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Lévy walks with rests: Long-time analysis
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In this paper we analyze the asymptotic behavior of Lévy walks with rests. Applying recent results in the
field of functional convergence of continuous-time random walks we find the corresponding limiting processes.
Depending on the parameters of the model, we show that in the limit we can obtain standard Lévy walk or the
process describing competition between subdiffusion and Lévy flights. Some other more complicated limit forms
are also possible to obtain. Finally we present some numerical results, which confirm our findings.
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I. INTRODUCTION

In recent years Lévy walks (LWs) proved very useful
models for anomalous diffusion [1]. They have become an
alternative to Brownian diffusive random walk as a process,
which underlies random movement with constant velocity.
The particle that performs Lévy walks moves with velocity v

for a time period, which follows a power law ψ (t ) ∝ t−(1+α)

with α > 0. Then it chooses randomly a new direction of the
motion [1]. Here we focus on the case α ∈ (0, 1), which leads
to a ballistic regime [2]. Lévy walks were used to describe the
dynamics of blinking nanocrystals [3–6]. Other striking and
sometimes very beautiful examples of applications include:
migration of swarming bacteria [7], light transport in special
optical materials (Lévy glass) [8], and foraging patterns of
animals [9–12]. More examples are described in a review
paper devoted to this model [1], see also Ref. [13].

Lévy walks can be analyzed in a framework of coupled
continuous-time random walks (CTRWs). Except from the
standard Lévy walk, we can distinguish two other important
cases: the so-called wait-first or jump-first models [1]. These
are examples of CTRWs, which are closely related to the
standard LW. The particles that perform wait-first LW, instead
of moving with the constant velocity v for certain random time
T , remain motionless for time T and then executes a jump
with length equal to v · T . As a result trajectories are discon-
tinuous, contrary to the standard LW, see Fig. 1 (left panel).
If we linearly interpolate the trajectory of wait-first model, we
obtain the trajectory of standard LW, see Fig. 1 (middle panel,
solid line). In this case the walker moves with constant veloc-
ity (in this paper we will assume for simplicity that v = 1) and
after a certain random period of time it changes its direction.
The CTRW approach to LWs was analyzed in Refs. [14,15].
Although the jump models and the standard LW appear to be
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very similar, they have very different statistical properties. In
Ref. [2] a method to find probability density functions p(x, t )
(PDFs) for all these models in ballistic regime was proposed
by Froemberg et al. For another approach to this problem for
the jump models, see also Ref. [16]. It is also worth to mention
that PDFs of multidimensional isotropic Lévy walks were
found in Refs. [17,18]. Important results related to the ergodic
properties of Lévy walks can be found in Refs. [19–21]

Here we analyze the so-called LW with rests. Its trajec-
tories are obtained by adding a random waiting period after
each period of ballistic motion, see Fig. 1 (right panel). We
underline that the ballistic regime is observed for α ∈ (0, 1).
One usually assumes that the resting periods are chosen from
a power-law distribution with some exponent γ . The formal
definition of LW with rests will be given in the next sec-
tion. LW with rests were first introduced and analyzed in
Refs. [22,23], where the authors used CTRW to define the
corresponding equation for the propagator. Next, this equation
was used to analyze the asymptotic behavior of the PDF of
the model as well as the asymptotics of the mean-square
displacement. One of the most stimulating and important ap-
plications of CTRWs with power-law waiting times and jumps
can be found in the paper [24], where the authors showed
that the dispersal of bank notes and human travel behavior
can be described by LW-type of dynamics. In Ref. [25] the
authors analyzed the ratio of times a particle spends in fly-
ing and resting phases. For a general review on Lévy walks
and their generalizations we refer the interested reader to
Refs. [1,13]. We also note that recently it has been demon-
strated in Ref. [26] that neuronal mRNP transport follows
aging LW with truncated power-law run times. That way
the authors confirmed that mRNP particles in the analyzed
experiment display aging.

