctuation regime. However,
higher-order correlations and the contribution of the intersyl-
labic gaps become important in the low-fluctuation regime.
The simplicial characterization of the time series network
constructed from the energy data supports this observation.

We also use different complexity measures to analyze the
time series segments. These complexity measures quantify
the hierarchical development of complexity and a notion of
its time evolution. The analysis set up here paves the way to
the comparison of actual birdsong data with simple nonlinear
dynamical models [12,13] which can synthesize birdsong,
as well as the detailed quantitative comparison of birdsong
across species and different stages of development. This is
supported by a preliminary analysis of a zebra finch song.

II. METHODS

We outline the methods used to analyze the typical time
series obtained from a birdsong. In terms of a sound wave,
birdsong is a traveling wave created due to pressure fluctua-
tion originated by the oscillation of labia in the bird’s vocal
organ, i.e., the syrinx. The typical structure of a birdsong
consists of brief vocalizations separated by pauses [Figs. 1(a)
and 1(b)]. These brief vocalizations are called syllables [1]. A
bird can produce many such brief vocalizations per second
(more than 30/s for the canary) with intersyllabic gaps in
between. We observe rich spectral and temporal structure even
in the small duration of a single vocalization in the sonogram.
The temporal evolution of the frequencies defines the richness
of the spectral properties of the syllables. The frequencies
of these syllables have different kinds of temporal evolution.
These evolutions can be of the tonal type (corresponding to
a single frequency), harmonics, up-sweeps (with increasing

frequency), down-sweeps (with decreasing frequency), and
many other complex frequency modulations. Some of these
behaviors can be seen in the signal of the birdsong seen in
Fig. 1(a). On the other hand, the amplitude envelope of the
birdsong encodes the temporal evolution of the amplitude,
rhythmic structures, the duration of the intersyllabic gaps, the
onset of syllables, syllabic duration, and many other phenom-
ena. This temporal evolution often shows the fluctuation of the
predictable and unpredictable pattern of the song. All these
properties vary with different birds. Some birds have very few
syllabic patterns, such as the koel (Eudynamys), coppersmith
barbet (Megalaima haemacephala), and many others. Some
birds have many different syllabic repetitions, as seen in the
songs of lyrebirds (Menura), the common nightingale (Lus-
cinia megarhynchos), and many others [14]. Here we study
the temporal fluctuation and scaling properties of the ampli-
tude envelope of the birdsong of the canary (Serinus canaria
domestica).

The sound file analyzed here is the song of an adult canary
[15]. The age of the bird and the sex of the bird are unknown.
The audio file has a sampling rate of 44100 Hz. The song’s
duration is 16 s, including pauses between the phrases. The
audio data contain an isolated syllable (0.78–1.23 s) of very
short duration. We have discarded this isolated syllable as it
is too short for significant scaling. We have divided the time
series by the maximum of the absolute signal so that the signal
lies between −1 and 1. A typical time series for the birdsong
is shown in Fig. 1(a). The x-axis refers to the time (s), and
the y-axis is the voltage. We use a microphone that maps
the pressure change into a voltage signal. The corresponding
sonogram is also shown in Fig. 1(a). Figure 1(b) shows the
amplitude envelope, identifying the parts which correspond
to the amplitude envelope and the intersyllabic gap. Three
types of syllables can be seen in Fig. 1(a), viz., an up-sweep,
the tonal, and a down-sweep. In the following subsection, we
first introduce a general method to determine the amplitude
envelope of any given song. Then we discuss the methods
and characteristics used to quantify the dynamic patterns of
predictability and unpredictability of the amplitude envelope.
These include the multifractal detrended fluctuation formal-
ism and a complexity measure. We include a brief discussion
of these quantities in this section.
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FIG. 2. (a) A typical syllable of the canary song. (b) The absolute value of the time series. (c) The signal after finding the maximum value
of the absolute time series. This is identified as R(t ). In the case of this analysis, we have considered a window of 10 sample units shifted by
half the window size. (d) The signal is then filtered with a low-pass filter with a cutoff frequency of 300 Hz.

A. Amplitude envelope determination

To obtain an amplitude envelope output without any atten-
uation, we use an approach that combines a peak detection
algorithm with a window [16] which shifts. The details of the
methods are as follows (Fig. 2). First, for a given time series
S(t ), we compute the absolute value of the signal |S(t )|. Then
we divide the absolute value of the signal (|S(t )|) into moving
windows of fixed width which shift by a certain fraction of
the window size. Typically the window is shifted by 0.25 to
0.5 times the window’s width. For each window, we replace
all the values with the maximum value of the signal seen in the
window. Then we use a low-pass filter with a cutoff frequency
to smooth the signal. We have used the (scipy.signal.butter)
package from Scipy (Scientific python) library for filtering
process. Figure 2(d) shows a prototypical example of the am-
plitude envelope time series. The scaling property of this time
series can be studied using the detrended fluctuation analysis
technique defined in the following subsection.

B. Multifractal detrended fluctuation formalism

Real-world time series are, in general, inhomogeneous
in their temporal fluctuation of the magnitude. These time
series are analyzed using the scaling property of the tempo-
ral fluctuations. There are several methods of analysis, such
as fluctuation analysis [17–20], wavelet-based approaches
[21,22], power spectrum techniques, etc. Among these meth-
ods, a frequently used method of analysis is the method of
detrended fluctuation analysis (DFA)[18]. This DFA is based
on the standard random-walk diffusion analysis that estimates
how the standard deviation of the variable grows as a function
of the timescale with an exponent H[18]. A signal having no
long-range structure, like white noise, has a standard deviation

with an exponent H which does not change with the change in
timescale. On the other hand, a signal containing long-range
structure (like the waveform of birdsong or speech) has a
well-structured fluctuation across different timescales. As a
result of this, the standard deviation and its scaling behavior
will not be uniform across all timescales. Here different parts
of the time series follow different scaling relations with the
timescale. In particular, the magnitude of the fluctuations of
such time series scales differently with time. A single scaling
exponent can not provide complete information on these scal-
ing properties. Therefore, one needs a wide range of scaling
exponents to analyze the full features of the time series fluctu-
ations, i.e., these time series are multifractal in nature. In this
section, we discuss the framework [17] required to extract the
multifractal features from a time series. The multifractal DFA
(MF-DFA) is a generalized version of detrended fluctuation
analysis [18] and consists of four steps, as follows:

1. Suppose that x j is a series of length N , with x j = 0 for
an insignificant fraction of the series. We find the profile of
the time series defined to be the cumulative sum {Y (n)} of the
data after the subtraction of the mean from each data point:

Y (n) =
n∑

j=1

[x j − 〈x〉] n = 1, . . . , N. (1)

Here 〈x〉 = 1
N (

∑N
j=1 x j ) is the average value of the series. The

subtraction of 〈x〉 from each of the data values is not essential
as in further steps the cumulative sum of the time series would
be detrended by suitable polynomials.

2. Next we divide the profile Y (n) into kn = int( N
n )

nonoverlapping segments of equal lengths n. Since the length
(N) of the series is not often a multiple of the timescale n
considered, a short part at the end of the profile may remain.
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In order to not disregard this part of the series, we repeat the
same procedure from the opposite end. Therefore, the total
number of segments is 2kn segments.

3. We then find the local trend for each of the 2kn segments
by a least-square fit of the profile and determine the variance
for v = 1, . . . , kn:

F 2(n, v) = 1

n

n∑
i=1

{Y [(v − 1)n + i] − yv (i)}2. (2)

For v = kn + 1, . . . , 2kn,

F 2(n, v) = 1

n

n∑
i=1

{Y [N − (v − kn)n + i] − yv (i)}2. (3)

4. Next, we find the average over all the segments to obtain
the qth-order fluctuation function defined as

Fq(n) =
{

1

2kn

2kn∑
v=1

[F 2(n, v)]
q
2

} 1
q

. (4)

We determine the scaling behavior of the fluctuation func-
tions by analyzing log-log plots of Fq(n) vs timescale n for
each value of q. If the series xi are long-range power-law
correlated, Fq(n) increases, for the large values of n, as a
power law,

Fq(n) ∼ nhq . (5)

The quantity hq is known as the generalized Hurst expo-
nent. For a monofractal time series, hq is independent of q,
since the scaling behavior of the variances F 2(n, v) is iden-
tical for all segments v. The averaging procedure in Eq. (4)
will give this identical scaling behavior for all values of q.
For a positive value of q, the segments having larger values of
fluctuations (i.e., larger deviation from the fitting polynomial)
will dominate the sum of F 2(n, v) [Eq. (4)]. Thus, for positive
values of q, hq describes the scaling behavior of segments
with large fluctuations. For negative values of q, the segments
with small fluctuations (i.e. small deviations from the fitting
polynomial) will dominate the F 2(n, v). Thus, for negative
values of q, hq describes the scaling behavior of segments with
small fluctuations.

The exponent β for the power spectral density [18,19]
satisfies the relation β = 2h2 − 1. For a long-range correlated
signal, the exponent h2 > 0.5, and for a long-range anticor-
related signal, the exponent h2 < 0.5. The exponent for the
random walk is h2 = 0.5. The exponent for brown noise has
the value h2 = 1.5, and the exponent for pink noise is h2 = 1.

