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Nonergodicity of d-dimensional generalized Lévy walks and their relation
to other space-time coupled models
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We investigate the nonergodicity of the generalized Lévy walk introduced by Shlesinger et al.
[Phys. Rev. Lett. 58, 1100 (1987)] with respect to the squared displacements. We present detailed analytical
derivations of our previous findings outlined in a recent letter [Phys. Rev. Lett. 120, 104501 (2018)], give
detailed interpretations, and in particular emphasize three surprising results. First, we find that the mean-squared
displacements can diverge for a certain range of parameter values. Second, we show that an ensemble of trajec-
tories can spread subdiffusively, whereas individual time-averaged squared displacements show superdiffusion.
Third, we recognize that the fluctuations of the time-averaged squared displacements can become so large that
the ergodicity breaking parameter diverges, what we call infinitely strong ergodicity breaking. This phenomenon
can also occur for paramter values where the lag-time dependence of the mean-squared displacements is linear
indicating normal diffusion. In order to numerically determine the full distribution of time-averaged squared
displacements, we use importance sampling. For an embedding of our findings into existing results in the
literature, we define a more general model which we call variable speed generalized Lévy walk and which
includes well-known models from the literature as special cases such as the space-time coupled Lévy flight or
the anomalous Drude model. We discuss and interpret our findings regarding the generalized Lévy walk in detail
and compare them with the nonergodicity of the other space-time coupled models following from the more
general model.
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I. INTRODUCTION

Lévy walks [1] are a special class of continuous time ran-
dom walks with a spatio-temporal coupling. In contrast to the
standard Lévy flight [2], where random jumps with infinite
second moment and waiting times with finite mean between
them are completely independent from each other, the spatio-
temporal coupling of Lévy walks prevents a divergence of
the mean-squared displacement [3,4]. For the standard Lévy
walk [5,6], this coupling is achieved by assigning a constant
velocity to the random walker meaning that the resulting
motion consists of randomly oriented flight episodes, where
heavy-tail distributed travel distances are linearly coupled
to corresponding flight durations. For moving particles with
mass, the finite velocity brings Lévy walks closer to real-
ity compared to Lévy flights with their instantaneous jumps
[7,8]. In addition to this linear coupling, nonlinear couplings
between flight durations and covered distances have been in-
vestigated [1]. Moreover, also continuous time random walks
with a linear or nonlinear coupling between jumps and waiting
times are sometimes referred to as Lévy walks [9]. In the next
section of this article, we show how these models are related to
each other and give a detailed overview over previous studies.
Lévy walks including its variations and modifications [10–13]
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can model all kinds of anomalous diffusion ranging from
subdiffusion and normal diffusion to superdiffusion, ballistic
diffusion, and even superballistic diffusion [7]. Therefore,
Lévy walk models have wide applications. They have been
used to model the dynamics of one-dimensional iterated maps
[5,6] and nonintegrable Hamiltonian systems [14], where the
former result from higher-dimensional dissipative dynamics
and the latter have applications in plasma physics [15] and
turbulence [16,17]. In addition, also photon counting statistics
of blinking quantum dots [18] and perturbation spreading in
many-particle systems [19,20] can be modeled by Lévy walks.
Furthermore, human travel behavior [21] or search strategies
of predators [22] follow Lévy walk patterns which are also
applied to the target search of robots [23]. Moreover, diffusion
of cold atoms in optical lattices [24–26], fluid stretching in
two-dimensional heterogeneous media [27,28], and turbulent
pair dispersion [29] are related to the generalized Lévy walk
model introduced by Shlesinger et al. [1], which is in the
focus of the present article. This model, where flight velocities
and flight durations are nonlinearly coupled, was developed to
reproduce the Richardson-Obukhov law of turbulence [30,31],
i.e., a cubic increase of the mean-squared displacement. Un-
expectedly and despite of a well-defined finite velocity of
the random walker at any instant of time, in full contrast
to the standard Lévy flight, we will show that for this more
general coupling, there is a certain parameter range where the
mean-squared displacement diverges and, therefore, prevents
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a cubic increase. A very important aspect of anomalous dif-
fusion is nonergodicity, i.e., the nonequivalence of ensemble
and time averages. Interestingly, even if the underlying state
or phase space of the process is fully accessible for each
trajectory, ensemble and time averages may not coincide, what
in the physical literature is called weak ergodicity breaking
[32] or weak nonergodicity [33]. This phenomenon has at-
tracted much attention in the last years due to the progress
in single-particle tracking experiments [34], where in con-
trast to classical ensemble-based methods such as pulsed field
gradient nuclear magnetic resonance [35], time averages are
evaluated [36–39]. Weak nonergodicity has been observed in
several experiments on different processes such as the fluores-
cence of single nanocrystals [40], diffusion of lipid granules in
living fission yeast cells [41], and diffusion of proteins in the
plasma membrane of living cells [42,43]. Since the discovery
of weak nonergodicty of subdiffusive continuous time random
walks with respect to its squared displacements [44,45], where
it was recognized that the time-averaged squared displace-
ment shows a linear increase indicating normal diffusion and
remains random even for long trajectories, many theoretical
models of anomalous diffusion known in the literature have
been investigated [46]. Among others, fractional Brownian
motion [47], diffusion on fractals [48], geometric Brownian
motion [49], scaled Brownian motion [50], heterogeneous
diffusion processes [51], integrated Brownian motion [52],
and globally correlated random walks [53] were investigated
with respect to their ergodic behavior. Of course, also Lévy
walks were studied. While many investigations focused on
the standard model [54–56] with a constant flight velocity
independent of the flight durations, the generalized Lévy walk
introduced by Shlesinger et al. [1] was investigated in a previ-
ous publication of the authors [57], where many surprising
results were found. In this article we show connections of
generalized Lévy walks to other space-time coupled models of
anomalous diffusion, recall our findings from our previous ar-
ticle, present the details of the calculations in the Appendixes,
and give detailed interpretations of the findings.