In this paper we analyze the asymptotic, long-time behav-
ior of LW with rests. Applying recent results in the field of
functional convergence of continuous-time random walks and
related models, we derive the corresponding limiting process.
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FIG. 1. (Left) Typical trajectory of the wait-first LW; (middle) the corresponding trajectory of the standard LW; (right) the corresponding
sample trajectory of LW with rests. Note that the ballistic periods in the middle and right panel are the same.

Depending on the parameters of the model, we show that in
the limit we can obtain standard Lévy walk or the process de-
scribing competition between subdiffusion and Lévy flights.
Some other less popular limiting forms are also possible.

We derive the asymptotic limits of LWs with rests in mul-
tidimensional functional setting. Since the general functional
convergence of LWs with rests is proved here, it implies that
convergence of finite-dimensional distributions holds as well.
Previously, only one-dimensional distributions and moments
of LWs with rests were analyzed. In this paper we obtain the
explicit formulas for the whole limiting processes. This allows
us to study multipoint properties of the limits, such as autocor-
relation or ergodic coefficients. Moreover, the case when the
power-law exponent of the ballistic periods and the power-law
exponent of the resting periods coincide is analyzed here in
detail. We obtain here the explicit form of the limiting process.

Our results significantly extend the ones presented in
Ref. [29], where the standard LW was studied. Compared to
Ref. [29], by adding the additional resting periods, we are
able to arrive at completely different limiting processes. Our
derivation methods are partially based on the ones used in
Ref. [29]. However, due to the additional resting periods, also
other mathematical tools and methods will be used here. In
particular continuity and convergence of more general func-
tionals need to be verified.

II. BASIC DEFINITIONS

Lévy walks can be defined in the framework of CTRW
[13]. This approach is used in our paper. It should be
added that LWs can also be defined using subordinated
Langevin equations, see Refs. [27,28] for the details. Let Ti

be a sequence of independent, identically distributed (IID)
power-law waiting times such that P(Ti > x) ≈ Cx−α when
x → ∞, α ∈ (0, 1), C > 0. Here by f (x) ≈ g(x) we mean
limx→∞

f (x)
g(x) = 1. The jumps are defined as Ji = ViTi where

Vi govern the direction of the jump. It is assumed that Vi are
IID with P(Vi = 1) = P(Vi = −1) = 1/2. Notice that waiting
times Ti and jumps Ji are dependent. This coupling allows the
CTRW process to have heavy-tailed jumps—a phenomenon
that is often observed in experimental data—but still the pro-
cess can have a finite mean-square displacement (variance),
which makes it a suitable physical model [2].

Note that the parameter α is restricted here to the case α ∈
(0, 1). This is due to the fact that for α > 1 the diffusion limit
of LW is the well-known and studied α-stable Lévy motion
(Lévy flight) [29]. This is in sharp contrast with the case α ∈
(0, 1), for which the diffusion limit is a completely different,
much more complicated process [28,29].

The counting process is given by N̄ (t ) = max{n � 0 :∑n
i=1 Ti � t}. In mathematical and physical literature there

appear three different types of Lévy walks [2,29]. Wait-first
Lévy walk (also known as undershooting Lévy walk) is de-
fined as:

L(t ) =
N̄ (t )∑
i=1

Ji. (1)

The standard Lévy walk is obtained by linear interpolation of
L(t ), see Fig. 1. Formally, it can be defined as

L(t ) =
N̄ (t )∑
i=1

Ji +
⎛
⎝t −

N̄ (t )∑
i=1

Ti

⎞
⎠VN̄ (t )+1. (2)

L(t ) is the most useful process from a physical point of view;
it has finite second moments of all orders and continuous
trajectories.