In the case of stationary time series, h2 = H , where H is
the Hurst exponent [17,19]. Thus, the power spectral exponent
β is related to H via the relation β = 2H − 1. For nonsta-
tionary signals, the Hurst exponent H = h2 − 1. Hence, the
exponent β for the power spectral density satisfies the relation
β = 2H + 1 = 2h2 − 1.

It is also pertinent to mention some of the limitations of the
multifractal detrended fluctuation analysis. Since the MFDFA
uses local fits to polynomials, the order of the polynomial
is important, and a single form or power of the polynomial
may not be the appropriate fit for all segments of the time
series. Some improvements on the MFDFA method address
this aspect [23]. However, the removal of local trends in

MFDFA using discontinuous polynomial fitting can result in
pseudofluctuation errors [24].

Additionally, some processes which involve long-range
correlations, such as processes based on fractional Gaussian
noise, may show spurious exponents in the MFDFA [25].
However, recent methods which have successfully analyzed
a fractional Ornstein-Uhlenbeck process and a Lévy distri-
bution provide a clue to the extraction of reliable results in
long-range correlated cases [26]. Some examples of long-
range monofractal data can show spurious multifractality in
the presence of white noise, short-range correlations, and pe-
riodic external trends. The effect of these factors on real-world
and synthetic monofractal and multifractal time series data has
been discussed by Ludescher et al. [27].

C. Simplicial analysis

Time series (TS) networks, viz., the networks constructed
out of time series data, can be constructed using a variety of
algorithms [28]. These TS networks can be analyzed using
the concepts of cliques, and simplicial complexes [29]. Here
a clique is defined as a complete subgraph, and a simplex is a
set of connected nodes. Isolated points are zero simplices; two
connected nodes form a one- simplex, and three connected
nodes (i.e., a triangle) constitute a two-simplex. If two sim-
plices have q + 1 nodes in common, they share a q − face.
A q-connected simplicial structure is a sequence of simplices
such that each simplex shares a q-face with the successive
simplex. Simplices that are q-connected are also connected
at all the lower levels. The dimension of a simplicial complex
is the dimension of the largest simplex in the structure. The
number of q-dimensional simplices forms the qth component
of the f -vector, and the �f = { f0, f1, . . . , fqmax}, where qmax

is the dimension of the highest dimensional simplices in the
network. The simplicial analysis of several kinds of networks,
such as social networks and networks of neurons, has been
carried out. In the case of time series networks, the simplicial
structure of the TS network reflects the temporal correlations
in the time series data.

Many other quantities can also be devised to analyze sta-
tionary and nonstationary time series. The quantity used in
this paper, viz., the complexity, is defined in the following
subsection.

D. Complexity measure

The complexity measure is often associated with the dis-
order present in the system. It measures the probabilistic
hierarchy of a system ranging from minimum to maximum
information with a perfectly ordered system, e.g., a perfect
crystal, requiring the minimum information for its specifica-
tion and a completely disordered system, e.g., an ideal gas,
where every accessible state is equally probable, requiring
the maximum information [30]. Information measures and
disequilibrium measures are sometimes defined by defining
some distance measure which measures how far the actual
states of the system are from the equiprobable states. These
can be used to measure the complexity of the system.

For a system with η accessible states, if all the states have
the same probability, i.e., pi = 1

η
, the system is equiprobable.
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FIG. 3. The canary birdsong along with its sonogram. Segments are defined based on the syllabic patterns in the sonogram and the shape
of the amplitude envelope. We show such segments for an adult canary song.

For a general system, the states are not necessarily equiprob-
able, so in general, pi �= 1

η
. For any set of pi, the normalized

information entropy is defined as

S = −
∑η

i=1 pi log pi

log η
, (6)

and the disequilibrium is defined as

D =
η∑

i=1

(
pi − 1

η

)2

. (7)

Additionally, the López-Ruiz, Mancini, and Calbet (LMC)
[30] complexity measure of the system is defined as C = S ×
D. We will apply these measures to the amplitude envelope of
the birdsong data. The details of the data collection have been
discussed at the beginning of this section. We outline below
the features of the data that have been collected.

III. BIRDSONG DATA: FEATURES AND ANALYSIS FOR
THE SONG OF THE CANARY

Figure 3 shows the audio time series of the birdsong of
the canary. We have analyzed the song segment-wise. In the
following subsection, we discuss the segmentation process of
the audio time series, which is carried out as follows.

As shown in Fig. 3, the audio song consists of many
repetitive patterns of syllables. The collection of syllables
of a similar type makes a phrase. Here this particular song
also has many phrases. We find the song’s spectrogram, and
then, based on the sonogram and the amplitude variation, we
segment the song. We also show the different song segments
in Fig. 3. The amplitude envelope of a musical signal en-
codes the rhythmic structure, the amplitude modulation, the
duration of notes, the loudness variation, and many other
features. These features encode the expressiveness of music.
Like music, some birds, particularly songbirds like canaries
or nightingales, also produce music-like signals, which have
been analyzed using quantifiers like the multifractal spectrum

of the amplitude envelope and its width [9]. Here we use the
Hurst exponent to analyze how the amplitude envelope scales
with time. We focus on different aspects like nonlinearity, the
role of intersyllabic gaps, and the effect of these entities on
the signal’s overall multifractality. We note that the amplitude
envelopes of the speech signals are often nonlinear. We have
used surrogate data analysis to understand the effect of nonlin-
earity on the multifractal property of the amplitude envelope.

A. Methods of creating surrogate data

A basic approach to creating surrogate data with the same
scaling law as the original data is to perform a Fourier trans-
form on the time series, preserve the Fourier amplitudes,
randomize the Fourier phases, and perform an inverse Fourier
transform to create the surrogate series. This method elimi-
nates nonlinearities stored in the Fourier phases, preserving
the power spectrum and the autocorrelation (second-order
moments) of the original time series [11]. The surrogate data
generated in this method do not preserve the probability dis-
tribution of the time series and may lead to an erroneous
conclusion regarding the nonlinearity of the underlying pro-
cess. An improved method is the iterative amplitude-adjusted
Fourier transform (IAAFT) [10,11] used here to preserve the
power spectrum and the distribution of the data. The process
of generating surrogate (IAAFT) data and the shuffled data is
briefly summarized below, and further details can be found in
Refs. [31,32]. See Ref. [33] for the limitations of the IAAFT
procedure and improvement on the algorithms.

The algorithm is iterative in nature and adjusts the Fourier
spectrum first and then the amplitudes. The algorithm starts
with sorting the original time series by the amplitude. Next,
the Fourier transform is carried out on the original data set. At
each iteration, the Fourier transform of the iterated time series
is calculated, and the Fourier coefficients of the original time
series replace its coefficients to produce the desired power
spectrum. The phases (Fourier phases of the transformed data)
are kept unaltered. After this step, the amplitudes of the
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FIG. 4. (a) The amplitude envelope (blue online) and its corresponding surrogate (IAAFT) (green online) for segment 1. (b) The cumulative
distribution of the Fourier phases of the original amplitude envelope and corresponding surrogate (IAAFT). It shows the presence of
nonuniform nature and correlations in the Fourier phases of the original signal. The surrogate (IAAFT) data have uniformly distributed and
uncorrelated Fourier phases. (c) The cumulative distribution of the original amplitude envelope and its corresponding surrogate (IAAFT) for
segment 1. It shows identical behavior. (d) The autocorrelation of the original amplitude envelope and its corresponding surrogate.

iterated time series will no longer be the same. Therefore,
in the second iterative step, the amplitudes are adjusted by
ranking their values and replacing them with the values of
the amplitudes at the same rank in the original sorted list.
Both iterative steps are repeated until a convergence threshold
is reached. In this report, to generate a single surrogate data
set for each segment of the canary song, we have used 1000
iterations, and the power spectrum threshold is set at 10−8.

In Fig. 4(a) we have plotted the amplitude envelope of seg-
ment 1 as a time series, and its corresponding surrogate data
created by the iterated amplitude-adjusted Fourier transform
method. The nonuniform distribution of the Fourier phases
indicates the presence of nonlinearity in the original amplitude
envelope in Fig. 4(b). Figures 4(c) and 4(d) demonstrate the
cumulative distributions and autocorrelations of the original
amplitude envelope and its corresponding surrogate respec-
tively of segment 1.

We also shuffle the original data to generate a second set of
surrogate data to detect the effect of the temporal correlation
of the amplitude envelope on the multifractal spectrum. For
that, first, we store the original data. Next, we swap each value
of the time series chosen randomly from anywhere in the data
for each step. On average, the swapping of each data point
more than twice makes it a random time series.

For each segment, we have generated two sets of surrogate
data with 100 realizations of each set. The first set of surro-
gate data is generated using the iterative amplitude-adjusted

Fourier randomized method (IAAFT). The IAAFT surrogate
data preserve the original data’s probability distribution and
power spectrum. The second set of surrogate data is the tem-
porally shuffled data. The shuffled data preserve the amplitude
envelope’s probability distribution but destroy any temporal
correlations present in the original data. The IAAFT surrogate
data and temporally shuffled data for each segment are used
to understand the effect of nonlinear properties and the effect
of temporal correlation present in the original time series
(amplitude envelope of the birdsong) in terms of the multi-
fractal spectrum. For each segment, the average multifractal
spectrum of the surrogate (IAAFT) and the average multi-
fractal spectrum of the shuffled data are compared with the
multifractal spectrum of the original amplitude envelope. In
the following subsection (III B), we describe the segmentation
of the audio time series.

