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Geometric and topological entropies of sphere packing
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We present a statistical mechanical description of randomly packed spherical particles, where the average
coordination number is treated as a macroscopic thermodynamic variable. The overall packing entropy is
shown to have two contributions: geometric, reflecting statistical weights of individual configurations, and
topological, which corresponds to the number of topologically distinct states. Both of them are computed in the
thermodynamic limit for isostatic and weakly underconstrained packings in 2D and 3D. The theory generalizes
concepts of granular and glassy configurational entropies for the case of nonjammed systems. It is directly
applicable to sticky colloids and predicts an asymptotic phase behavior of sticky spheres in the limit of strong
binding.
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I. INTRODUCTION

The deceivingly simple task of packing spheres has been an
inspiration for multiple problems in mathematics and natural
sciences since the times of Kepler [1]. It provides insights into
the physics of crystalline solids, as well as into the world
of disordered states of matter [2–4]. One such fundamen-
tal problem is finding the entropy of a random packing of
spheres. In its simplified form, this amounts to counting the
number of ways in which distinct particle arrangements can be
generated for a given ensemble. For instance, more than two
decades ago, Sam Edwards introduced the notion of granular
entropy [5,6]. A similar concept also arises in the context of
hard-sphere glasses as a measure of degeneracy of the locally
stable configurations [4,7]. In both examples, the packing
entropy would be a measure of the multiplicity of the jammed
states. Due to the nonequilibrium nature of jamming, even a
rigorous definition of the granular entropy remains nontrivial.
Nevertheless, significant progress in understanding and com-
puting it has been demonstrated in recent years [8–11].

In this paper, we discuss the packing entropy in an equilib-
rium system of spheres, where it can be properly defined as a
conventional thermodynamic quantity. The system studied is
not jammed but rather is constrained to have a specific number
of direct interparticle contacts. In other words, we use the
total number of contacts (or, equivalently, mean coordination
number of the particles, Z) as a thermodynamic variable.
This approach is immediately relevant to packings of sticky
spheres where each contact is associated with a fixed binding
energy. Two limits of that problem have been explored in the
past: thermodynamics of a sticky sphere liquid (e.g., Baxter
model) [12,13] and, more recently, free-energy landscapes
and kinetics of mesoscopic multicolloidal clusters [14–19].
In this paper, we seek to bridge the gap between these two
limits and, more importantly, use this model system to better
understand the nature of packing entropy. The latter can be
subsequently connected to the granular and/or glassy entropy

by applying external pressure to the system that would lead
to its jamming. The difference from the original contexts
in which those entropies were introduced is that one would
start with an already discrete configurational space and select
its subset that corresponds to the local minima of the total
volume.

II. PARTITIONING OF PACKING ENTROPY

Consider a system of N hard spherical particles in d-
dimensional space, with average particle diameter ā. The
packing is weakly polydisperse, so the width of the particle di-
ameter distribution is much smaller than the average: δa � ā.
We define a pair of particles to be in contact if the gap between
them is less than some small value � � ā. The gap between
particles i and j is defined as xi j = |ri − r j | − (ai + a j )/2,
where a and r are their respective diameters and positions.
For any configuration, the topology of the packing can be
specified by an adjacency matrix Ĉ, with elements Ci j = 1
for all particles i �= j in contact, and Ci j = 0 otherwise. As
already mentioned above, the average coordination number
Z = 1/N

∑
i< j Ci j is treated as a macroscopic thermodynamic

variable of the system. Note that throughout the paper, we set
kBT = 1.