Finally, we define Lévy walk with rests W (t ) by adding
waiting times τi after each ballistic period of L(t ), see Fig. 1
(right panel). Let us assume that τ0 = 0 and τi, i ∈ N, are
IID power-law random variables such that P(τi > x) ≈ C0x−γ

when x → ∞, γ ∈ (0, 1), C0 > 0. Now, the formal definition
of Lévy walk with rests is as follows:

W (t ) =
N (t )∑
j=1

TjVj +
(

max

(
t,

N (t )∑
j=1

(Tj + τ j )

)
−

N (t )∑
j=1

(Tj + τ j )

)

×VN (t )+1, (3)

where N (t ) = max{k :
∑k

j=1(τ j−1 + Tj ) � t}. W (t ) is the ap-
propriate modification of the standard Lévy walk L(t ) defined
in (2). In (3) we modify the counting process N (t ) in order
to include additional waiting times τi. Moreover, the modifi-
cation of the part in large brackets in (3) as compared to (2),
stems from the fact that for W (t ) the ballistic motion with
constant velocity is observed only during the waiting times
Ti. During the waiting times τi the particle does not move
at all. The first sum in (3) tells the walker how to move in
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FIG. 2. (Left) Typical trajectories of the LW with rest with α = 0.3 and γ = 0.9; (right) the corresponding mean-square displacement.

the ballistic regime. The expression in large brackets in (3)
is either equal to zero or t − ∑N (t )

j=1 (Tj + τ j ). If it is equal to
zero, then we observe the resting periods of the walker. In
the other case, the whole expression (3) coincides with (2)
and the walker moves as in the standard Lévy walk. The term
VN (t )+1 at the end of (3) takes only two values −1 and 1, and
is responsible for the direction of the ballistic motion of the
walker, upwards or downwards. In what follows we analyze
the long-time behavior of W (t ).

III. ASYMPTOTIC BEHAVIOR OF LW WITH RESTS

Recall that α ∈ (0, 1) is the power-law exponent of the bal-
listic periods Ti, whereas γ ∈ (0, 1) is the power-law exponent
of the resting periods τi.

A. Case α < γ

Let us first analyze the case α < γ . This implies that the
ballistic periods will dominate the overall motion of the par-

ticle for long times. Thus, heuristically, we have that for long
times

N (t ) ∼ N̄ (t ),

N (t )∑
j=1

(Tj + τ j ) ∼
N̄ (t )∑
j=1

Tj,

max

(
t,

N (t )∑
j=1

(Tj + τ j )

)
−

N (t )∑
j=1

(Tj + τ j ) ∼ t −
N̄ (t )∑
i=1

Ti.

The above implies that for long times W (t ) defined in (3) will
behave in the same way as the standard LW L(t ) defined in (2).
The asymptotic limit of L(t ) was already derived in Ref. [29].
Therefore, using Ref. [29], we get the following convergence
in distribution for α < γ

W (nt )

n
d−→ X (t ). (4)

Here:

X (t ) =
{

L−
α

[
S−1

α (t )
]

if t ∈ R
L−

α

[
S−1

α (t )
] + t−G(t )

H (t )−G(t )

{
Lα

[
S−1

α (t )
] − L−

α

[
S−1

α (t )
]}

if t /∈ R,
(5)

where Lα (t ) is the α-stable Lévy motion with Fourier
transform E exp[izLα (t )] = e−|z|α , Sα (t ) is the α-stable subor-
dinator with Laplace transform E exp[−zSα (t )] = e−zα

. The
processes Lα and Sα are strongly dependent. Their instants of
jumps and jump lengths coincide. Moreover

R = {Sα (t ) : t � 0}, G(t ) = S−
α

[
S−1

α (t )
]
,

H (t ) = Sα

[
S−1

α (t )
]
.

We also use the notation f − for the left-continuous version
of f and f −1 for its inverse. The formal proof of the above
result is in the Appendix. It should be underlined that the
PDF q(x, t ) of the limit process X (t ) satisfies the following

fractional diffusion equation [29]:

1

2

[(
∂

∂t
− ∂

∂x

)α

+
(

∂

∂t
+ ∂

∂x

)α]
q(x, t )

= [δ(x − t ) + δ(x + t )]
t−α

�(1 − α)
.

