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In our effort to tackle the problem of letting nontrivial interactions, thermodynamic equilibrium, and full
synchronicity coexist, and in the hope of reviving interest in cellular automata as promising tools for the
quantitative, large-scale investigation of multiparticle systems, we built a fully synchronous cellular automaton
rule for the simulation of occupancy-based lattice systems with multistate cells and neighboring interactions. The
core of this rule, which constitutes an actual synchronous sampling scheme, is a negotiation stage; it produces
cell occupancy distributions in very good agreement with their sequential Monte Carlo counterparts, and it
satisfies a cellwise detailed balance principle thanks to the use of “mixed” intermediate states that allow for the
computation of locally averaged acceptance probabilities. We took a square lattice (but the rule itself is not bound
by dimensionality) as a basis for comparison with sequential Monte Carlo for showing that this synchronous rule
leads to quasiequilibrium; the fulfillment of cellwise detailed balance is shown through results obtained for a
small one-dimensional system, where the transition matrix could be computed exactly.
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I. INTRODUCTION

In their original formulation, cellular automata (CA) are
homogeneous lattices of discrete states, where at each time
step the state of each cell in the lattice is updated according
to an updating rule which is a function of the state itself and
of the state of neighboring cells; all the cells are updated syn-
chronously, and the updating rule can be either deterministic
or probabilistic, depending on whether random numbers are
used [1,2]. Especially during the 1980s and the 1990s, CA
received a remarkable amount of attention from the scientific
community due to their computational efficiency and high
versatility in mimicking a wide range of physical phenomena,
especially those regarding self-organization and nonequilib-
rium phase transitions, while working with a relatively low
number of degrees of freedom [1,3,4]. Dedicated compu-
tational environments were also developed that were based
entirely upon CA [5], and in the realm of simulation methods
for physical sciences, CA inspired the development of dissi-
pative particle dynamics (DPD) [6–8] and lattice Boltzmann
methods [9,10].

Although probabilistic CA are suitable for Markov chain
modeling, the high level of attention dedicated to CA per-
haps started fading in the late 2000s. In our opinion, one of
the reasons for this is the following: when it comes to the
sampling of given (nontrivial) distributions, synchronous CA
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may turn out to be wild beasts to tame. Due to synchronicity
itself, it is impossible to formulate trial moves for single
cells and then to apply the importance sampling criterion like
we do in equilibrium Monte Carlo (MC) simulations. There-
fore, it is hard to impose detailed balance on synchronous
CA models; a much easier way to do it is to abandon the
idea of full synchronicity and to resort to partitioning and/or
asynchronicity instead. In fact, detailed balance, nontrivial
(even though still local) interactions, and full synchronicity
hardly coexist. In the very rare cases in which such coex-
istence is realized, we face a situation that is conceptually
very different from the MC case: when we work with MC,
we are the ones who impose detailed balance in order to
drive the system towards the equilibrium distribution we want,
through a Markov chain; when we work with CA instead,
we cannot choose the mathematical form of the equilibrium
distribution sampled—in other words, we cannot implement
any potential function we want, like we do with MC; the
coexistence of synchronicity and detailed balance causes the
CA we are working with to obey one particular (so-called)
“pseudo-Hamiltonian”; we must stick with it, and that is
it [11–15].

The literature on this topic is not only very limited, but
it also seems to be totally lacking in the development of
methods and strategies aimed at letting a fully synchronous
update of the cells coexist with multistate cells (i.e., cells
whose state can take an arbitrary number of values, rather
than just two) and with thermodynamic equilibrium in the
presence of nontrivial interactions. Some multiparticle models
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that are actually able to reach thermodynamic equilibrium
under certain conditions have been investigated [1], but they
are characterized by the absence of interactions—they have
been used in hydrodynamics problems, but they almost van-
ished from the literature not long after the introduction and
refinement of DPD.