The weak polydispersity is introduced to avoid hyperstatic
(overconstrained) configurations. These contain accidental
contacts that could be removed, e.g., by slight variations
of particle sizes (subject to the constraint that all other
contacts are intact). Examples of such overconstrained con-
figurations are close packed crystals (face-centered cubic
(FCC)/hexagonal close-packed (HCP) in 3D or hexagonal lat-
tice in 2D). If those are disqualified, any rigid packing has to
be isostatic, i.e., the number of contacts has to be equal to the
total number of degrees of freedom of N spheres, dN , minus
the number of rigid body degrees of freedom of the pack-
ing as a whole, d (d + 1)/2 [20,21]. In the thermodynamic
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limit, this corresponds to Z∗ = 2d , while for a finite iso-
static packing Z∗ = 2d − d (d + 1)/N . Below we start by
discussing the isostatic limit, and then generalize our results
to the underconstrained case Z < Z∗, in which each missing
bond gives rise to a single zero mode.

The packing entropy for a given Z is found by perform-
ing the summation of statistical weights of all topologically
distinct realizations:

eNSpack(Z ) =
∑

Ĉ

δ(Z (Ĉ) − Z )

N!
eNSgeo(Ĉ) (1)

Here we have introduced the geometric entropy Sgeo(Ĉ) which
determines the statistical weight of a specific realization of the
packing:

eNSgeo(Ĉ) =
∫

dd r2...dd rN

�d ā(N−1)d

∏
i> j,Ci j=1

āδ(xi j )
∏

i> j,Ci j=0

�(xi j ).

(2)
This expression assumes that all N spheres belong to a single
cluster. The statistical weight is determined up to a constant
factor, and here we use dimensions of average particle di-
ameter ā. Division by the factor �d eliminates contributions
from its rigid body rotations (specifically, �2 = 2π for 2D
and �3 = 2π × 4π = 8π2 for 3D). Translation of the cluster
as a whole is not included since integration is only performed
over positions of N − 1 out of N spheres. Without loss of
generality, the position of the first particle r1 will be assumed
to be fixed at the origin. The factor N! in Eq. (1) deserves spe-
cial clarification due to the widespread confusion regarding its
origin in statistical mechanics. As we show in Appendix A,
this factor does not require the particles to be indistin-
guishable and, moreover, it has nothing to do with quantum
mechanics [10,18].

III. ISOSTATIC PACKING

A. Geometric entropy of isostatic packings

For an isostatic packing, we can switch variables from the
positions (r2, . . . , rN ) to the gaps between pairs of particles
in contact, (x1, . . . , xNZ/2). The new variables should also
include d (d − 1)/2 independent rigid body rotations of the
cluster: θ̂ = (θ1 . . . , θd (d−1)/2). The Jacobian associated with
this change in variables is known as the rigidity matrix [15].
According to Eq. (2), the corresponding Jacobian determinant
can be used to find the geometric entropy:

NSgeo(Ĉ) = ln

[
∂ (r2, . . . , rN )

∂
(
θ̂ , x1, . . . , xNZ/2

)
]
. (3)

While this equation can be used to find the geometric en-
tropy of any isostatic configuration, when using it to find
the statistical weight for hard spheres we must exclude any
configurations that lead to overlaps between particles.

A more conventional approach to finding the statistical
weight for each topologically distinct configuration, e.g., in
the context of sticky colloids, is to calculate the free energy
that includes both phonons and rigid body modes of the entire
packing [14–18]. That route is practical but it has led to a
number of seemingly paradoxical observations. In particular,

FIG. 1. Minimal cluster in 3D. Initial two particles (i and j)
shown in red along the X axis in contact with particle k (purple).
Particle k has a rotational degree of freedom, here seen at an angle ψ

with the XY plane, that allows it to remain in contact with the other
particles.

one needs to assign specific masses to all the particles and
replace rigid bonds with effective springs. Of course, in the
nonquantum regime, masses may only give a constant contri-
bution to the free energy. And yet, the overall statistical weight
of a cluster in this formulation depends, e.g., on its moment
of inertia [18]. The paradox may be resolved by the direct
demonstration that when the phonon and rotational partition
functions are combined, all of the masses would only give
rise to a trivial multiplier, independent of specific configu-
rations [19]. The same is true for the spring constants: As
expected in the isostatic case, the free energy is not sensitive
to the details of the bonding potential [17]. The geometric
entropy gives the statistical weights of any configuration in
the form of Eq. (3), making the phonon-based calculation
redundant.