B. Segmentation of the audio data

The audio file of the birdsong consists of many repeti-
tive patterns of syllables. The collection of these syllables of
similar types makes a phrase. The audio file of the birdsong
considered here also has many phrases. We find the spec-
trogram of the song, and then, based on the sonogram and
the amplitude variation, we segment the song. In Fig. 3, we
show different song segments. Table I identifies the different
segments, their syllabic nature, and average durations of the
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TABLE I. The first column is the segment label, and the second
column contains the start and end time of the segments. The third
column identifies the syllabic type of the segments, and the fourth
column lists the average duration of the syllables present in the
segment.

Segment
Start and end

time(s) Syllabic nature

Average
syllabic

duration(ms)

1 4.54–6.23 Up-sweep followed
by tonal

46.88 ± 7.02

2 7.54–9.03 Up-sweep followed
by tonal

35.29 ± 6.04

3 9.03–10.03 Up-sweep 63.63 ± 4.04
4 10.03–10.92 Circular up-sweep 63.55 ± 1.83
5 11.12–12.27 Tonal 244.74 ± 2.66
6 12.35–13.66 Down-sweep 18.31 ± 2.38

syllables. We note that the amplitude envelope data can be
divided into six segments, numbered 1 to 6.

The data are analyzed as follows. We first obtain the
generalized Hurst spectrum in the presence and absence of
intersyllabic gaps for the amplitude envelope data and their
surrogate. Then we discuss how the complexity changes over
the different segments in the presence and absence of in-
tersyllabic gaps. We note here that segments 1, 2, and 3
show behavior that is qualitatively similar, segment 5 shows
distinct behavior, and segments 4 and 6 show qualitatively
similar behavior in the low-fluctuation regime(particularly
with intersyllabic gaps). Hence we discuss the behavior of

segments 1, 5, and 6 in the subsequent subsections. The be-
havior and qualitative resemblance of segments 2 and 3 to
segment 1 and segment 4 and its comparison with segment
6 are analyzed in Appendices A 1, A 2, and A 3, respectively.

C. Segment 1

The sonogram and the amplitude envelope of the segment
are shown in Figs. 5(a) and 5(b). Figures 5(c) and 5(d) show
the detrended fluctuation of the amplitude envelope profile
in the presence and absence of intersyllabic gaps. Crossover
effects can be seen in both the cases. Finally, the generalized
Hurst exponent hq is plotted as a function of q for both cases
in Figs. 5(e) and 5(f).

A clear crossover can be seen in the detrended fluctuation
of the amplitude envelope detrended via a first-order poly-
nomial both in the presence and the absence of intersyllabic
gaps. The scaling exponent takes the value α1 = 1.68 for
scales less than the crossover timescale (n = 2420), indicat-
ing a strong long-range correlation detrended fluctuation of
the amplitude envelope profile over these scales. For large
timescales, i.e., after the crossover timescale, we see the signa-
tures of anticorrelated behavior [Fig. 5(c)]. The intersyllabic
gaps have significant effects on the multifractal spectrum
and the crossover point of the segment. In the absence of
intersyllabic gaps, the nature of the detrended dynamics of
the fluctuations does not change, but the crossover occurs
at a much lower timescale (n ≈ 1000) [Fig. 5(d)] For the
generalized multifractal spectrum, the scaling features for the
large fluctuation region (q > 0) of amplitude envelope and
the corresponding surrogate data are significantly similar

FIG. 5. (a) The sonogram of segment 1. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of the intersyllabic gaps. The slope h2 in the first scaling region (timescales
smaller than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is
denoted by α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) The hq

vs q spectrum of the amplitude envelope of the song segment with intersyllabic gaps. (f) The hq vs q of the amplitude envelope of the song
segment without intersyllabic gaps.
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TABLE II. The Kolmogorov-Smirnov (KS) statistics of the generalized Hurst exponent for the original amplitude envelope and the
surrogate data (IAAFT) in the presence and absence of the intersyllabic gaps. The columns correspond to the KS statistics (Dks(q < 0))
for low-fluctuation region, corresponding probability p(q < 0) of accepting the null hypothesis, KS statistics (Dks(q > 0)) for high-fluctuation
region, and its corresponding probability p(q > 0), respectively.

With intersyllabic gap Without intersyllabic gap

Segment Dks(q < 0) p(q < 0) Dks(q > 0) p(q > 0) Dks(q < 0) p(q < 0) Dks(q > 0) p(q > 0)

1 1.00 0.00 0.35 0.17 0.71 0.00 0.35 0.17
2 0.90 0.00 0.40 0.08 0.81 0.00 0.40 0.08
3 1.00 0.00 0.25 0.57 0.33 0.20 0.30 0.34
4 1.00 0.00 0.20 0.83 1.00 0.00 0.10 1.00
5 1.00 0.00 0.45 0.03 0.48 0.02 0.50 0.01
6 0.95 0.00 0.10 1.00 0.43 0.04 0.15 0.98

(Table II). The behavior of the hq vs q for the shuffled data
shows that the probability distribution does not affect the mul-
tifractal spectrum. It suggests that the multifractal properties
of the amplitude envelope are due to the temporal correlation,
not its probability distribution.

The low-fluctuation regime (q < 0) shows distinctly differ-
ent scaling properties than the corresponding surrogate data.
The significant similarity between the generalized Hurst spec-
trum of the original amplitude envelope and its corresponding
surrogate in the large fluctuation (q > 0) part shows that the
large fluctuation regime has a correlation structure similar
to the surrogate data (IAAFT), which preserves properties
up to second order. The significant difference between the
generalized Hurst spectrum in the low-fluctuation part (q < 0)

and the surrogate data shows that the low-fluctuation regime
is dominated by the higher-order correlation properties of
the amplitude envelopes. We also note the greater agreement
between the multifractal spectrum for surrogate IAAFT data
and the original data in the presence of intersyllabic gaps. The
behavior of segments 2 and 3 is similar, as discussed in detail
in Appendix A 1 and A 2. Segment 5 shows distinct behavior,
as can be seen in Fig. 6, and its characteristics are discussed
in the subsequent subsection. Segments 4 and 6 show qual-
itatively similar behavior for low-fluctuation regimes (q < 0
with an intersyllabic gap). The analysis of segment 4 and
its qualitative similarities with segment 6 can be found in
Appendix A 3.

FIG. 6. (a) The sonogram of segment 5. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of intersyllabic gaps. The slope h2 in the first scaling region (timescale smaller
than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is denoted
by α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) The multifractal
spectrum hq vs q spectrum of the song segment’s amplitude envelope with intersyllabic gaps. (f) The MF spectrum hq vs q for the segment for
the amplitude envelope without intersyllabic gaps.
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FIG. 7. (a) The sonogram of segment 6. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of the intersyllabic gaps. The slope h2 in the first scaling region (timescales
smaller than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is
denoted by α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) hq vs q
spectrum of the amplitude envelope of the song segment with intersyllabic gaps. (f) hq vs q for the segment for the amplitude envelope without
intersyllabic gaps.

D. Segment 5

This segment consists of four syllables [Fig. 6(a)]. Each
of the syllables has tonal nature. We have observed crossover
in the detrended (first-order polynomial) fluctuation of the
amplitude envelope [see Fig. 6(b)] in the presence and the
absence of the intersyllabic gaps in the timescale (n) larger
than 104 [Figs. 6(c) and 6(d)]. The scaling exponent of the de-
trended fluctuation of the amplitude envelope profile indicates
the presence of a strong long-range correlation [Figs. 6(c)
and 6(d)]. There is no significant effect of the intersyllabic
gaps on the multifractal spectrum and the crossover point.
The scaling features for the large fluctuation region (q > 0)
of the amplitude envelope and its corresponding surrogate
data are significantly different in the generalized multifractal
spectrum. The same is true for the low-fluctuation region
(q < 0). Thus for segment 5, we conclude that both the large
and small fluctuation regions show significant contributions
from the high-order correlations of the amplitude data.

E. Segment 6

This segment consists of 28 down-sweep syllables
[Fig. 7(a)]. The frequency range of these syllables is from
3500 to 1500 Hz. The behavior seen here is similar to that seen
for segments 1 to 5, i.e., crossover in the detrended (first-order
polynomial) fluctuation of the amplitude envelope [Fig. 7(b)]
is seen in the presence and the absence of intersyllabic gaps
with the scaling exponent α1 = 1.57 for scales less than the
crossover timescale (n = 1500) and anticorrelated behavior

for the scales larger than this scale [Fig. 7(c)]. In the absence
of intersyllabic gaps, the crossover scale changes to a lower
value n = 740 [Fig. 7(d)]. In the generalized multifractal
spectrum, the scaling features for the large fluctuation region
(q > 0) amplitude envelope and its corresponding surrogate
data are significantly similar (Table II). It is interesting to note
that that the surrogate IAAFT data are in good agreement with
the original data over the entire q range in the absence of gaps.