Here, the operators ( ∂
∂t ∓ ∂

∂x )α are called fractional material
derivatives. They have the Fourier-Laplace symbols (s ∓ ik)α .
These were introduced by Ref. [30] as a fractional extension
of the standard material derivative. The function δ(·) is the
Dirac delta. X (t ) is 1-self-similar. The mean-square displace-
ment of X (t ) has the ballistic form

E (X 2(t )) = t2(1 − α)/2.
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FIG. 3. (Left) Typical trajectories of the LW with rest with α = 0.9 and γ = 0.3; (right) the corresponding quantile lines.

In Fig. 2 (left panel) we observe the typical trajectories of
LW with rests for α < γ . We can see that the ballistic pe-
riods dominate the overall motion of the particle. In Fig. 2
(right panel) we observe the asymptotic ballistic behavior of
the mean-square displacement of W (t ) obtained using Monte
Carlo simulations. It confirms our convergence result.

B. Case α > γ

In the case α > γ the resting periods τi will dominate over
the waiting times Ti. Therefore we get that for long times

N (t ) ∼ N̂ (t ),

where N̂ (t ) = max

{
k :

k∑
j=1

τ j−1 � t

}
,

N (t )∑
j=1

(Tj + τ j ) ∼
N̂ (t )∑
j=1

τ j,

max

(
t,

N (t )∑
j=1

(Tj + τ j )

)
−

N (t )∑
j=1

(Tj + τ j ) ∼ 0.

The above implies that for long times the term in large brack-
ets in (3) will disappear. Thus W (t ) will behave for long times

as a standard CTRW of the form
∑N̂ (t )

j=1 TjVj . This CTRW
process is very well known and studied in the literature [31]. It
describes competition between subdiffusion with Lévy flights.
The walker jumps according to the random variables Ji = ViTi

and waits according to the waiting times τi. Here Ji and τi

are independent. The asymptotic limit of this CTRW is also
well known [31,32]. Thus we get the following convergence
in distribution of W (t ) for α > γ :

W (nt )

nγ /α

d−→ Lα

[
S−1

γ (t )
]
. (6)

Here Lα (t ) is the α-stable Lévy motion with Fourier transform
E exp[izLα (t )] = e−|z|α . S−1

γ (t ) is the inverse γ -stable subordi-
nator S−1

γ (t ) = inf{τ > 0 : Sγ (τ ) > t}, where Sγ (t ) is the γ -
stable subordinator with Laplace transform E exp[−zSγ (t )] =
e−zγ

. Both processes Lα and Sγ are assumed independent here.
The formal proof of the above convergence can be found in the

Appendix. The PDF p(x, t ) of the limit process Lα[S−1
γ (t )] sat-

isfies the well-known space-time fractional diffusion equation
[31,32]

∂ p(x, t )

∂t
= 0D1−γ

t ∇α p(x, t ).

Here, the operator 0D
1−γ
t is the fractional derivative of the

Riemann-Liouville type and ∇α is the Riesz fractional deriva-
tive.

Lα[S−1
γ (t )] does not have finite second moment. However,

it is γ /α-self-similar. In Fig. 3 (left panel) we have the typ-
ical trajectories of LW with rests for α > γ . We observe the
dominance of the resting periods. In Fig. 2 (right panel) we
observe the asymptotic behavior of three quantile lines of
W (t ) obtained using Monte Carlo simulations. All the quan-
tile lines have the asymptotic form c · tγ /α , which confirms
the γ /α-self-similarity property. Recall that the p-quantile
line, p ∈ (0, 1), for a stochastic process Y (t ) is a function
qp(t ) given by the relationship P[Y (t ) � qp(t )] = p. A sys-
tematic numerical study of the process Lα[S−1

γ (t )] can be
found in Ref. [33] in the context of the so-called paradoxical
diffusion.

C. Case α = γ

The asymptotic limit in the case α = γ is the most techni-
cal and least intuitive. However, for completeness we present
it here.