It is curious that efforts to discover more about multistate,
synchronous CA have virtually ground to a halt—at least for
the representation of equilibrium systems. We find it curious,
because both the words multistate and synchronous are still
alive in computational physics, and both of them refer to
native features of CA. The word “multistate,” referring to
each cell of a lattice, can be expressed also as multiparticle—
which means that having access to a theory on “equilibrium
in multiparticle, interacting CA” would turn out very use-
ful in some applications: for example, multiparticle models
[16–20] may emerge naturally from spatial coarse-graining
procedures [4,21–28], where effective multiparticle interac-
tions are extracted from molecular-scale simulation data (e.g.,
from grand canonical Monte Carlo simulations [29–36]); to
have the chance to implement such interactions directly on a
synchronous lattice would prove useful in experimenting with
the behavior of the coarse-grained version of the system under
study on much larger scales of space and time. Turning to
the word “synchronous,” when it is used to refer to a com-
putational practice, it surely implies parallel, thus suggesting
that a simulation model that is natively parallel, like the CA,
would lend itself better to implementation on a parallel archi-
tecture; now, the growing use of graphics processors for the
implementation of parallel algorithms [37,38], together with
the remarkable number of parallelization schemes specifically
designed for Monte Carlo simulations [39], suggests that the
need for better and better parallel methods is still there, just
as it was there at that time in the 1980s and 1990s when
CA were so intensely investigated, but now it seems to us
that the problems posed by the conflict between synchronicity
and detailed balance somehow turned out to be discouraging
enough to cause the search for parallel methods to end up
going by routes other than CA modeling.

However, besides the purely “applicative” motivations re-
lated to the “multiparticle” and the “parallel” features of the
CA that we investigate in this work, and also besides our
unconcealed hope of reviving interest in cellular automata
as promising tools for the quantitative investigation of mul-
tiparticle systems, there is another fact that constitutes a valid
reason for us to keep on believing that finding a protocol for
the construction of fully synchronous equilibrium CA rules
is still worth the pain of searching for it. That is, in order to
let full synchronicity work in a discrete lattice along with ther-
modynamic equilibrium and nontrivial interactions, one might
end up by exploring new territories in the realm of sampling
strategies, i.e., the all of the known sampling techniques in
computational physics may be just the tip of the iceberg.

In this work, we show a possible way to let fully syn-
chronous CA produce a stationary distribution in very good
agreement with a given (local) potential function. To achieve
this task, we build a CA where, at each time step, every cell
proposes a new state (proposal substep); once all the cells
have made their proposals, every one of them is accepted
or rejected according to a probability that is a function of

a combination between the proposals made by neighboring
cells (acceptance/rejection substep). Such a combination of
proposals corresponds to an intermediate state, or better yet,
an “intermediate situation.” which we will call a mixed in-
termediate state. Intermediate states are used in biased MC
sampling to improve acceptance [40–42]; the key feature of
each mixed intermediate state here is that it can be reached
with the same probability both from the global departure state
(i.e., the state that all cells have right before the proposal
substep) and from the global arrival state (i.e., the state that
all cells have right after the acceptance/rejection substep).

II. THE REFERENCE MODEL

We will refer to a model made of a square grid of N
cells, with neighboring interactions. Every cell can host up
to K particles (i.e., it can have a state, or occupancy, in the
set {0, 1, . . . , K}); the self-interaction energy of a cell, cell
i, for example, with occupancy ni, is identified with ε(ni ).
We denote by Li the list of its ν neighbors; around i we can
locate four neighbors of one kind (neighborhood class A), with
which i shares an edge, and four neighbors of another kind
(neighborhood class B), with which i shares a corner. If with
X we indicate the neighboring class, then LiX is the list of the
νX neighbors of class X , ν = νA + νB, and Li = LiA ∪ LiB. If
j ∈ LiX is an X -class neighbor of i and has occupancy nj , then
we indicate as φX (ni, n j ) the energy of interaction between
i and j. Let us assume that temperature, T , and chemical
potential, μ, are held fixed throughout the whole system; then
the system potential is

�tot =
∑

i

[−μni + ε(ni )] + 1

2

∑
i

∑
X

∑
j∈LiX

φX (ni, n j ). (1)

III. THE SYNCHRONOUS MODEL

We will now proceed with describing in detail one time step
of the algorithm.

(i) Transition proposals. Every cell, say cell i, proposes a
transition from occupancy ni to either occupancy ni − 1 or
ni + 1, at random. If we indicate the transition with �i, we
have

�i = ±1, proposed with probability q(±),

where q(+) = q(−) = 1
2 . On the basis of some criteria that we

are going to discuss, the proposed transition can be accepted
or rejected (rejection corresponds to the null transition: if a
cell proposal is rejected, its occupancy does not change). At
this stage, transitions that would bring occupancies to the un-
realistic values of −1 or K + 1 are still allowed—they would
be automatically rejected at a later stage. All cells make their
proposals at the same time, independently of one another, and
at this stage they do not change their state: they just propose a
transition.