Below we present several examples of calculating the geo-
metric entropy. The first case is a minimal cluster, defined as
d spherical particles in d dimensions, all in contact with each
other, such as the one shown in Fig. 1. Let us demonstrate
that Sgeo = 0 for a minimal cluster. Consider two identical
particles, i and j, of diameter a. Particle i is fixed as the origin
of the system and particle j is placed along the X axis in
contact with i, as shown in Fig. 1. To get the Jacobian, we
consider infinitesimal displacements δr, δθ, δφ. The effect of
δr is to change the gap xi j between the particles, while the
other two displacements lead to small changes in y j and z j

through infinitesimal rotations. Altogether, we find⎡
⎢⎣

δx j

δy j

δz j

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 a 0

0 0 −a

⎤
⎥⎦

⎡
⎢⎣

δr

δθ

δφ

⎤
⎥⎦. (4)

The Jacobian determinant, given a = 1, is then |J| = 1. This
serves two purposes: it allows us to build to a 3D minimal
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FIG. 2. (a), (b) Minimal clusters (red) for d = 2 and d = 3. An
additional particle (purple) bonds to each particle in the minimal
cluster along vectors n̂i. (c) Three six-particle clusters with the same
Sgeo, despite having different topologies.

cluster one particle at a time, and restricting above to the XY
plane shows that a 2D minimal cluster has geometric entropy
of zero.

For a minimal cluster in 3D, we add a third identical parti-
cle k to the configuration above. The two previous particles are
fixed along the X axis and the third particle is placed in contact
with them. We need to transform coordinates from (xk, yk, zk )
to (xik, x jk, ψ ), where ψ is the angle from the XY plane to
particle k, and xik and x jk are the gaps between the particles.
Again we consider infinitesimal displacements, this time in
δxk, δyk, and δzk and write down how it affects the gap sizes
xik , x jk , and the tilt angle ψ :

⎡
⎢⎣

δxik

δx jk

δψ

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
2 0

√
3

2

− 1
2 0

√
3

2

0 − 2√
3

0

⎤
⎥⎥⎦

⎡
⎢⎣

δxk

δyk

δzk

⎤
⎥⎦. (5)

We find the Jacobian determinant is again |J| = 1. For 3D,
the product of the Jacobians for each individual particle gives
the complete Jacobian value. The entropy is then found as the
natural logarithm of the Jacobian, Sgeo = ln(1) = 0.

The next most trivial cluster is formed by adding a particle
that bonds to each of the particles in the minimal cluster,
such as the purple particles shown in Fig. 2. In 2D, the
geometric entropy associated with this additional particle is
Sgeo = ln[n̂1 × n̂2], where n̂i are unit vectors in the directions
of the bonds. If the particles are arranged in a square lattice,
for example, the bond directions n̂1 and n̂2 are orthogonal, and
hence Sgeo = 0. In the case of a triangular lattice, however,
each additional particle forms an equilateral triangle and adds
−ln(

√
3

2 ) to the overall geometric entropy of the minimal clus-
ter. Similarly in 3D, adding a particle to the minimal cluster
creates a regular tetrahedron and the triple product of the
unit vectors along the bonds adds −ln( 1√

2
) to the geometric

entropy. Just like the square lattice in 2D, a cubic lattice is a
special case of an isostatic packing with Sgeo = 0 because the
bonds are mutually orthogonal.

We can continue to add particles to the minimal clusters
that have exactly d bonds each, maintaining the isostaticity of
the packing. Three such examples where four particles have
been added to a 2D minimal cluster are shown in Fig. 2(c). The
addition of each new particle always increases the cumulative
geometric entropy of the cluster by −ln(

√
3

2 ). For this reason,
despite the differences in their topologies, they all have the
same Sgeo. Note, however, that if the distinction between par-
ticles is ignored, the higher-symmetry triangular cluster would
have a lower statistical weight, as it corresponds to a smaller
number of nontrivial particle permutations [16,19].