After some standard manipulations we get that

W (t ) =
N (t )∑
j=1

TjVj +
max

[
t,

∑N (t )
j=1 (Tj+τ j )

]− ∑N (t )
j=1 (Tj+τ j )∑N (t ) +1

j=1 Tj −
∑N (t )

j=1 Tj

×
(

N (t )+1∑
j=1

TjVj −
N (t )∑
j=1

TjVj

)
.

Using the above representation we get the following conver-
gence in distribution for α = γ (see Appendix for the details)

W (nt )

n
d−→ Y (t ). (7)
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Here Y (t ) has the form

Y (t ) = L−
α (S−1)(t ) + max{t, S−[S−1(t )]} − S−[S−1(t )]

S2[S−1(t )[−S−
2 [S−1(t )]

×{Lα[S−1(t )] − L−
α [S−1(t )]}. (8)

Here Lα is the α-stable Lévy motion obtained as the scaling
limit of

∑[nt]
i=1 ViTi. Next, S(t ) = S1(t ) + S2(t ), where S1 and

S2 are two independent α-stable subordinators. The first one
is the scaling limit of

∑[nt]
i=1 τi, the second one is the scaling

limit of
∑[nt]

i=1 Ti.
The limit process Y (t ) is 1-self-similar. It follows from

the normalizing factor in the convergence analysis in the
Appendix. Therefore, Y (t ) scales ballistically, i.e., its mean-
square displacement equals

E [Y 2(t )] = c · t2

for some appropriate constant c > 0. Its realizations display
both the ballistic and resting periods. However, it is difficult
to find the corresponding generalized diffusion equation gov-
erning the PDF of this process.

IV. SUMMARY

In this paper we derived the asymptotic limit for LWs
with rests. Applying recent advances in the theory of func-
tional convergence of stochastic processes, we were able to
determine the detailed structure of the limiting processes. De-
pending on the power-law exponents responsible for ballistic
periods (α) and resting periods (γ ), we showed that if α < γ

then the limit coincides with standard Lévy walk. For α > γ

we arrived at the process whose PDF dynamics is described by
the well-known space-time fractional diffusion equation. The
least intuitive case α = γ leads to the process displaying both
the ballistic and resting periods. Our findings allow us to com-
pare and verify the theoretical findings with the experimental
data, in which LWs with rests are observed. It should be added
that for α, γ ∈ (1, 2) the limit process of LW with rests is the
α-stable Lévy motion (Lévy flight). It follows from Corollary
4.19. in Ref. [29] and the law of large numbers applied to the
resting periods.

We would like to underline that the derived here results
for the functional convergence of LWs with rests give the
complete picture of the limiting processes. Previously only
the one-dimensional asymptotic properties were studied. In
this paper we obtained the explicit formulas for the limiting
processes, see formulas (5), (6), and (8). This allows us to an-
alyze the whole multidimensional structure of LWs with rests
and examine various crucial quantities such as autocorrelation
or ergodic coefficients. We would like to add that if we assume

that the tails of τi and Ti are regularly varying with respective
indexes γ and α, then all the obtained asymptotic results will
hold.
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APPENDIX

In this Appendix we present in the general setting the
rigorous proofs of the main results of the paper, related to the
asymptotic limits of LWs with rests. Recall the definitions of
Ti, τi, Vi and N (t ) from Sec. II. The LW with rests has the form

W (t )
df=

N (t )∑
j=1

TjVj +
(

max

(
t,

N (t )∑
j=1

(Tj + τ j )

)
−

N (t )∑
j=1

(Tj + τ j )

)

× VN (t )+1.

Then

W (t ) =
N (t )∑
j=1

TjVj +
(

max

(
t,

N (t )∑
j=1

(Tj + τ j )

)
−

N (t )∑
j=1

(Tj + τ j )

)

× TN (t )+1VN (t )+1

TN (t )+1

=
N (t )∑
j=1

TjVj + max
(
t,

∑N (t )
j=1 (Tj+τ j )

) − ∑N (t )
j=1 (Tj+τ j )∑N (t )+1

j=1 Tj − ∑N (t )
j=1 Tj

×
(

N (t )+1∑
j=1

TjVj −
N (t )∑
j=1

TjVj

)
.