(ii) Neighborhood scenarios and the mixed intermediate
state. Let us consider cell i and its neighborhood. Up to now,
no cell changed its occupancy, but all cells (including i and
its neighbors) have just made their transition proposals, which
can be listed in {� j} j∈Li . Therefore, in the neighborhood of i a
number of possible scenarios emerge, i.e., a number of sets of
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possible post-transition occupancies. Just to give an example,
let us pick the first three neighbors of cell i, i.e., the first three
cells in the Li list. In one of the possible scenarios in which
three such cells are present, all their transition proposals are
rejected; in another scenario, only the first of the three has its
proposal accepted; and in another scenario, the first and the
second neighbors have their proposals accepted; and so on and
so forth, until all the 23 possible combinations are covered. If
we consider all the ν cells that make the neighborhood of i,
then we have 2ν possible neighborhood scenarios; neverthe-
less, depending on how the lattice connections are structured,
2ν may turn out to be a very large number, thus making the
computation of all possible scenarios very expensive. To keep
the computation efficient, we consider “reduced” scenarios,
that is, scenarios made by a subset of Li, this subset being
made by only d neighboring, randomly selected cells (with
d � ν). According to this definition, every scenario in the
neighborhood of i is an array with d entries. Now, we already
used i to indicate one cell, and j to indicate its neighbors;
we can use the letter k (with k = 1, . . . , 2d ) to indicate the
possible scenario. We define the kth neighborhood scenario as

σ ik = {σik1, . . . , σikd},
where every σik j is either n j + � j (i.e., the post-transition
occupancy that j would assume if its proposal were accepted)
or n j (i.e., the post-transition occupancy that j would assume
if its proposal were rejected). The set of all the scenarios con-
structed in this way represents a “mixed intermediate state”: it
is intermediate because it stays in between the departure and
destination state of every cell in the system, and it is mixed
because it contains information from different scenarios, in
each of which every cell assumes its departure state or its
arrival state—this will become much clearer when we discuss
how the states taking part in different scenarios are combined
together to provide a unique value for the acceptance of the
transition proposed by every cell.

(iii) Mixing scenarios to get an average acceptance via a lo-
cal optimization process. Let us picture the cells as entities that
can communicate information. At this stage, i has selected at
random d neighboring cells; such d neighboring cells inform i
about their transition proposals, so that i can now elaborate the
list of possible neighborhood scenarios. However, up to now
i knows nothing else; as far as i knows now, all the scenarios
around it are equiprobable:

p(0)(σ ik ) = 1

2d
, ∀k, (2)

where the superscript “(0)” can be conveniently read as “in
the first instance.” The very same reasoning applies to all the
cells in the system.

Let us suppose that in the neighborhood of i the transitions
in the kth scenario are accepted, and that the transition pro-
posed by i is also accepted; then the potential involving i in
such a case is

Eik (ni + �i ) = −(ni + �i )μ + ε(ni + �i )

+
d∑

j=1

φXj (ni + �i, σik j ), (3)

where Xj is either neighborhood class A or B, depending on
whether the jth neighbor of i shares with i an edge or a corner.

Let us now suppose that the kth scenario is again accepted,
but that the transition proposal made by i is rejected; if this is
the case, then the potential involving i is

Eik (ni ) = −niμ + ε(ni ) +
d∑

j=1

φXj (ni, σik j ).

On cell i, the acceptance probability “in the first instance” is

α
(0)
i =

∑
k

p(0)(σ ik )Aik (ni → ni + �i ), (4)

where Aik (ni → ni + �i ) is the acceptance of transformation
ni → ni + �i on cell i according to the kth scenario. By
following a Barker-like approach [43], we can define [let us
introduce β as an inverse temperature, β = (kBT )−1, where
kB is Boltzmann’s constant]

Aik (ni → ni + �i ) = e−βEik (ni+�i )

e−βEik (ni+�i ) + e−βEik (ni )
; (5)

alternatively, if we follow a Metropolis-Hastings-like ap-
proach (MH),

Aik (ni → ni + �i ) = min(1, e−β[Eik (ni+�i )−Eik (ni )] ). (6)

Rejection probability in the first instance is 1 − α
(0)
i . At this

stage, unrealistic values like ni + �i = −1 or K + 1 are auto-
matically rejected, since in such cases Eik (ni + �i ) = ∞.