B. Topological entropy of isostatic packings

The overall packing entropy can be expressed as

Spack = 〈Sgeo〉 + Stopo. (6)

Here 〈...〉 denotes the averaging over all topological real-
izations, weighted proportionally to exp(NSgeo), for a given
coordination number Z (e.g., Z = Z∗ for the currently dis-
cussed isostatic case). The topological entropy Stopo is an
analog of Edwards entropy: It has the interpretation as the
logarithm of the number of distinct realizations. The fact
that −NSgeo acts as an effective Hamiltonian enables one to
employ a Monte Carlo (MC) approach to generate the equi-
librium ensemble of isostatic packs and calculate, e.g., 〈Sgeo〉
itself or any other ensemble-averaged quantity. However, the
generated energy landscape is very rough, with lots of local
minima, and making large, nonlocal moves to escape them is
highly nontrivial. To resolve this complication, we introduce
a generalized effective Hamiltonian, Heff = −λNSgeo(Ĉ). The
parameter λ here allows one to tune the model from its orig-
inal form (for λ = 1) to one with a completely flat energy
landscape (in λ = 0 limit). That limit corresponds to a model
in which all plausible topological arrangements with the same
coordination number Z have the same statistical weight. MC
simulations are run for λ = 0 and the results for λ = 1 are ex-
trapolated from those simulations by calculating the response
to field λ.

Let S(0)
geo = 〈Sgeo〉 and S(0)

pack be the geometric and full
packing entropies computed for λ = 0 [note that topological
entropy in the limit λ = 0 is identical to S(0)

pack]. By expressing
Stopo in the vicinity of its maximum value for λ = 0, in terms
of s ≡ Sgeo − S(0)

geo, we obtain the following Landau-style ex-
pansion:

Spack(λ, s) = Stopo(s) + λ
(
S(0)

geo + s
)

= S(0)
pack + λ

(
S(0)

geo + s
) − s2

2χ
+ s3

6χ ′ + · · · (7)

Here we used the fact that, by definition, the distribution
function f (s) ∼ eNSpack(λ,s). Therefore, the coefficients in this
expansion can be extracted from the statistics of Sgeo com-
puted at λ = 0. For instance, χ = N〈s2〉. By maximizing
Eq. (7) with respect to s, one can extrapolate geometric,
topological, and the overall packing entropy to λ = 1. In lead-
ing order, that gives Sgeo ≈ S(0)

geo + χ and Stopo = S(0)
pack − χ

2 .
As demonstrated in Appendix B, accounting for higher-order
terms in Eq. (7) yields only a slight correction to these results.
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FIG. 3. Example packings. (a) Packing with periodic boundary
conditions in the horizontal directions, with a closed bottom but
open upward. (b) A typical cluster packing in free space. (c) A
typical Monte Carlo move. The bonded green particles slowly open,
allowing the packing to move along a single zero mode until the
purple particles make contact. At this point, the bond is broken
between the green pair of particles and created between the purple
particles, completing the move to a new topological state. (d) A
cluster packing in equilibrium with an infinitely large square lattice.
At any moment, a free particle may condense onto the packing in any
of the N+ positions where it will have exactly d bonds (dashed open
circles). Likewise, any of the N− particles in the packing with exactly
d bonds (blue) may evaporate off the packing and back to the lattice.
Here N+ = 9 (the top center particle in fact represents two particles,
closely spaced) and N− = 3.

Below we describe the numerical procedure that was used to
compute S(0)

geo, χ and S(0)
pack.

IV. MONTE CARLO SIMULATION

A. Isostaticity-preserving MC move

In our simulations, it was ensured that the packing remains
strictly isostatic and does not have any interparticle overlaps.
A typical MC move is illustrated in Fig. 3(c): A randomly
chosen bond is broken, and the gap between the two particles
increases, while all the spheres are pushed along the single
zero mode associated with the lost contact. The move is com-
plete once two, previously unbound, particles make contact.
If λ = 0, there is no difference in statistical weights between
different (isostatic) configurations, so the only constraint is
nonoverlapping of the particles.