F. The comparison of segments (canary song)

The comparison of the characteristics seen in different
segments of the canary song is as follows:

(1) There are some significant similarities in the analy-
sis of the phrases. We have observed pronounced crossover
in the detrended fluctuations for all the segments. For seg-
ments 1 − 4 and 6, the crossover occurs within the range of
timescales 102 < n < 104, except for the fifth segment, where
the crossover occurs at a timescale (n) larger than 104. In
all these cases, i.e., for all segments, the crossover corre-
sponds to a change from correlated behavior (i.e., h2 > 0.5) at
timescales (n) less than the crossover scale to anticorrelated
behavior (h2 < 0.5) at higher timescales (greater than the
crossover timescale).

(2) We observe that for all the segments, the crossover
positions in F2(n) are related to the average time period (τ )
[Fig. 8(a)] of the repetitive patterns in the time series and
are proportional to crossover positions in F2(n) [Fig. 8(b)].
Figure 8(b) includes the effect of intersyllabic gaps. In the
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FIG. 8. (a) The time period in the repetitive patterns in the syllabic sequence of segment 3 with intersyllabic gaps is shown. (b) The plot
of the average period (τ ) of the syllabic sequence in the segments and the crossover durations from the fluctuation [F2(n)] is shown. The fitted
line (y = mx + c) has slope m = 1.02 ± 0.02 and the intercept c = 14.44 ± 1.89 ms.

absence of intersyllabic gaps, the time periods decrease, and
hence the crossover positions shift to smaller values, as is seen
for all the segments.

Consistent with the above, the generalized fluctuations
[Fq(n)] of all the segments show monofractal (minimal mul-
tifractal width) properties in the timescale larger than their
corresponding crossover points and multifractal behavior be-
low it.

Additionally, all the segments, show significant similarity
between the hq spectrum for the original amplitude envelope
and that of the corresponding surrogate data (IAAFT), where
the surrogate is tailored to preserve the two-point correlation,
in the large fluctuation (q > 0) region.

Segments 1–3 have similar multifractal characteristics,
whereas segments 4 and 6 have similar multifractal spectra for
(q < 0) qualitatively. The effects of the intersyllabic gaps in
the multifractal spectrum are prominent for the fourth segment
and sixth segment compared to those seen in other segments.

We note that the temporal patterns of bronchial pressure
and the bird’s labial tension determine the birdsong’s syllabic
structure and frequency evolution. The basic biomechanics
action required to produce a syllable is a cycle in the bronchial
pressure and the muscle tension [1,34]. The average time
period (τ ) in the song and the crossover duration in the F2(n)
corresponds to the timescales of different cycles and dynamics
involved in the bronchial pressure and the muscle tension
required to produce the song.

We have observed that the filtering has a significant effect
on the amplitude envelope determination on the multifractal
properties. The cutoff frequency determines the detailed tem-
poral structure of the amplitude envelope. The values used
here are 300 Hz (for the canary song) and 1000 Hz (for
the zebra finch song), respectively. In the MFDFA study, the
maximum timescale and common scaling regions in Fq(n)
also have to be identified correctly.

G. Kolmogorov-Smirnov statistics for the segments

Table II compares the Kolmogorov-Smirnov statistics for
the extent to which the multifractal spectrum of the original
data and the IAAFT surrogate data agree with each other
in the q < 0 and q > 0 regimes. The quantity listed is Dks,
which is the largest value of the distance between the cu-
mulative distributions of the hq calculated from the original
data set and the surrogate data set. The two distributions are
accepted as being similar if this distance Dks does not exceed
Dcritical(γ ), where γ is the significance level, set at γ = 0.05
here, which gives Dcritical = 0.429 [35]. The p-values listed
indicate the probability with which the similarity between the
two distributions is accepted. It can be seen that the KS test
confirms our visual observation that there is good agreement
between the IAAFT surrogate and the original data in the
q > 0, i.e., the large fluctuation regime, which does not carry
over to the small fluctuation regime. We note that the IAAFT
data preserve the autocorrelation property of the original data.
Clearly, at the low-fluctuation level, the effects of higher-
order correlations and the gaps contribute significantly to the
information contained in the original signal, leading to the
difference observed between the original and surrogate data.

We observe that for all the segments, the scaling properties
of the detrended fluctuation of the large fluctuation region
(q > 0) are significantly similar with its corresponding surro-
gate data sets except for the fifth segment. In low-fluctuation
regions (q < 0), the surrogate and the original data are signif-
icantly different in their hq vs q spectrum except for the third
segment (without gaps).

The comparison with shuffled data, which destroy the tem-
poral correlation property but preserve the histogram of the
original amplitude envelope, shows that the shuffled data are
completely monofractal and are nowhere similar to the mul-
tifractal spectrum of the original data. This suggests there is
no influence on the probability distribution of the amplitude
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FIG. 9. (a) Connections among the nodes using the visibility algorithm for a small part of energy data, the square of the amplitude. (b) Time
series network formed according to visibility algorithm and its different dimensional simplices.

envelope in the multifractal features seen in the detrended
fluctuation of the amplitude envelope. We also observe that
the nature of the low-fluctuation regions of the time series sig-
nificantly affects the multifractal spectrum, particularly for the
(q < 0) region. Most of the low-fluctuation parts correspond
to the intersyllabic gaps. If the fluctuation nature of the gaps
is multifractal, we get the usual multifractal spectrum. Here,
by the usual multifractal spectrum, we mean that the spectrum
where hq(q > 0) is less than hq(q < 0). On the other hand, if
the intersyllabic parts have monofractal like behavior (small
multifractal width), we get a spectrum where hq(q > 0) is
greater than the hq(q < 0) [Fig. 7(e)].

In the case of segment 5 the low p-value seen for q > 0
indicates that the hq spectrum of the original amplitude enve-
lope and the average hq spectrum of its corresponding IAAFT
surrogates seen in Fig. 6(e) are distinctly dissimilar. This
implies a substantial contribution of higher-order correlations
to the large fluctuation region of segment 5.

H. Source of multifractality

We have discussed the multifractal detrended fluctuation
results of the amplitude envelope profile in the previous sub-
section for individual segments of the song. There are two
possible sources of multifractal features [17]. One is the tem-
poral correlation for the window-wise detrended fluctuation,
and the other is the long-tailed probability distribution of the
amplitude envelope of the time series. To identify the reason
for the multifractal property, we have shuffled the amplitude
envelope data. The shuffled data have no temporal correlations
but preserves its probability distribution. We have observed
that the hq vs q for the shuffled data is now a constant line of
hq ≈ 0.5. On the other hand, the original amplitude envelope
and its IAAFT data show multifractal behavior, although their
details differ from each other, as seen in the segment-wise
analysis. Thus, the temporal correlation of different magni-
tudes of the window-wise detrended fluctuation over multiple
timescales leads to the multifractal property in the fluctuation
of the time series.

I. Simplicial analysis

The simplicial analysis of TS networks has been used
in a variety of contexts, including the characterization of

different dynamical regimes of evolving dynamical systems,
which have different kinds of short-term correlations [29].
Here the simplicial structures reveal the structure of the
short-time correlations in the segments of the birdsong. We
demonstrate this via the comparison of birdsong data and the
time series of the Lorenz attractor.

Here we use the topological characterizer �f vector for
quantifying the TS networks constructed for the Lorentz at-
tractor (z time series) and the energy, i.e., the square of the
amplitude, of segment 3 of the canary birdsong. This quantity
retains the variation of the amplitude envelope but is com-
putationally more efficient. We also compare the �f vector
for the original time series and its corresponding surrogate
(IAAFT). As earlier, the amplitude-adjusted phase random-
ized surrogate (IAAFT) time series and the original time series
have similar two-point autocorrelation and identical probabil-
ity distribution.

The simplicial analysis of TS networks has been used in
a variety of contexts, including the characterization of differ-
ent dynamical regimes of evolving dynamical systems, which
have different kinds of short-term correlations [29]. Here the
simplicial structures reveal the structure of the short-time cor-
relations in the segments of the birdsong. We demonstrate this
via the comparison of birdsong data and the time series of the
Lorenz attractor.

We construct a TS network from time series data using the
visibility algorithm [28]. The visibility graphs are formed by
considering the time series data points as nodes, and a link
is established between two nodes if there is no obstruction in
the line of sight of these two nodes. Two nodes, (yi, ti ) and
(y j, t j ), are connected to each other if all other intermediate
data points (yr, tr ) satisfy the following conditions:

y j > yr + (y j − yi )

(t j − ti )
(t j − tr ). (8)

Figure 9 shows the connections between the nodes using
the visibility algorithm for a small part of the energy data and
the corresponding network. The TS network is now analyzed
using the concepts of cliques and simplicial complexes. We
use the Born-Kerbosch algorithm to find all the cliques or
simplices from the adjacency matrix (TS network). As said
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FIG. 10. (a) �f vector of the energy data of segment 3. The hop and window size are 10 and 40, respectively. (b) �f vector of the surrogate
(IAAFT) of the energy of segment 3. The length of the data is 1000. (c) �f vector for the Lorentz attractor time series (z time series). The
parameters ρ = 28, σ = 10 and β = 8

3 . The number of data points N = 1000. (d) �f vector for IAAFT surrogate data of Lorentz attractor. We
have considered 10 realizations of the IAAFT surrogate data.

earlier, cliques are complete subgraphs, and simplices are sets
of connected nodes, with isolated nodes, two nodes connected
by a link, and three nodes connected by links being examples
of zero-, one-, and two-dimensional simplices. It is clear from
the figure that the simplicial structure reflects the short-term
correlations in the system. Figure 9(a) shows the triangles
and tetrahedra present in this part of the data. The number
of q-dimensional simplices form the qth component of the
f -vector, where the �f = { f0, f1, . . . , fqmax}, and qmax is the di-
mension of the highest dimensional simplices in the network.