Note that the process W (t ) has continuous trajectories. To
check the asymptotics of W (t ) we will implement the methods
from Ref. [29].

Let us introduce the necessary notation. Let D[0,∞) be
the space of real functions on [0,∞), which are right con-
tinuous with left limits (r.c.l.l.). Let Du,↑ be the subspace
of D[0,∞) of nondecreasing and unbounded functions. For
each function x ∈ D[0,∞) we define its left continuous ver-
sion with right limits (l.c.r.l.) x− as x−(t ) = x(t−) for t > 0
and x−(0) = x(0). For y ∈ Du,↑ we define its inverse y−1

as y−1(t ) = inf{s : y(s) > t}. Clearly y−1 is r.c.l.l. and y−1 ∈
Du,↑. If x ∈ D[0,∞) and y ∈ Du,↑ then x ◦ y denotes their su-
perposition, which is r.c.l.l., whereas x− ◦ y− is l.c.r.l. Its right
continuous version is denoted by (x− ◦ y−)+. It is defined by
(x− ◦ y−)+(t ) = (x− ◦ y−)(t+). By ⇒ we will denote weak
convergence in D[0,∞). In the definitions below we will use
the following notation:

a ∈ D[0,∞), f , c ∈ Du,↑, e = c−1, f̂ = f + c

x = (a− ◦ e−)+, y = a ◦ e,

g = ( f − ◦ e−)+, h = f ◦ e, ĝ = ( f̂ − ◦ e−)+.
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Let R( f ) = { f (t ) : t � 0}. Define the mapping 	 : D[0,∞) × Du,↑ × Du,↑ → D[0,∞) by 	(a, f , c) = w, where

w(t ) =
{

x(t ), if t ∈ R( f );
x(t ) + max(t−ĝ(t ),0)

h(t )−g(t ) (y(t ) − x(t )), if t /∈ R( f ).

Define the processes A, F, C, C̃, F̂ , F̃ , N as

A(t ) =
[t]∑
j=1

TjVj, F (t ) =
[t]∑
j=1

Tj, C(t ) =
[t]∑
j=1

τ j, C̃(t ) =
[t]∑
j=1

τ j−1,

F̂ (t ) =
[t]∑
j=1

(Tj + τ j ) ≡ F (t ) + C(t ), F̃ (t ) =
[t]∑
j=1

(Tj + τ j−1) ≡ F (t ) + C̃(t ),

N (t ) = max{k : F̃ (k) � t}, F̃−1(t ) = N (t ) + 1.

Moreover let

D
df= F̃ , E

df= D−1, H
df= F ◦ E , G

df= (F− ◦ E−)+, Ĝ
df= (F̂− ◦ E−)+

X
df= (A− ◦ E−)+, Y

df= A ◦ E .

Then we have

E (t ) = N (t ) + 1, E−(t+) = N (t ), H (t ) = F [E (t )] =
N (t )+1∑

j=1

Tj,

G(t ) = (F− ◦ E−)(t+) =
N (t )∑
j=1

Tj, Ĝ(t ) = (F̂− ◦ E−)(t+) =
N (t )∑
j=1

(Tj + τ j )

X (t ) = (A− ◦ E−)(t+) = A[N (t )] =
N (t )∑
j=1

TjVj, Y (t ) = A[E (t )] = A[N (t ) + 1] =
N (t )+1∑

j=1

TjVj .

W (t ) =
{

X (t ), if t ∈ �(F ),

X (t ) + max(t−Ĝ(t ),0)
H (t )−G(t ) [Y (t ) − X (t )], if t /∈ �(F ).