Two different classes of isostatic systems have been stud-
ied: (i) packings in a semiperiodic box with periodic boundary
conditions (PBCs) along the x and y axes and a free boundary

FIG. 4. The original Sgeo probability density function (PDF) for
the 400-particle PBC packings. A clear second peak is seen that
points to zero modes persisting in the configurations after a new
topology is made. Fit with a normal distribution in dashed red. The
black vertical lines represent 3σ of the fit.

in the upward z direction (only x and z axes in 2D) and (ii)
clusters in open space. In both cases, the size of the system
was gradually increased by adding one particle at a time in a
way that preserved the overall isostaticity. Examples of both
packing types can be seen in Figs. 3(a) and 3(b).

A packing, whether PBC or cluster, evolves in a dN-
dimensional space that can be represented by the positions of
the N spheres or the dN bond gaps. The constraints for them to
be hard spheres in contact are given by |�ri − �r j |2 = ( ai+a j

2 )2.
The Jacobian of this equation is the rigidity tensor, shown in
Eq. (3). At each step of our simulations, a bond is broken and
a zero mode enters into the packing. The packing then evolves
in such a way that it moves orthogonal to the constraints
imposed by the rigidity tensor until contact is made between
two unbonded particles and a new isostatic packing is realized.
The rigidity tensor R(�r) relates the particle displacements �ui

to the gaps between particles xi j . If we consider that the bond
α breaks and opens by an amount xα , the displacement of any
particle i can be calculated as �ui = R−1

i,αxα . However, to avoid
the computationally expensive inverse function, we instead
use a QR decomposition with column pivoting [22] to solve
the equation for the displacements �ui of all particles caused
by the opening of α. By using Eq. (3), the distribution of Sgeo

has been computed directly, which determines the parameters
S(0)

geo and χ in Eq. (7).
It’s important that the trajectory of the evolution moves the

packing from one isostatic configuration to another. The new
bond that should be made is completely determined by the
specific bond that is broken. Sometimes, however, due to the
finite precision of the simulation, a bond other than the true
bond will close. When this occurs, one part of the packing will
be overconstrained, while a zero mode will persist in another.
This zero mode appears as an anomalously high geometric
entropy in our distribution, as demonstrated by the second
peak that appears at larger values than the main peak in Fig. 4.
This peak is a collection of packings that were made when
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the incorrect bond was closed. To maintain results that only
include true isostatic packings, we must filter out the config-
urations that include zero modes. We first fit our main peak
with a normal distribution, shown in red in the figure. The
black vertical lines mark three standard deviations from the
mean of the fit. Any data outside the black lines is assumed to
come from a zero mode configuration and is discarded.

B. Virtual exchange with reference packing

To compute S(0)
pack, we imagine that the packing can

exchange particles with an infinitely large cubic (or square
in 2D) lattice through evaporation and condensation events,
as shown in Fig. 3(d). Technically, particles have not been
moved between the random packing and the reference lattice,
but only the probabilities of such moves have been computed.
In equilibrium, the chemical potential of particles in the ran-
dom packing, μ = −S(0)

pack, should match that in the reference
lattice. For any configuration, we find a number N+ of sites
where a particle can be added to the packing and a number N−
of removable particles that have exactly d bonds. By requiring
the addition and removal processes to balance each other, one
obtains S(0)

pack = −μ = ln(〈N+〉/〈N−〉).
We begin a PBC simulation with a fixed layer of particles

at the base of the box (z = 0). This layer acts as a substrate on
which particles can adsorb. These substrate particles are fixed
throughout the simulation but any bonds they share with free
particles are not. For the packing to be isostatic, it requires
dNfree bonds to match the number of translational degrees of
freedom from the free particles. We use Eq. (3) to calculate
the geometric entropy for each configuration.