In Figs. 10(a) and 10(b) we have plotted the components
of the �f vector for the energy data of segment 3 and its
surrogate IAAFT data. It can be seen that the number of
higher-order simplices is reduced for the surrogate (IAAFT)
data, indicating that the original data contains higher moments
of temporal correlation than the surrogate data. We demon-
strate a similar phenomenon for the TS network constructed
out of the z variable of the Lorenz attractor. Figures 10(c)
and 10(d) show fq, i.e., the numbers of different dimensional
simplices for the Lorentz attractor and its amplitude-adjusted
phase randomized surrogate (IAAFT) data. We also observe
that the phase randomized surrogate data have more low-
dimensional simplices than the original time series. This
reduction of the higher dimensional simplices implies a higher
order of temporal correlation in the original time series, which
gets eliminated due to Fourier phase randomizations. The
topological characterizer, viz., the f -vector, indicates the pres-
ence of the higher-order correlation structure in the birdsong

data. This complements the conclusion of the Hurst exponent
section, where we see that the low-fluctuation regime is dom-
inated by correlations of higher order than the second-order
moments, which are retained by the surrogate data.

J. Complexity measure result

In this section, we analyze the López-Ruiz, Mancini, and
Calbet (LMC) [30] complexity for each birdsong segment.
The consideration of the intersyllabic gaps in the amplitude
envelope makes the amplitude envelope of the segments more
complex [Fig. 11(a)]. In Table III we see that segment 3 and
segment 4 have a lower value of complexity.

In the presence of intersyllabic gaps, the Shannon entropy
(S) [Eq. (6)] has small variation across the different segments
except segment 6 (Table III). The disequilibrium (D) [Eq. (7)]
values of segment 3, segment 4, and segment 5 have low
values (Table III). It indicates that the amplitude envelopes
of these segments have a more uniform distribution compare
to other segments. As a consequence of this, these segments
have lower complexity compared to other segments.

We note that the Shannon entropy (S) (Eq. (6)) has no
significant variation across all the segments without the in-
tersyllabic gaps (Table III). The significant change in the
Shannon entropy (S) of segment six indicates the effect of
the intersyllabic gaps in the Shannon entropy amplitude enve-
lope. The disequilibrium (D) of individual segments reduces
significantly. This significant change also shows how the
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FIG. 11. (a) The segment-wise measure of LMC complexity of the amplitude envelope. The blue (red) bar corresponds to the LMC
complexity for the amplitude envelope in the presence (absence) of the intersyllabic gaps. The number of bins is 200, and the data lie between
0 and 1. (b) Segment-wise LMC complexity results in the magnitude of the amplitude envelope’s increment of the presence and absence of the
intersyllabic gaps (Table III). The number of bins is 200, and the data lie between 0 and 0.01.

intersyllabic gaps affect the disequilibrium of the amplitude
envelope. Consequently, the product of the disequilibrium (D)
and Shannon entropy (S) decreases. In Table III we show
the LMC complexity for the magnitude of the amplitude
envelope increment series. The eight and ninth column show
the amplitude envelope increment’s complexity in the pres-
ence and absence of intersyllabic gaps. These two columns
indicate no significant difference in the LMC complexity
across the segments in the amplitude envelope level. It also
implies that there is no effect of the intersyllabic gaps across
all the segments in the LMC complexity of amplitude enve-
lope increment’s magnitude.

We note that the complexity measures are simple and con-
stitute useful quantifiers of the importance of intersyllabic
gaps in the birdsong data. However, the MFDFA contributes
a more detailed method of analysis of the timescales and
correlations of the problem.

IV. BIRDSONG DATA: FEATURES AND ANALYSIS FOR
THE SONG OF THE ZEBRA FINCH

Another commonly studied songbird species is the zebra
finch. The birdsong of the zebra finch conforms to a singing

pattern that consists of a single short but complex song. This
differs from the singing pattern of the canary, which contains
far more controlled tonal sequences. We carry out a multifrac-
tal detrending analysis of the zebra finch song to illustrate the
differences with the results obtained for the analysis of the
song of the canary.

A. Data source

We have carried out our analysis for an example of a zebra
finch (Taeniopygia guttata) song sourced from a YouTube
video [36]. We have extracted the audio data using the 4K
Video downloader software. The duration and the sampling
rate of the signal are 49 s and 48 000 Hz, respectively. The
original signal is a two-channel signal. We have used the Praat
software to convert it to a mono channel signal. Next, we have
filtered the signal using a bandpass filter (20–20 kHz) in the
Praat software.

We have chosen the peak detection algorithm outlined in
Sec. II B for the amplitude envelope determination for the
zebra finch song. For this process, we have chosen a window
of six sample units (n) and a shift of one third the window
size, and a low-pass filter with a cutoff frequency of 1000 Hz.

TABLE III. Segment-wise complexity measure for the amplitude envelope and magnitude of amplitude envelope’s increment time series
respectively in the presence and absence of the intersyllabic gaps. S, D, and C correspond to the Shannon entropy, disequilibrium, and LMC
complexity measure, respectively.

Amplitude envelope time series Magnitude of amplitude envelope increment time series

With intersyllabic gap Without intersyllabic gap With intersyllabic gap Without intersyllabic gap

Segment S D C = S × D S D C = S × D C = S × D C = S × D

1 0.746 0.077 0.057 0.864 0.02 0.017 0.109 0.135
2 0.757 0.086 0.065 0.895 0.021 0.019 0.117 0.145
3 0.908 0.012 0.011 0.941 0.005 0.005 0.166 0.158
4 0.897 0.015 0.013 0.959 0.003 0.003 0.142 0.124
5 0.891 0.015 0.013 0.918 0.01 0.009 0.147 0.155
6 0.574 0.221 0.127 0.847 0.044 0.037 0.140 0.168

014118-13



BISHAL, MINDLIN, AND GUPTE PHYSICAL REVIEW E 105, 014118 (2022)

FIG. 12. Audio signal and the sonogram of segment 1. Harmonic
structures, different frequency gaps in the harmonics, and their spec-
tral energies are prominent in the syllables and motifs.

We have carried the analysis of two segments of the zebra
finch song for comparison with the canary birdsong. We note
that this is a proof of principle analysis, and a more detailed
comparison of the two species will be carried out in future
work.

B. Segment 1 (zebra finch song)

We first discuss the frequency content of the segment
shown in Fig. 12. The duration of this segment is from 3.07 to
4.697 s. The sonogram clearly shows the harmonic structures

(see Fig. 12) present in the syllables [6,37]. The corresponding
amplitude envelope is shown in Fig. 13(a), the underlying fun-
damental time period is identified in Fig. 13(b) and Fig. 13(c).

The detrended fluctuation analysis for the quantity F2(n)
is shown in Fig. 13(c). As noted earlier, the behavior of this
quantity identifies the scaling of the two-point correlation
in the amplitude envelope on different timescales. We ob-
serve three crossovers in Fig. 13(c). The first crossover at
(n ≈ 101.8 = 63) indicates the change from a short-ranged
correlated structure to anticorrelated behavior for the am-
plitude envelope. This first crossover point corresponds to
the fundamental time period of the original signal. We have
computed the time duration to the first crossover point, which
is 1.312 ms. The inverse of this time corresponds to the
frequency f0 = 762 Hz approximately, which is compara-
ble to the fundamental frequency observed in the sonogram
(Fig. 12). We have computed the fundamental time period
from the original signal [Fig. 13(b)], and we observe that the
fundamental frequency in the original song and the frequency
computed using the first crossover duration are in reason-
able agreement. It is, therefore, likely that the first crossover
duration corresponds to the time period of the fundamental
oscillation of the labia of the zebra finch.

We observe the second crossover in the F2(n) at ap-
proximately 102.5 ≈ 316 sample units (n) in Fig. 13(c). The
smaller-scale signal in the amplitude envelope within first

FIG. 13. (a) Some part of the signal (segment 1) and its amplitude envelope. (b) One part of the original signal showing the fundamental
time period (top). The corresponding amplitude envelope (bottom). (c) Three crossovers have been shown. The vertical lines correspond to the
different crossover regions.
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FIG. 14. (a) The sonogram of segment 2. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of intersyllabic gaps. The slope h2 in the first scaling region (timescales smaller
than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is denoted
by α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) The multifractal
spectrum hq vs q spectrum of the song segment’s amplitude envelope with intersyllabic gaps. (f) The multifractal spectrum hq vs q of the
segment’s amplitude envelope without intersyllabic gaps.

and second crossover point shows the anticorrelation property
(α2 = 0.34 < 0.5); whereas for timescales larger than the sec-
ond crossover point, the quantity shows correlation behavior
with exponent (α3 = 1.35 > 0.5) up to the timescale [sample
unit (n)] 104. For much larger timescales (n > 104), the am-
plitude envelope shows anticorrelated behavior (α4 = 0.35 <

0.5) [Fig. 13(c)]. This large-scale anticorrelation is due to the
effect of the repetitive nature of the syllables and the motifs
present in the segment (Fig. 12).