Now cell i knows something more than before: the ac-
ceptance of its transition proposal, in the first instance. In
particular, in the neighborhood of i we have that every cell j
(with j = 1, . . . , d) has its transition proposal accepted with
probability α

(0)
j or rejected with probability 1 − α

(0)
j . Now, the

neighbors of i communicate to i their respective acceptances
in the first instance: regarding each and every scenario k,
the first tells in the kth scenario, my transition proposal is
accepted with probability α

(0)
1 , and negated with probability

1 − α
(0)
1 , the second one tells in the kth scenario, my transition

proposal is accepted with probability α
(0)
2 , and negated with

probability 1 − α
(0)
2 , and so on. Therefore, as far as i knows

up to now, in its neighborhood each cell j has its respective
transition proposal accepted or rejected with probability

γ
(1)
j,k =

{
α

(0)
j (accepted),

1 − α
(0)
j (rejected),

(7)

in the first instance. Therefore, as far as i knows now, the kth
scenario in its neighborhood is realized with probability

p(1)(σ ik ) =
d∏

j=1

γ
(1)
j,k . (8)

Now, since i sees p(1)(σ) as the probability that each possible
neighborhood scenario σ is realized, the acceptance proba-
bility for the transformation ni → ni + �i is, “in the second
instance,”

α
(1)
i =

∑
k

p(1)(σ ik )Aik (ni → ni + �i ), (9)
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whereas the rejection probability in the second instance is
1 − α

(1)
i . So, this constitutes a first refinement in the deter-

mination of the probability that the transition proposed by i
will be accepted or not.

Now i knows that every one of the d neighbors it selected
has its transition proposal accepted or rejected with probabil-
ity

γ
(2)
j,k =

{
α

(1)
j (accepted),

1 − α
(1)
j (rejected),

(10)

in the second instance. Therefore, as far as i knows, the kth
neighborhood scenario can happen with probability

p(2)(σ ik ) =
d∏

j=1

γ
(2)
j,k , (11)

and the probability that ni → ni + �i is accepted is, “in the
third instance,”

α
(2)
i =

∑
k

p(2)(σ ik )Aik (ni → ni + �i ), (12)

whereas the rejection in the third instance is 1 − α
(2)
i . We pro-

ceed with iterating until the optimization process converges.
We indicate as α

(c)
i the acceptance probability once the pro-

cess has converged; it is according to such a probability that
we determine whether the transition proposal made by i is
accepted or not. At this point, the state of i is updated.

This optimization process, and the subsequent updating of
the cells states, proceeds in the very same way simultaneously
in all the cells in the system. Once all the states are updated,
the time step is completed and the process starts again at (a)
with a new time step.

Let us remark that the equation

α
(c)
i =

∑
k

p(c)(σ ik )Aik (ni → ni + �i ) (13)

can be rewritten as

α
(c)
i = 〈Ai(ni → ni + �i )〉I , (14)

where I indicates the “mixed intermediate state.” In other
words, the probability that the transition proposal made by
each cell is accepted is the acceptance averaged over all the
scenarios that take part in the mixed intermediate state.

Before we proceed to the computational experiment, let us
briefly discuss the two crucial features of this algorithm that
categorize it as a cellular automaton rule, i.e., locality and
synchronicity (we will not discuss further the conditions of
homogeneity and discreteness because they are satisfied by
construction, since the automaton space is a lattice of cells,
which is discrete, and the cell states as we defined them are
also discrete) [1].

During operation (a) (transition proposals), every cell pro-
poses a trial change of its occupation state; such a proposal is
totally independent of the proposals made by the neighbors of
that cell; since this is true for all the cells in the system, every
one of them carries out its own proposal independently (hence,
synchronously). During operations (b) + (c) (construction of
mixed intermediate states and local optimizations), every cell
constructs its own set of neighborhood scenarios, on the basis

of which it calculates an average acceptance for the trial oc-
cupancy change it proposed (for itself) during operation (a);
again, none of these operations depends on what happens in
the rest of the system—therefore, operations (b) + (c) are to
be carried out independently (hence, synchronously) on each
cell.

In light of these observations, the sampling strategy we
described in this section is a CA rule because it consists of
two local operations, each of which is applied to every cell
independently of all the other cells in the system—and when it
goes together with locality, independence implies synchronic-
ity, since local, independent operations can be carried out
synchronously.

IV. COMPUTATIONAL EXPERIMENT

In this section, we report the results of simulations carried
out on a lattice as described in Sec. II. CA results are com-
pared with results of standard MC simulations performed with
the Metropolis-Hastings technique. The energy parameters
[see Eq. (1)] were set in such a way as to get nontrivial occu-
pancy distributions. To this aim, we introduced the following
“Lennard-Jones-like” model of interactions:

fξ,σ,a,̃x,π1,π2 (x) = ξ

[(
σ

a(̃x − x)

)π1

−
(

σ

a(̃x − x)

)π2

−
( σ

ãx

)π1 +
( σ

ãx

)π2
]
. (15)

For self-interactions, the function ε(n) was defined as

ε(n) =
{

fξ,σ,a,̃x,π1,π2 (n) if 0 � n � K,

∞ otherwise,

with K = 15, ξ = 10 kJ/mol, σ = 1, a = 0.08, x̃ = 20, π1 =
12, and π2 = 6. For pair interactions, functions φA(n, m) and
φB(n, m) (one for each neighborhood class) were set as