To build a packing, we first identify every possible location
where a new particle could come into existence and have ex-
actly d bonds without leading to any overlaps with the current
particles. We call these positions virtual particles. In general,
for any configuration there exists an enormous number of
virtual particles and we randomly choose one in a way that
tends to maximize our packing fraction by applying a weight
to each virtual particle. While building the packing to the
desired number of particles, our MC move [Fig. 3(c)] is used
to rearrange the packing, allowing it to mix while it grows.
The results are not particularly meaningful while the number
of particles is constantly changing, so no data is collected
while a packing is growing.

V. RESULTS

A. Entropies of isostatic packings

Our results for the topological and geometric entropies are
shown in Fig. 5 as functions of packing size for both cases of
PBCs and clusters. Note the excellent agreement between the
two methods, and that the entropies appear consistent across
all N . The implied infinite-size values of different types of
entropies for 2D and 3D are presented in Table I. Interest-
ingly, the obtained geometric entropies are quite close to our
original estimates, which were based on a sequential packing
procedure: Sgeo ≈ 0.15 ± 0.01 vs −ln(

√
3

2 ) ≈ 0.14 in 2D, and
Sgeo ≈ 0.35 ± 0.04 vs −ln( 1√

2
) ≈ 0.35 in 3D. Topological

entropies in both cases are quite substantial: 1.52 ± 0.13 and

FIG. 5. Geometric and topological entropy values per particle for
2D (top, dashed) and 3D (bottom, solid), including PBC and cluster
packings with the number of particles in a packing N up to 400.

3.02 ± 0.32, respectively. It is important to keep in mind
that we are exploring the space of isostatic packs rather than
jammed ones. In other words, they do not represent local
density maxima. This explains why our results for the topo-
logical entropy are significantly larger than those extracted
from recent computations of granular entropies: 0.5 and 0.7
for 2D and 3D, respectively [10,11]. This also explains why
the observed equilibrium volume fraction in 3D is signifi-
cantly lower than that of random close packing (or maximally
random jammed state defined in Ref. [3]). For 3D, PBC pack-
ings show a value of η ≈ 0.52, which is close to the density
of a cubic lattice, and cluster packings are somewhat higher
at η ≈ 0.56. Curiously, the found equilibrium value η0 ≈
0.54 ± 0.02 is close to the so-called random loose packing
density [23], although this is likely to be just a coincidence.

B. Geometric and topological entropies
of underconstrained packings

In our paper, we primarily focused on the isostatic case,
where the number of contacts exactly matched the number of

TABLE I. The geometric, topological, and full packing entropy
per particle in 2D and 3D Cluster and PBC packings with 400
particles.

PBC Clusters

Spack 1.66 1.58
d = 2 Sgeo 0.15 0.15

Stopo 1.52 1.43

Spack 3.37 3.04
d = 3 Sgeo 0.35 0.42

Stopo 3.02 2.62
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frozen degrees of freedom in a rigid packing. To expand our
approach to the underconstrained case of so-called floppy net-
works, we note that breaking any bond in an isostatic network
generates a single zero mode. Such a mode is bounded by two
isostatic states. This allows one to count the number of distinct
configurations with exactly one zero mode: eNStopo(Z∗ )Nc/2.
Here eStopo(Z∗ ) is the number of distinct isostatic arrangements,
N∗

c = NZ∗/2 is the number of bonds in an isostatic state,
and the factor of 1/2 accounts for double counting. This
bond-breaking procedure can be repeated again to generate
an ensemble of all floppy networks with M0 = N (Z∗ − Z )/2
zero modes. As long as M0 � N∗

c , one may ignore the order
in which the bonds in the original isostatic packing had been
broken. Hence, for each of those packings, the number of

unique floppy networks generated is N∗
c !2−Mc

(N∗
c −M0 )!M0! . After using

Stirling approximation, we obtain the following result for the
topological entropy:

Stopo(Z ) ≈ Stopo(Z∗) + Z∗ − Z

2
ln

[
Z∗

2(Z∗ − Z )

]
. (8)

As for the geometric entropy, it is obtained by integration over
all activated zero modes and the corresponding correction is
simply proportional to their number:

Sgeo(Z ) ≈ Sgeo(Z∗) + Z∗ − Z

2
ln(ξ/ā). (9)

Here ξ represents the typical range over which the interparti-
cle gap xi j may change until the new contact is formed.