The generalized fluctuation curves Fq(n) are plotted in
[Fig. 17(a)] of Appendix B 1 for different q-values (q =
−5,−2, 2, 5), and clearly indicate five distinct regions (I–V,
respectively). Each scaling region seen here is very short, and
good power-law behavior is not seen over scaling regions of
reasonable length for any of the regions except region IV.
Nevertheless, a discussion of each region, the extent to which
it follows power-law behavior, and the surrogate analysis of
each region can provide valuable insights for the analysis of
the song. Hence, we carry out the multifractal analysis of
the zebra finch song in Appendix B. This analysis is carried
out for both segments 1 and 2. Appendices B 1 and B 2
carry out the multifractal analysis of segment 1 (zebra finch
song). Appendix B 3 carries out the corresponding analysis of
segment 2 for both F2(n) and Fq(n). We note that both segment
1 and segment 2 show similar behavior for both quantities.
The details of the comparison are as follows:

(1) We have observed similar scaling properties in the
detrended fluctuation of the amplitude envelope of segment
1 and segment 2 of the zebra finch song. The first and second
crossover positions and scaling properties are similar to those

seen for segment 1 [Figs. 13(c) and 19(c)]. We observe the dif-
ference in the large-scale (n > 104) scaling properties in these
two segments. This is identified as region V in Fig. 17(a).

(2) The comparison of the multifractal properties and that
of the surrogate for segment 1 (zebra finch song) is discussed
in Appendices B 1 and B 2, and in Appendix B 3 for segment
2, up to the accuracy observed in the scaling regions. We
observe a difference in the multifractal and two-point corre-
lation structures for the longer timescales (n > 104). In this
timescale, the effect of the repetitive patterns of the syllables
and motifs are prominent [27]. The analysis shows a smaller
correlation exponent.

Since this is a brief comparison, we have not discussed the
intersyllabic gaps in the multifractal properties in this context.
We hope to include it in a separate study.

V. THE COMPARISON OF THE CANARY AND
ZEBRA FINCH SONG

The following important features were observed in the
zebra finch and canary birdsongs via the detrended fluctuation
analysis of the amplitude envelope and the sonogram:

(1) The sonogram indicates that zebra finch syllables
have a more varied spectrum of frequencies compared to
the song of the canary. The spectral energies in the zebra
finch song are distributed over a more extensive frequency
range for the zebra finch song (from few 100 Hz to 13 kHz)
(Figs. 12 and 18); whereas for the song of the canary, the
spectral energies are confined to the smaller frequency range
(1–6 kHz approximately) [Figs. 5(a), 6(a) and 7(a)] and
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FIG. 15. (a) The sonogram of segment 3. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of intersyllabic gaps. The slope h2 in the first scaling region (timescales smaller
than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is denoted by
α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) hq vs q spectrum
of the song segment’s amplitude envelope with intersyllabic gaps. (f) hq vs q for the segment’s amplitude envelope without intersyllabic gaps.

[Figs. 14(a) and 16(a)]. We observe harmonicity in the spec-
trogram of the zebra finch song (Figs. 12 and 18); whereas

the canary song shows distinct up-sweep, tonal, and down
syllables. Thus, the canary song is purer and indicative of

FIG. 16. (a) The sonogram of segment 4. (b) The amplitude envelope along with the song segment. (c) The crossover in the detrended
fluctuation of the amplitude envelope profile in the presence of intersyllabic gaps. The slope h2 in the first scaling region (timescale smaller
than the crossover point) is denoted by α1. The slope h2 in the second scaling region (timescales greater than the crossover point) is denoted by
α2. (d) The crossover in the detrended fluctuation of the amplitude envelope profile in the absence of intersyllabic gaps. (e) hq vs q spectrum of
the amplitude envelope of the song segment with intersyllabic gaps. (f) hq vs q of the segment’s amplitude envelope without intersyllabic gaps.
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better controlled vocal characteristics than the zebra finch
song.

(2) The F2(n) vs n plots of the amplitude envelope of the
zebra finch reveal three crossover points (i.e. four regions)
[Figs. 13(c) and 19(c)] for each segment, whereas those for
the canary only show one (i.e. just two regions) [Figs. 5(c),
6(c), and 7(c)]. For the zebra finch, the first crossover point
is seen at small scales, viz., n ≈ 63, a value which reflects
the fundamental time period (T0) of the song. The crossover
behavior here is a change from small-scale correlations to an-
ticorrelated behavior. The second crossover point corresponds
to the change of the amplitude envelope from anticorrelated
behavior to correlated behavior at large scales. The third
crossover point is determined by the effect of the timescale
of the repetitive occurrence of the syllables and motifs in the
zebra finch song [Figs. 13(c) and 19(c)]. In contrast, for the
canary song, we observe a single pronounced crossover from
correlated scaling behavior, to anticorrelated behavior, at a
crossover point which indicates the timescale of the repetitive
patterns of the syllables in the segments.

(3) The syllabic durations and intersyllabic gaps within a
particular phrase of a canary song are less variable among
themselves. The repetition of syllabic gaps makes a periodic
trend which leads to a pronounced crossover in the F2(n). The
scaling exponent in the timescale larger than the crossover
point shows anticorrelation in the two-point correlation
structure [27].

To summarize, multifractal detrended fluctuation analysis
is an effective tool for songbirds like canaries (Serinus canaria
domestica), nightingales (Luscinia megarhynchos), warblers
(Parulidae), finches (Fringillidae), mynas (Acridotheres tris-
tis), and many others. These songbirds demonstrate good
vocal control and therefore have more structured and complex
songs. On the other hand call birds usually produce isolated
syllables and less complex structured signals, as we observe in
species like coppersmith barbets (Megalaima haemacephala),
great tit birds (Parus major), and others. These call signals
often have very large intersyllabic gaps. Sometimes, these
gaps have zero amplitude. The amplitude envelope of these
gaps makes the generalized fluctuation Fq unstable for q < 0.
The correlation structures in the birdcall can be analyzed after
concatenating the syllables, which corresponds to the correla-
tion structure of the syllabic sequence, not in the actual bird
call.

VI. CONCLUSIONS

To conclude, our analysis shows that the detrended fluctua-
tion of the amplitude envelope of the song of the canary shows
multifractal behavior. The temporal shuffling of these data de-
stroys the multifractal features, confirming the contribution of
the temporal correlations to the observed multifractal behav-
ior. The comparison of the Hurst exponent spectrum with that
for surrogate data generated by the IAAFT transforms shows a
good match for most segments in the high-fluctuation regime,
and a poor match with the spectrum in the low-fluctuation
regime, indicating that higher-order correlations contribute
significantly in the low-fluctuation regime. Intersyllabic gaps
contribute significantly to low-fluctuation regimes, indicating
their importance for the typical characteristics of the birdsong.

These results are supported by the simplicial characterization
of the TS networks. Complexity measures give results con-
sistent with this analysis. We note that our methods permit a
fine-scale characterization of the time series under analysis, by
which a very detailed comparison can be made between sets
of interest to identify the similarities and differences between
them. The brief analysis of the zebra finch song carried out
here supports this. Hence, our methods can contribute to the
quantitative comparison of vocal characteristics of songbirds
across species, as well as to the comparison of vocal skills in
a given species at different stages of development.
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APPENDIX A: MULTIFRACTAL ANALYSIS OF
AMPLITUDE ENVELOPE FOR CANARY SONG

The MFDFA analysis and the correlation structure of the
amplitude envelope of the song of the canary have been dis-
cussed in detail in Sec. III. These are analyzed in detail for
segments 1, 5, and 6 in Secs. III C–III E, respectively. In this
Appendix we discuss segments 2 and 3, whose behavior is
qualitatively similar to segment 1 as well as segment 4, whose
behavior resembles that of segment 6 in the low-fluctuation
part.

Section IV also carries out a proof of principle analysis of
the amplitude envelope of the zebra finch song. This includes
the analysis of the second moment F2(n) and the conclusions
drawn from this analysis. We note that the zebra finch song
is characterized by the presence of marked higher harmonics,
and as a result, the multifractal moments Fq(n) contain many
regions where approximate scaling is seen over very short
segments or timescales n. Nevertheless, these segments con-
tain complex information which is important for the birdsong.
Hence we discuss this information in the Appendix B. We
will discuss in detail the behavior of Fq(n) vs n for segments
1 and 2 of the zebra finch, in Appendix B together with the
approximate fits to scaling behavior over short segments and
their error bars.

We discuss segment 2 (canary song) as seen in Fig. 14.