φA(n, m) =
{

fξ,σ,a,̃x,π1,π2 (n + m) 0 � n, m � K,

∞ otherwise

with K = 15, ξ = 40 kJ/mol, σ = 1, a = 0.08, x̃ = 40, π1 =
12, and π2 = 6 for class A, and

φB(n, m) =
{

fξ,σ,a,̃x,π1,π2 (n + m), 0 � n, m � K,

∞ otherwise,

with K = 15, ξ = 30 kJ/mol, σ = 1, a = 0.08, x̃ = 40, π1 =
12, and π2 = 6 for class B. Temperature was set to the indica-
tive value of T = 300 K.

The system was made of a square lattice of 64 cells,
and simulated for 41 values of chemical potential, equally
spaced in the interval between −3 and 3 kJ/mol, both in
grand-canonical MC (GCMC) simulations and in CA sim-
ulations. For CA simulations, both Barker-acceptance and
MH-acceptance variants were explored. To carry out compar-
isons also in terms of efficiency in the decay of cell occupancy
fluctuations, GCMC simulations were carried out according to
the following procedure: for each sweep, all the cells were
picked in a random sequence; each cell, e.g., cell i, was
given the chance to propose a trial transition, �i = +1 or
−1, with uniform probability; the trial potential was then
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(a) (b)

FIG. 1. Adsorption isotherm (a) and variance vs the loading (b). Chemical potential units are kJ/mol.

calculated,

Ei(ni + �i ) = −(ni + �i )μ + ε(ni + �i )

+
ν∑

j=1

φXj (ni + �i, n j ), (16)

and compared with the potential on cell i right before the trial
transition,

Ei(ni ) = −niμ + ε(ni ) +
ν∑

j=1

φXj (ni, n j ),

through evaluation of the potential difference �Ei = Ei(ni +
�i ) − Eik (ni ); the proposed transition was accepted with
probability (MH approach) αi = min[1, exp(−β�Ei )], or re-
jected with probability 1 − αi.

For each variant of the CA model, we also investigated all
the possible values of d , i.e., the number of randomly picked

neighbors that at each time step take part in the neighborhood
scenario of each cell; the results we obtained were the same.
For each chemical potential value, every simulation was per-
formed over 105 postequilibration steps. We considered the
optimization procedure [described in paragraph (c) in Sec. III]
converged once the variation in the acceptance probability was
less than the threshold 10−6; in each simulation, we observed
that the optimization procedure always required a number of
iterations between 3 and 5.

In Fig. 1(a), we show the adsorption isotherms, i.e., the
stationary average cell occupancy (also called the coverage
or the loading) as a function of the chemical potential. The
agreement between CA and MC simulations is nearly perfect.
Small discrepancies become more visible in the plot of oc-
cupancy variance, Fig. 1(b)—fluctuations are not reproduced
with the same accuracy as the loading, but the agreement
is quantitative anyway. In particular, a small discrepancy is
noticed between the two CA variants, meaning that the two

FIG. 2. Self-occupancy distributions. Chemical potential units are kJ/mol.
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FIG. 3. Joint self-neighborhood distributions. Chemical potential units are kJ/mol.

approaches (Barker acceptance and MH acceptance) converge
towards slightly different stationary states.

However, both methods are in very good agreement with
MC results. This is confirmed by the perfect overlapping
between the cell occupancy distribution plots shown in Figs. 2
and 3. In Fig. 2 we report the stationary probability, p(n), that
a cell has occupancy n, at eight selected values of chemical
potential. In Fig. 3 we report the joint probability, p(n, M ),
that a cell has occupancy n and that, at the same time, the
sum of neighboring occupancies is M—the remarkable over-
lapping shows that local distributions and local correlations
are respected.

To get an idea of how efficient this model is in leading cell
occupancies towards stationarity, we investigated the autocor-
relation function of cell occupancy fluctuations,

(t ) = 〈δn(t )δn(0)〉
〈δn(0)2〉 , (17)

where t is a fictitious time (it is really the number of steps),
and δn(t ) = n(t ) − 〈n〉. In Fig. 4 we show the obtained decays
at chemical potential μ = −0.15 kJ/mol for MC and for

FIG. 4. Decay of fluctuations in the cell occupancy [see
Eq. (17)]. Chemical potential units are kJ/mol.

the two CA variants. As expected, the automaton in “Barker
mode” retains memory of the previous state for a longer time;
this is due to the mathematical formulation of acceptance [see
Eq. (5)], less efficient than MH [Eq. (6)]. In MH mode, the
automaton relaxes in the same way as in Metropolis-Hastings
MC—Metropolis-Hastings, in turn, is the most efficient MC
sampling technique [44], Another interesting feature we can
notice from Fig. 4 is that, contrary to our expectations, the
model is relatively insensitive to the number of neighbors
considered during the creation of neighborhood scenarios.
This is somewhat surprising, since we thought that, despite
being more computationally expensive, a larger number of
contributions in the mixed intermediate states could lead to
a better approximation of the reference model, and to a faster
relaxation of cell fluctuations. Instead, this behavior leads us
to assume that the key trick in our CA formulation is the very
fact that an intermediate state is used.