In the specific case of sticky spheres, the packing entropy
Stopo + Sgeo makes an important contribution to the chemical
potential of a disordered aggregate (i.e., a large cluster):

μ(Z ) = εZ

2
− Sgeo(Z ) − Stopo(Z ). (10)

Here ε = ln(12τ ) is the binding free energy. Minimization
of the chemical potential μ(Z ) predicts an exponential sup-
pression of zero modes with bond strength: (Z∗ − Z ) ∼ e−ε .
Therefore, residual topological and geometric entropies of an
aggregate are close to their isostatic values, given in Table I.

C. Application to sticky spheres

The obtained results can be naturally applied to sticky
colloids by assigning binding free energy ε = ln(12τ ) to each
interparticle bond. Here τ is introduced for consistency with
the widely used Baxter model [12,13], where this parame-
ter is known as the Baxter temperature. In fact, our results
can be applied for an arbitrary short-range potential V (r)
by setting 12τ = 1/(

∫ ∞
0 exp(−V (x))dx/ā). According to the

Baxter model, the dense and dilute fluid phases coexist below
the critical point τc ≈ 0.1. Historically, most of the numeri-
cal and analytic studies have been focused on the regime of
modest attraction, τ � τc. Our approach provides a comple-
mentary description in the strong binding limit, τ � τc.

In this case, the dilute phase can be well described as an
ideal gas. In contrast, the dense liquid phase is nearly isostatic,
since each broken bond is associated with a substantial free-
energy penalty. This leads to a simple result for μ and hence

FIG. 6. Strong binding asymptotics applied to the Baxter model
derived from our results. The solid blue curve for the gas phase is
from Eq. (12), dashed blue line for an isostatic fluid is ρ = 6η0/π .
These results are compared with the coexistence simulation data of
Miller and Frenkel from Ref. [13].

for the density of the dilute phase ρ ≡ Nād/V = 6η/π as a
function of τ :

μ = Z∗

2
ln(12τ ) − Spack, (11)

ρ(τ ) = eμ = (12τ )d e−Spack . (12)

Our strong binding asymptotics are shown in Fig. 6 along with
the MC results of Miller and Frenkel [13].

VI. CONCLUSION

In summary, we proposed a statistical mechanical descrip-
tion of sphere packings based on treating the coordination
number Z as a macroscopic thermodynamic parameter and
identified two contributions to the packing entropy: geometric
and topological. They correspond to the statistical weight
of a particular topological configuration and the number of
nonequivalent arrangements, respectively. The topological en-
tropy is thus analogous but not equivalent to Edwards granular
entropy or to the residual entropy of hard sphere glasses. An
important difference of our approach is that it is built entirely
within the framework of equilibrium statistical mechanics and
does not impose a requirement on the individual configura-
tions to be jammed. Hence, our results are directly applicable
to systems with tensile short-range forces, such as sticky
spherical colloids. We developed an MC scheme to compute
the geometric and topological entropies of isostatic packings
in both 2D and 3D, and further generalized these results for
the case of floppy (underconstrained) packings. Finally, we
used our results to determine the asymptotic phase behavior
of sticky spheres in the limit of strong binding.

ACKNOWLEDGMENTS

The research was carried out at the Center for Func-
tional Nanomaterials, which is a U.S. DOE Office of Science

014117-6



GEOMETRIC AND TOPOLOGICAL ENTROPIES OF SPHERE … PHYSICAL REVIEW E 105, 014117 (2022)

Facility, at Brookhaven National Laboratory under Contract
No. DE-SC0012704.

APPENDIX A: ORIGIN OF FACTOR N!