1. Segment 2 (canary song)

This segment consists of 25 syllables. Each of the syllables
consist of an up-sweep followed by tonal behavior. This part
of the song (segment 2) and the corresponding amplitude
envelope is shown in Fig. 14(b). We have observed a crossover
in the detrended (first-order polynomial) fluctuation of the
amplitude envelope both in the presence and the absence
of the intersyllabic gaps. The scaling exponent is α1 = 1.69
for scales less than the crossover timescale (n ≈ 1900). This
shows a strong long-range correlation in the detrended fluc-
tuation of the amplitude envelope profile. For scales higher
than the crossover scale, the anticorrelation property is seen
[Fig. 14(c)].

As in the case of segment 1, the crossover behavior is
similar in the presence and absence of intersyllabic gaps,
but the crossover scale shifts to much lower values in the
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absence of intersyllabic gaps [Figs. 14(c) and 14(d)]. For
this case, the scaling exponent is α′

1 = 1.75 in the scale
less than the crossover timescale (n ≈ 700) which is smaller,
as expected. For the generalized multifractal spectrum, the
scaling features for the large fluctuation region (q > 0) of
the amplitude envelope, and its corresponding surrogate data
are significantly similar [Fig. 14(e)]. The low-fluctuation
parts (q < 0) show scaling properties dissimilar to the corre-
sponding surrogate data in the presence of intersyllabic gaps
[Fig. 14(e)]. The similarity between the generalized Hurst
spectrum of the original amplitude envelope and its corre-
sponding surrogate in the large fluctuation (q > 0) part shows
that the large fluctuation regions have a correlation structure
like the surrogate, i.e. the two-point correlations dominate
here. The significant difference between the generalized Hurst
spectrum in the low-fluctuation part (q < 0) shows that the
low-fluctuation regime is dominated by higher-order correla-
tion structure in the original amplitude envelope. We note that
this is also pronounced in the absence of intersyllabic gaps
[Fig. 14(f)].

It is also clear that the multifractal behavior of the ampli-
tude envelope has a significant contribution from its temporal
correlations, and not from the probability distribution of the
amplitudes [Figs. 14(e) and 14(f)].

Segment 3 (canary song) as seen in Fig. 15 also shows
similar behavior (with intersyllabic gaps). We discuss this
below.

2. Segment 3 (canary song)

This segment consists of 12 syllables [Fig. 15(a)]. Each of
the syllables has an initial up-sweep and is followed by tonal
behavior. Figure 15(b) shows the part of the song (segment
3) and its amplitude envelope. We have observed crossover
in the detrended (first-order polynomial) fluctuation of the
amplitude envelope in the presence and the absence of the in-
tersyllabic gaps. The scaling exponent is α1 = 1.72 for scales
less than the crossover timescale (n ≈ 2700) which indicates
a strong long-range correlation in detrended fluctuation of the
amplitude envelope profile [Fig. 15(c)]. We observe the anti-
correlation property on timescales greater than the crossover
[Fig. 15(c)]. As seen in other cases, the intersyllabic gaps
have an effect on the multifractal spectrum and the segment’s
crossover point. Without the intersyllabic gaps, the nature of
the detrended fluctuations’ dynamics does not change, but
the crossover occurs at a much lower timescale (n ≈ 2450)
[Fig. 15(d)].

In the generalized multifractal spectrum (with intersyllabic
gaps), the scaling features for the large fluctuation region (q >

0) amplitude envelope, and its corresponding surrogate data
are significantly similar as in the earlier cases but are quite
different for the low-fluctuation q < 0 regime [Fig. 15(e)].
This indicates the importance of the two-point correlation
structure for positive q and that of the higher-order correlation
components for negative q. In the absence of the intersyllabic
gaps, the multifractal spectrum shows significant similarities
in the correlation structure in the low-fluctuation part (q < 0)
of the original data and the corresponding surrogate data
[Fig. 15(f)].

We note that segments 2 and 3 discussed here show be-
havior which is similar to the behavior seen in segment 1
(canary) in the presence of intersyllabic gaps, as discussed
in Sec. III C. Segment 4 as seen in Fig. 16, however, shows
different behavior. We discuss this below.

3. Segment 4 (canary song)

This segment has 11 syllables [Fig. 16(a)]. Figure 16(b)
shows part of the song (segment 4) and its amplitude envelope.
We have observed crossover in the detrended (first-order poly-
nomial) fluctuation of the amplitude envelope in the presence
and the absence of the intersyllabic gaps. The scaling expo-
nent is α1 = 1.75 seen in the scales less than the crossover
timescale (n ≈ 1350) indicates a strong long-range correla-
tion in detrended fluctuation of the amplitude envelope profile
[Fig. 16(c)]. We observe the anticorrelation property on the
larger timescales [Fig. 16(c)]. We note that the crossover
between the two regions now takes place in a more gradual
fashion, compared to the first three segments.

The intersyllabic gaps have a significant effect on the mul-
tifractal spectrum and crossover point of the segment. As
before, without the intersyllabic gaps, the nature of the de-
trended fluctuation dynamics do not change qualitatively, but
the crossover occurs at a much lower timescale (n ≈ 1100).
Again, the scaling features for the generalized multifractal
spectrum, the scaling features for the amplitude envelope,
and its corresponding surrogate data are significantly similar
for the large fluctuation region, (q > 0), and not so for the
q < 0 (small fluctuation region) [Fig. 16(e)]. The effect of
the intersyllabic gaps is seen far more strongly here than
in the earlier case [Fig. 16(f)]. We note that the difference
between the original and IAAFT data in the small fluctua-
tion regions are much more prominent in the presence of the
intersyllabic gaps. It is therefore possible to conjecture that
the gaps contribute strongly to the higher-order correlations
in the amplitude envelope here. This contribution is much
smaller in the other segments. We note that similar behavior is
seen in segment 6 (canary song) of Fig. 7 and has been
discussed in detail in Sec. III E.

This completes the analysis of all segments of the song of
the canary, which is one of the cleanest examples of birdsong
based on sustained frequencies. To contract the behavior seen
here with another case, we have discussed the case of the
zebra finch in Sec. IV. This song of the zebra finch contains
the presence of multiple higher harmonics which contribute
their own signatures to the MFDFA analysis. Section IV B
discusses the behavior of F2(n) for the first segment of the the
zebra finch song. Here we discuss the behavior of Fq(n), its
behavior in different regions, and the accuracy with which it
approximates scaling behavior in each region.

APPENDIX B: FURTHER DETAILS OF MULTIFRACTAL
ANALYSIS OF ZEBRA FINCH SONG

Section IV demonstrates the detrended fluctuation (F2(n))
of the amplitude envelope of segment 1 of the zebra finch
song, which shows four different scaling regions. In contrast,
the generalized detrended fluctuations Fq(n) vs n, for the same
segment, shows five different scaling regions in the log-log
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FIG. 17. (a) The fluctuation of the amplitude envelope for q values (−5, −2, 2, 5) bottom to top. Five different scaling regions (I–V,
respectively) have been shown. (b–f) hq vs q of the original data and corresponding surrogate (IAAFT) and the shuffled data for different
scaling regions shown in Fig. 17(a), respectively. We have considered the power spectrum threshold (PSD) to be 2 × 10−7 for all the IAAFT
surrogate data generation processes [10]. The average has been taken over 50 surrogate data sets (IAAFT) and 50 shuffled data sets.

scale. We note that regions 3 and 4 can be regarded as a
single scaling region for q = 2, and has been shown as a single
region (region 3) for the plot of F2(n) in Fig. 13(c). The other
values of q show the difference clearly [Fig. 17(a)]. None
of these regions [except region IV in Fig. 17(a)] show good
scaling behavior over reasonably long scaling regions for any
of the generalized fluctuations [Fq(n)] in a strict sense. Despite
this, a discussion of each region and the extent to which it can
approximate reasonable scaling behavior can provide insights
into the correlations in the amplitude envelope of the zebra
finch song. We, therefore, describe the multifractal detrended
fluctuation analysis of the amplitude envelope for segment 1
of the zebra finch song in the subsequent section. In the case
of segment 2 of the zebra finch song, we describe both the
detrended fluctuation analysis (i.e., the F2(n) case) and the
multifractal analysis Fq(n) case in this section.

1. Multifractal detrended fluctuation analysis of
segment 1(zebra finch song)

The generalized fluctuation curves Fq(n) plotted in
[Fig. 17(a)] for different q-values (q = −5,−2, 2, 5), indicate
five common scaling regions (I–V, respectively).

2. Scaling behavior (zebra finch song segment 1)

(1) Region I corresponds to a very small timescale (1 <

log10 n < 1.8). In this timescale, the average hq of the sur-
rogate data (IAAFT) spectrum is significantly similar to the
Fq(n) for the large fluctuation region (q > 0). On the other

hand, the exponents of the multifractal spectrum of the shuf-
fled data are not equal to 0.5 in the q < 0 regime [Fig. 17(b)]
indicates the minimal scale correlation present in the low-
fluctuation parts of the shuffled data. The common scaling
region for all the Fq(n) is not long enough, and the scaling
exponents of the power-law fitted lines for q = −5,−2, 2, 5
are 1.69 ± 0.08, 1.45 ± 0.05, 1.26 ± 0.03, and, 1.12 ± 0.04
respectively.