Our CA lacks detailed balance globally (even if it satisfies
detailed balance locally, as we will show in the next section).
This leads us to ask ourselves with which degree of accuracy
collective properties are reproduced. To answer this question,
we calculated the average energy of adsorption by means of

FIG. 5. Average energy of adsorption. Units are kJ/mol.
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TABLE I. Forward and backward probability fluxes between occupancies n and n′, and their ratios, both in the Barker-like and in
the MH-like approach. With this table we want to show that, for both approaches, the ratio between forward and backward probability
fluxes is exactly unity—we can safely say “exactly” because all the quantities here were calculated in real(kind=16) precision from the
Chapman-Kolmogorov equation. This allowed us to represent numbers with that many significant digits—we realize that, at first glance, such a
representation might seem redundant; however, it is absolutely necessary in this case, because violations of detailed balance ultimately manifest
themselves under the form of nonunity ratios (sometimes quasiunity, but definitely nonunity), and the deviations from exact unity can, in many
cases, be very subtle (like, e.g., 1.0000014223 rather than 1.0000000000), and they could go undetected if we represented ratios with a smaller
number of digits.

μ = −6 kJ/mol

Barker MH

n n′ p(n, n′) p(n′, n) ratio p(n, n′) p(n′, n) ratio

0 0 0.6236587350 0.6236587350 1.0000000000 0.6038370109 0.6038370109 1.0000000000
0 1 0.0737603055 0.0737603055 1.0000000000 0.0935563839 0.0935563839 1.0000000000
1 0 0.0737603055 0.0737603055 1.0000000000 0.0935563839 0.0935563839 1.0000000000
1 1 0.0873897924 0.0873897924 1.0000000000 0.0576092701 0.0576092701 1.0000000000
1 2 0.0259631981 0.0259631981 1.0000000000 0.0359471138 0.0359471138 1.0000000000
2 1 0.0259631981 0.0259631981 1.0000000000 0.0359471138 0.0359471138 1.0000000000
2 2 0.0323608129 0.0323608129 1.0000000000 0.0141473090 0.0141473090 1.0000000000
2 3 0.0135624133 0.0135624133 1.0000000000 0.0217998049 0.0217998049 1.0000000000
3 2 0.0135624133 0.0135624133 1.0000000000 0.0217998049 0.0217998049 1.0000000000
3 3 0.0300188259 0.0300188259 1.0000000000 0.0217998049 0.0217998049 1.0000000000

μ = −3 kJ/mol

Barker MH

n n′ p(n, n′) p(n′, n) ratio p(n, n′) p(n′, n) ratio

0 0 0.1210029987 0.1210029987 1.0000000000 0.0838064898 0.0838064898 1.0000000000
0 1 0.0390626418 0.0390626418 1.0000000000 0.0763155876 0.0763155876 1.0000000000
1 0 0.0390626418 0.0390626418 1.0000000000 0.0763155876 0.0763155876 1.0000000000
1 1 0.0692631041 0.0692631041 1.0000000000 0.0000593667 0.0000593667 1.0000000000
1 2 0.0443724926 0.0443724926 1.0000000000 0.0763749543 0.0763749543 1.0000000000
2 1 0.0443724926 0.0443724926 1.0000000000 0.0763749543 0.0763749543 1.0000000000
2 2 0.0944544704 0.0944544704 1.0000000000 0.0296752077 0.0296752077 1.0000000000
2 3 0.0732814472 0.0732814472 1.0000000000 0.1060501620 0.1060501620 1.0000000000
3 2 0.0732814472 0.0732814472 1.0000000000 0.1060501620 0.1060501620 1.0000000000
3 3 0.4018462635 0.4018462635 1.0000000000 0.3689775280 0.3689775280 1.0000000000

statistical mechanics from the covariance between the total
number of molecules and the total energy, divided by the
variance in the total number of molecules:

Q = 〈EN〉 − 〈E〉〈N〉
〈N2〉 − 〈N〉2

. (18)

However, the exact expression for the energy of the automaton
is unknown; this is because we could not express the CA sta-
tionary distribution in a closed form, and therefore we have no
access to the relative pseudo-Hamiltonian. Therefore we used,
as an approximate measure for the total energy, the total inter-
action energy of the reference system, i.e., E = �tot + μN ,
with �tot given by Eq. (1). As we can see from Fig. 5, also in
this case the agreement is quantitative, meaning that, despite
the lack of detailed balance, also the collective properties can
be calculated and provide results in very good agreement with
the grand-canonical ensemble.