There is considerable confusion in statistical physics lit-
erature (including multiple textbooks) regarding the origin
of the N! factor that appears in Eq. (1). Traditionally, this
factor is introduced as a resolution to the Gibbs paradox,
with a justification of the particles (e.g., molecules of a gas)
being indistinguishable. It is often claimed that the origin
of this factor lies in quantum mechanics. Neither of these
justifications is valid. Statistical mechanics of an ideal gas is
routinely applied, e.g., to systems of colloids which are neither
quantum nor strictly identical. To clarify this issue, consider
a system containing N particles that can be exchanged with
a much larger system (thermal bath, TB) containing Ntot − N
particles. All the particles in this example are distinguishable
but we assume the free energy of TB to only depend on the
total number of particles that it contains, not on their specific
subset (e.g., the TB may be an ideal gas). If we start with
all particles being in the TB, there are Ntot ways of selecting
a particle to be moved to the system, then there are Ntot − 1
ways of selecting the next one, etc. When taking into account
the arbitrary order in which N particles can be moved from
TB to the system, we obtain the overall statistical weight of
the configuration with a given N :

Z̃ (N ) = lim
Ntot→∞

Ntot!

N!(Ntot − N )!

Z (N )ZTB(Ntot − N )

ZTB(Ntot )

= Z (N )e−μN

N!
. (A1)

Here Stirling approximation has been used, yielding μ =
−∂ ln(ZTB(Ntot ))/∂Ntot − ln Ntot as the chemical potential of a
particle in the TB. The partition function of the system Z (N )
is averaged over all possible selections of N particles from Ntot

that belong to the TB.

APPENDIX B: HIGHER-ORDER CORRECTIONS
TO THE ENTROPY

To extrapolate our results from λ = 0 to λ = 1, we calcu-
late the response to field λ by using a Landau-style expansion

Spack = λSgeo + Stopo − s2

2χ
+ s3

6χ ′ − s4

24χ ′′ ,

where χ , χ ′, and χ ′′ represent the product of N with
the second, third, and fourth cumulants of s = Sgeo − S(0)

geo,
respectively.

TABLE II. Entropy values for λ = 1, N = 200 using a quadratic
fit of the response of the entropies to λ, and showing the small
corrections when using a quartic fit.

PBC Cluster

Second order Fourth order Second order Fourth order

Sgeo 0.45 0.40 0.34 0.41
Stopo 3.12 3.16 2.89 2.85
Spack 3.57 3.56 3.23 3.26

The results in Table I have been found to second order and
the results in Table II below for N = 200 have been expanded
to include up to fourth-order terms.

The table shows that higher-order expansions yield only
small corrections to the original results.

APPENDIX C: FREE ENERGY OF MASSIVE
STICKY SPHERES

We can make contact with previous studies by demonstrat-
ing, as others have, that the free energy cannot depend on the
moment of inertia or distribution of restoring forces between
particles in contact. To do this, we assign arbitrary masses and
spring constants to each particle and bond, respectively, and
calculate the free energy:

Z =
∫ N∏

i

d3rid3pi

(2π h̄)d
exp

⎡
⎣−β

∑
i

⎛
⎝ p2

i

2mi
+

∑
j>i,Ci j=1

ki jx2
i j

2

⎞
⎠

⎤
⎦,

Z = |J|
(2π h̄)Nd

[
Nd∏

i

(2πT mi )

][
Nd∏
α

(
πT

2kα

)]
,

F = − T ln Z,

F = − T

[
ln (|J|) + Nd ln

(
T

2h̄

)

+1

2
ln

(
Nd∏

i

mi

)
− 1

2
ln

(
Nd∏
α

kα

)]
.

From the free energy, one can see that it only depends
on the product of masses and spring constants, despite how
they are distributed in the packing. This shows that the free
energy, and the entropy, cannot depend on the distribution
of masses or restoring forces between particles in contact,
and it demonstrates the equivalence between our method of
finding the statistical weight of an isostatic packing and the
phonon-based method.
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