(2) In the second region, we find approximate power-law
behavior for a small window (1.8 < log10 n < 2.42) for all
the Fq(n). The average hq of the surrogate data (IAAFT) for
q > 0 is similar to the multifractal spectrum of the original
data for q > 0, whereas for q < 0, we observe a significant
difference between them [Fig. 17(c)]. The shuffled data show

FIG. 18. Spectrogram of segment 2. Harmonic structures are
prominent in the syllables and motifs. Different frequency gaps in
the harmonics and spectral energies syllable-wise are visible.
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FIG. 19. (a) Part of the signal and its amplitude envelope. (b) Part of the original signal showing the fundamental time period (top). The
amplitude envelope (bottom). (c) Three crossovers have been shown in F2(n) vs n graph. The vertical lines correspond to the different crossover
regions for segment 2.

a minimal multifractal width around 0.5 [Fig. 17(c)]. This
constant line around 0.5 indicates that the multifractality is
due to the temporal order of the amplitude envelope. Like
region I, the common scaling region for all the Fq(n) is not
long enough. Therefore the presence of a multifractal property
is not a robust argument for this scale. The scaling exponents
of the power-law fitted lines for q = −5,−2, 2, 5 are 0.76 ±
0.04, 0.75 ± 0.01, 0.33 ± 0.01, 0.24 ± 0.01, respectively.

(3) Region III has a scaling range (2.42 < log10 n < 3).
Over this timescale, we observe significant deviation be-
tween the average hq spectrum of the surrogate (IAAFT)
data and the original amplitude envelope for q < 0. Thus
three point and higher-order correlations are dominant for
q < 0 [Fig. 17(d)]. The scaling exponents of the power-
law fitted lines for q = −5,−2, 2, 5 are 1.28 ± 0.1, 1.24 ±
0.06, 1.09 ± 0.03, 1.24 ± 0.05 respectively. This region can
also be regarded as a crossover region.

(4) Region IV has a long scaling range (3 < log10 n <

4). In this region, we find better long-range scaling com-
pared to all other regions. The scaling exponents of the
power-law fitted lines for q = −5,−2, 2, 5 are 2.79 ±
0.06, 2.38 ± 0.04, 1.38 ± 0.01, 1.21 ± 0.02, respectively. In
this timescale, we observe significant deviation between the
average hq spectrum of the surrogate (IAAFT) data and

the original amplitude envelope for q < 0. The effect of the
higher-order correlation (nonlinearity) in the original ampli-
tude envelope is prominent in the low-fluctuation regions
(q < 0) [Fig. 17(e)]. We observe good agreement between
the scaling properties between the IAAFT surrogate and the
original data in the large fluctuation regions [Fig. 17(e)] .

(5) In region V the amplitude envelope of the original data
has anticorrelation properties [Fig. 17(f)]. The scaling expo-
nents of the power-law fitted lines for q = −5,−2, 2, 5 are
0.44 ± 0.12, 0.48 ± 0.1, 0.39 ± 0.07, 0.19 ± 0.05, respecti-
vely. In this timescale, the effect of the repetitive patterns of
the syllables and motifs present in the segment are prominent.
As a consequence of the repetitive nature of the motifs and
the syllables, the amplitude envelope is anticorrelated in na-
ture [27]. We observe disagreement between the multifractal
spectrum of the original amplitude envelope and its corre-
sponding surrogate data (IAAFT). In this context, we observe
that the surrogate data generated using the IAAFT method do
not preserve the two-point correlations in this timescale. One
reason for this could be the presence of phase correlations as
has been reported in the IAAFT surrogate data in Ref. [33]
for the case of the AGN (active galactic nuclei) time series.
Further analysis is required to confirm this for the birdsong
data.
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FIG. 20. (a) The fluctuation of the amplitude envelope for q values (−5, −2, 2, 5) bottom to top. Five different scaling regions (I–V,
respectively) have been shown. (b–f) hq vs q of the original data and corresponding surrogate (IAAFT) and the shuffled data for different
scaling regions shown in panel (a), respectively. We have considered the power spectrum threshold (PSD) as 2 × 10−7 for all the IAAFT
surrogate data generation processes [10]. The average has been taken over 50 surrogate data sets (IAAFT) and 50 shuffled data sets.

3. Segment 2 (zebra finch song)

In the main text, we have discussed the detrended fluc-
tuation F2(n) for the amplitude envelope of segment 1 of
the zebra finch song in Sec. IV. Here we describe the de-
trended fluctuation analysis (F2(n)) followed by a multifractal
detrended fluctuation analysis of the amplitude envelope of
segment 2 of the zebra finch song. The duration of the
second segment is from 5.295 to 7.25 s. As in the case of
the first segment, the sonogram of this segment shows the har-
monic nature of its syllables and motifs [6]. The first crossover
in Fig. 19(c) corresponds to the fundamental frequency of the
song (Fig. 18). The first crossover corresponds to a change
from small-scale correlations to anticorrelated behavior in the
amplitude envelope. The first crossover duration corresponds
to the time period 1.312 ms [Fig. 19(c)]. The correspond-
ing frequency is 762 Hz; whereas the direct measurement
of the fundamental time period (T0 = 1.25 ms, fo = 800 Hz).
As discussed earlier for the first segment, we can specu-
late that the first crossover point observed in the detrended
fluctuation analysis of the amplitude envelope corresponds
to the fundamental time period of the labial oscillations in
the zebra finch song. Note that this direct fundamental time
period from the song should be measured separately for dif-
ferent syllables as it can vary for each syllable. We have
observed the second crossover in the F2(n) at approximately
102.5 ≈ 316 sample units (n) [Fig. 19(c)]. For smaller scales
(i.e., the signal between the first and second crossover points),
the amplitude envelope shows the anticorrelation property
(α2 = 0.38 < 0.5); whereas for timescales larger than the sec-
ond crossover point, the envelope shows correlated behavior

(α3 = 1.38 > 0.5) up to the timescale (sample unit (n)) 104.
For much larger timescales (n > 104), the amplitude enve-
lope has shown weakly correlated behavior (α4 = 0.62 > 0.5)
[Fig. 19(c)]. Note that the correlation strength depends on
the exponent values. (The extent to which the exponent ex-
ceeds the value 0.5 is regarded as a measure of how well
the signal is correlated.) The weak correlation observed in
the large timescale (n > 104) is due to the repetitive nature
of the syllables and motifs present in the segment [27].

For the generalized fluctuation curves [Fig. 20(a)] for dif-
ferent q values (q = −5,−2, 2, 5), the results are similar to
the results seen in the first segment. In particular, there are
five regimes as seen in the case of the first segment, and the
observations for each segment are similar (qualitatively) to
those seen for the first segment. We note here that the basic
time period (crossover positions) seen in both segments is of
the same order.

The features for the scaling regions are the following:
(1) We have observed similar scaling properties in the

detrended fluctuation of the amplitude envelope of segment
1 and segment 2 of the zebra finch song. The first and second
crossover positions and scaling properties for segment 2 are
similar to those seen for segment 1. We observe the difference
in the large-scale (n > 104) scaling properties in these two
segments. This is identified as region V in Fig. 20(a).

(2) The multifractal properties of the original and the
IAAFT surrogate and shuffled data show similar results up
to region IV as seen for segment 1. In region I the hq spectrum
of the shuffled in q < 0 region is not equal to 0.5, which
is due to the very small scale correlations present in the
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amplitude envelope after shuffling. Figures 17(c) and 17(d),
and Figs. 20(c) and 20(d) show similar multifractal properties
in their corresponding timescale of the amplitude envelope for
both segments. Figure 17(e) and Fig. 20(e) both are in good
agreement for the correlation structure of the large fluctuation
part.

(3) We observe a difference in the multifractal and
two-point correlation structures [Fig. 17(f)] for the longer
timescales (n > 104). These timescales are identified as re-
gion V for both segments [Fig. 17(a) and Fig. 20(a)]. There
are distinct differences in the hq spectrums of the original
data for both segments. In this timescale, the effect of the
repetitive patterns of the syllables and motifs are prominent
[27]. As a consequence of the repetitive nature of the motifs
and the syllables, the correlation exponent is smaller. We note
dissimilarities in the hq vs q spectrum between the original
data and the corresponding IAAFT data in both fluctuation
parts (q > 0 and q < 0). IAAFT surrogate and original data
should preserve the two-point correlation properties. A signif-
icant difference in the detrended fluctuation exponent (q = 2)

indicates the presence of phase correlation in the IAAFT
surrogate data. The phase correlation in the IAAFT surrogate
data may lead to a spurious conclusion regarding the nonlinear
properties of the original time series. The presence of phase
correlation has been shown in the IAAFT surrogate data in
Ref. [33] in the context of AGN (active galactic nuclei) time
series.

It is helpful to identify a common scaling region for all seg-
ments. For this, it is important to find the error bars associated
with power-law fits for the q values considered. We note here
that the scaling properties for low-fluctuation regions (q < 0)
are poorer than those for the large fluctuation regions, as can
be seen from the larger error bars in these regions [Fig. 17(d)].
Here we have observed that region I and region V as seen in
Figs. 20(a) and 17(a) show larger error bars especially for the
low-fluctuation parts (q < 0). This analysis is in the presence
of intersyllabic gaps. Since this is a proof of principle analysis,
we have not discussed the contribution of intersyllabic gaps to
the multifractal properties in this context. We hope to include
it in a separate study.
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