V. LOCAL BALANCE

As we already mentioned, our CA does not satisfy de-
tailed balance globally. Nevertheless, what we found in all
our numerical simulations is that a local detailed balance is
satisfied—by “local” we mean cellwise: if we consider the
joint probability p(n, n′) of a cell to have occupancy n and,
in the next step, to have occupancy n′, it happens that

p(n, n′)
p(n′, n)

= 1, (19)

with a deviation from unity that decreases as the number of
steps increases. Besides such evidence, which comes from
numerical simulations, we implemented the exact computa-
tion of the CA transition matrix for a one-dimensional system
made up of four cells with periodic boundary conditions
for different sets of energy parameters, and we used the
Chapman-Kolmogorov equation to get the stationary distribu-
tions.

In Table I we report the results about forward and backward
fluxes, calculated exactly, for every pair of occupancies in a
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one-dimensional system parametrized as follows: with regard
to self-interactions,

ε(n) =
{

fξ,σ,a,̃x,π1,π2 (n) if 0 � n � K,

∞ otherwise,

with K = 3, ξ = 120 kJ/mol, σ = 1, a = 0.08, x̃ = 20, π1 =
12, π2 = 6, whereas with regard to pair-interactions (in a one-
dimensional system we have only one neighborhood class),

φ(n, m) =
{

fξ,σ,a,̃x,π1,π2 (n + m), 0 � n, m � K.

∞, otherwise,

with K = 3, ξ = 1500 kJ/mol, σ = 1, a = 0.08, x̃ = 40,
π1 = 12, and π2 = 6. Also in this case, the temperature
was set to the indicative value of T = 300 K. From tran-
sition matrices we verified that, despite the lack of global
detailed balance, Eq. (19) (i.e., local detailed balance) is
always verified exactly. This can be seen very clearly in
columns five and eight of Table I, where we report the ratio
between forward and backward occupancy transition prob-
abilities calculated exactly from the Chapman-Kolmogorov
equation, respectively, for the Barker approach, and for the
Metropolis-Hastings approach.

We already noticed in Sec. IV that the CA simulation out-
comes differ slightly depending on whether a Barker-like or a
MH-like acceptance approach is used. In Table II we report a
comparison between the distribution calculated exactly for the
one-dimensional system according to both approaches; results
confirm that it is actually true that the two methods provide
slightly different results.

VI. DISCUSSION

As we already mentioned, we could not obtain a closed
form for the stationary distribution of occupancies produced
by the algorithm. Nevertheless, here we would like to discuss
the CA evolution rule, especially with regard to the use of
mixed intermediate states and their role in the local balance.

In a previous attempt to formulate the CA model, we
did not make use of any intermediate state: acceptance was
computed on the basis of all possible neighborhood scenarios
irrespective of the transition proposal made by each cell: in
other words, acceptance was averaged over all the possible
neighborhood occupancies that could happen after an occu-
pancy change −1, 0, and +1; the resulting model did not
satisfy detailed balance either globally or locally.

In another attempt, while we introduced the mixed inter-
mediate state, the scenario probabilities in the first instance,
Eq. (2), were not computed at all; the evolution rule skipped
it and prescribed directly the calculation of acceptance in the
first instance, Eq. (4), which was not computed by averag-
ing over the possible neighborhood scenarios, but rather on
the basis of the occupancies in the neighboring cells at the
beginning of the time step. Also in this case the resulting
model did not satisfy detailed balance in any form, since
the neighborhood scenarios were associated with probabilities
that differ depending on whether we accessed the intermediate
state from the departure or the arrival configuration. There-
fore, it is reasonable to assume that local detailed balance is
due to (i) the use of a mixed intermediate state for each cell,
(ii) the fact that such an intermediate state can be reached with

TABLE II. Occupancy distributions for the one-dimensional sys-
tem (numerically) solved exactly. As in Table I, here we make use of
a number of significant digits that, at first glance, might appear redun-
dant. However, our scope with this table is to show that, although the
rule satisfies local detailed balance as shown in Table I, the stationary
properties show a mild dependence on the particular form we chose
for the acceptance (in this paper, Barker-like or Metropolis-Hastings-
like); such dependence might go unnoticed if we represented average
occupancies and probability distributions with a smaller number of
digits.