Let bn and Bn be positive sequences, such that bn → 0, Bn → 0 as n → ∞. Define

An(t )
df= BnA([nt]), Wn(t )

df= BnW (t/bn),

Cn(t )
df= bnC([nt]), C̃n(t )

df= bnC̃([nt]),

Fn(t )
df= bnF ([nt]), F̂n(t )

df= bnF̂ ([nt]) ≡ Fn(t ) + Cn(t ), F̃n(t )
df= bnF̃ ([nt]) ≡ Fn(t ) + C̃n(t ).

Dn(t )
df= F̃n(t )

En(t )
df= D−1

n (t ) ≡ F̃−1
n (t ) ≡ n−1(N (t/bn) + 1), E−

n (t ) ≡ (F̃−1
n )−(t ) ≡ n−1N (t/bn),

Gn(t )
df= F−

n (E−
n (t+)) ≡ bnF (N (t/bn)) ≡ F−

n (E−(t+)), Ĝn(t )
df= F̂−

n (E−
n (t+)) ≡ bnF̂ (N (t/bn)),

Hn(t )
df= Fn(En(t )) = bnF ((N (t/bn) + 1),

Xn(t )
df= A−

n (E−
n (t+)) = BnA(N (t/bn)), Yn(t )

df= An(En(t )) = BnA(N (t/bn) + 1).

Then we have

Wn(t ) =
{

Xn(t ), if t ∈ �(Fn) ;

Xn(t ) + max (t/bn−
∑N (t/bn )

j=1 (Tj+τ j ),0)
1/bn[Hn(t )−Gn (t )] [Yn(t ) − Xn(t )], if t /∈ �(Fn).

Moreover

Wn(t ) =
{

Xn(t ), if t ∈ �(Fn) ;
Xn(t ) + max(t−Ĝn(t ),0)

Hn(t )−Gn(t ) [Yn(t ) − Xn(t )], if t /∈ �(Fn).

Then we get:
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Theorem 1. If the following convergence holds

(An, Fn,Cn) ⇒ (A,F ,C) (A1)

and realizations of the processes F and C are strictly increasing, then Wn ⇒ W , where W (t ) = X(t ) for t ∈ �(F ) and

W (t ) = X(t ) + max[t − Ĝ(t ), 0]

H(t ) − G(t )
× [Y (t ) − X(t )] (A2)

for t /∈ �(F ). Here

F̂ = F̃ = D = F + C, E(t ) = D−1(t ).

Ĝ(t ) = F̂−[E−(t+)], G(t ) = F−[E−(t+)], H(t ) = F−[E(t )],

Y (t ) = A[E(t )], X(t ) = A−[E−(t+)],

Proof. We get the result by applying Proposition 4.5 in Ref. [29]. Note that processes Wn and W can be written as
	(An, Fn,Cn) and 	(A,F ,C), respectively.

Using the above result applied to LW with rest we get the following:
Lemma.
(i) Let α = γ , Bn = bn = n−1/α. Then Wn ⇒ W , where W is defined in Theorem 1.
(ii) Let α < γ , Bn = bn = n−1/α. Then (Fn, F̃n, F̂n) ⇒ (ξ, ξ , ξ ), and Wn ⇒ W , where ξ is the α-stable subordinator and W

is defined in (4).
(iii) Let α > γ , Bn = n−1/α, bn = n−1/γ . Then Wn ⇒ W , where W (t ) = A−(E−)(t+).
Proof. Case (i) is straightforward. Case (ii) follows from the fact that

(F̃n, F̂n) = (Fn + Cn, Fn + C̃n) = [Fn + o(1), Fn + o(1)] ⇒ (ξ, ξ ).

Since in this case the realizations of ξ are strictly increasing, using Corollary 13.6.4 in Ref. [34] we get that(
F̃−1

n , F̂−1
n

) ⇒ (ξ−1, ξ−1).

Thus we get the convergence Wn ⇒ W , with C equal to zero.
For (iii) we have

Xn(t ) = Bn

N (t/bn )∑
j=1

TjVj = 1

n1/α

n 1
n N (tn1/γ )∑

j=1

TjVj = A−
n (E−

n )(t+),

which converges to A−(E−)(t+). This ends the proof. �
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