μ = −6 kJ/mol

Barker MH
〈n〉 = 0.461630 〈n〉 = 0.461700

n p(n) p(n)

0 0.697419 0.697393
1 0.187113 0.187113
2 0.071886 0.071894
3 0.043581 0.043600

μ = −4.8 kJ/mol

Barker MH
〈n〉 = 0.926805 〈n〉 = 0.926961

n p(n) p(n)

0 0.497526 0.497474
1 0.220174 0.220160
2 0.140269 0.140295
3 0.142031 0.142070

μ = −3.8 kJ/mol

Barker MH
〈n〉 = 1.518773 〈n〉 = 1.518735

n p(n) p(n)

0 0.295047 0.295055
1 0.199915 0.199917
2 0.196258 0.196267
3 0.308780 0.308761

μ = −3 kJ/mol

Barker MH
〈n〉 = 2.002298 〈n〉 = 2.002034

n p(n) p(n)

0 0.160066 0.160122
1 0.152698 0.152750
2 0.212108 0.212100
3 0.475128 0.475028

μ = −2 kJ/mol

Barker MH
〈n〉 = 2.445069 〈n〉 = 2.444913

n p(n) p(n)

0 0.061628 0.061661
1 0.089651 0.089675
2 0.190744 0.190753
3 0.657977 0.657911
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TABLE II. (Continued.)

μ = 1 kJ/mol

Barker MH
〈n〉 = 2.895964 〈n〉 = 2.895962

n p(n) p(n)

0 0.002120 0.002120
1 0.010516 0.010516
2 0.076643 0.076644
3 0.910721 0.910719

the same probability both from the departure and the arrival
configuration, and (iii) the probability of each neighborhood
scenario being the same regardless of the fact that we entered
the mixed intermediate state from the departure or from the
arrival configuration.

To clarify what we mean when we talk about “accessing
the mixed intermediate state with the same probability,” let
us examine the path that the system has to walk in order to
get back from the configuration it just reached to the previous
one. We want each cell to have the chance to return back to
its previous occupancy by passing through the same mixed
intermediate state it just visited. In other words, we are con-
sidering the system right after the transformation A → I → B,
and we want it to get back to A through B → I → A. The cells
that transformed from A to B while having their transition
proposal accepted, i.e., �i = +1 (�i = −1), need to select
the opposite transition, i.e., �i = −1 (�i = +1) in order to
access the same intermediate state as before; the ones that
had their transition proposal rejected need instead to select
the same transition. Now, since q(+) = q(−), the probability of
B → I is the same as the probability of A → I . Once they
reached the same mixed intermediate state as before, since
the optimization procedure starts from the same conditions
[Eq. (2)] and is carried out over the same scenarios, also the
probability distributions p(0)(σ ik ), p(1)(σ ik ), . . . , p(c)(σ ik ) are
the same as those we encountered along the path A → I → B.

While the use of mixed intermediate states is very likely to
be the only reason why local detailed balance is obeyed, the
role played by the optimization procedure instead is merely
that of improving the agreement between the CA distribution

and their MC counterparts. A crucial role is then played by
the way we define acceptances; we showed that both the
Barker-like and MH-like approaches effectively lead the sys-
tem towards stationary distributions in very good agreement
with the reference MC model, the only difference between
these two approaches being that the MH version of the CA
allows for a faster equilibration, similar to what happens in
asynchronous MC methods.

VII. CONCLUSIONS

We constructed a cellular automaton that satisfies local
detailed balance and provides stationary cell occupancy dis-
tributions in very good agreement with their Monte Carlo
counterparts. A key role is played by the use of “mixed
intermediate states,” i.e., intermediate situations where the ac-
ceptance of trial moves is determined on the basis of a number
of possible outcoming states in the neighborhood of each cell.
This approach can successfully be used in occupancy-based
models, and its main advantage is the fact that the resulting
automaton is fully synchronous, thus constituting a paralleliz-
able alternative to sequential MC. The key role played by
the mixed intermediate state needs further investigation, in
particular in the generalization of this approach to particle-
based lattice-gas simulations. We believe that the synchronous
sampling strategy we developed here contributes to taking
a stone off the wall that separates us from knowing more
about the coexistence between full synchronicity, nontrivial
interactions, and detailed balance, and it could be taken as the
starting point of a line of research centered around probabilis-
tic cellular automata and their role in the modeling of systems
at thermodynamic equilibrium.
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