II. VARIABLE SPEED GENERALIZED LÉVY WALK

We consider a general space-time coupled model of
anomalous diffusion which is characterized by three expo-
nents (γ , ν, and η) and was first introduced by the authors
in the supplemental material of a previous publication [57].
This model, for general parameters γ , ν, and η, is called in the
following variable speed generalized Lévy walk. It consists of
a sequence of independent and identically distributed space-
time coupled elementary events. The duration Ti, i = 1, 2, . . .,
of each event is drawn randomly from a heavy-tailed proba-
bility density function, which we choose explicitly as

ψ (t ) = γ

t0

(
t

t0
+ 1

)−γ−1

, γ > 0, t0 > 0. (1)

We note, however, that the essential results of this paper de-
pend only on the tail exponent γ . The distance |Xi|, which
is covered during a complete elementary event, is connected
with the random duration Ti in a deterministic way,

|Xi| = c T ν
i , ν > 0, c > 0. (2)
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FIG. 1. Schematic representation of one realization of the vari-
able speed generalized Lévy walk for different values of the
parameter η in one spatial dimension. The black dots represent a
sequence of turning points in time and space, where at each turning
point, a new elementary event characterized by a duration Ti and a
spatial displacement Xi is initiated. The statistics of the elementary
events is described by the distribution ψ (x, t ) of Eq. (3). The turning
points can be connected in different ways according to different
values of the exponent η in Eq. (4). The case η = 1 (straight lines)
corresponds to the generalized Lévy walk to be discussed in the
subsequent sections, and the cases η → 0 and η → ∞ correspond
to the space-time coupled Lévy flight in the jump-first and wait-first
interpretation, respectively. Note that for general values of η, the
velocity is time-dependent also between the turning events.

The spatial direction of each event is uniformly chosen at
random such that the process is isotropic. Therefore, the statis-
tics of an elementary event is captured by the multivariate
probability density

ψ (x, t ) = 1

Sd (|x|) δ(|x| − ctν ) ψ (t ), (3)

where the surface Sd (|x|) = [2πd/2/�(d/2)]|x|d−1 of the
d-dimensional sphere with radius |x| accounts for the cor-
rect normalization of ψ (x, t ) in d Euclidean dimensions.
ψ (x, t ) dd x dt is the probability that a distance Xi lying in
the infinitesimal volume dd x around x is covered during a
complete elementary event of duration Ti ∈ [t, t + dt]. A se-
quence of such events leads to a series of turning points in
time and space (the black dots in Fig. 1), where each turning
point marks the beginning of a new elementary event. While
the distribution ψ (x, t ) determines the statistics of the turning
points, the paths between them have to be specified. Let (ti, xi )
be the coordinate of the ith turning point in time and space
and ei = (xi − xi−1)/|xi − xi−1| the spatial unit vector on the
straight line connecting the (i − 1)th turning point and the
ith one, the position x(t ) of a random walker at time t with
t ∈ [ti−1, ti] between these two turning points is given by

x(t ) = xi−1 + vi,η (t − ti−1)η ei, vi,η = c T ν−η
i . (4)

Possible paths between turning points in time and space are
illustrated in Fig. 1 for the simplest case of only one spatial
dimension. Obviously, the new exponent η > 0 controls the
temporal progress between two turning points and, therefore,
interpolates between different models of anomalous diffusion
that are known in the literature. For instance, for η = 1, there
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FIG. 2. Ten numerically generated realizations of the variable
speed generalized Lévy walk for different values of the parameter
η in one spatial dimension (γ = 0.5, ν = 1.5, t0 = 1.0, c = 1.0).
All four figures show the same ten sequences of turning points
(colored dots), but the connections between them are very different:
(a) η → 0, space-time coupled Lévy flight, jump-first interpretation,
(b) η = 1, generalized Lévy walk, (c) η = 3 and (d) η → ∞, space-
time coupled Lévy flight, wait-first interpretation.

is a constant velocity |Vi| = c T ν−1
i during each elementary

event that depends on the duration Ti of the event. This case
corresponds to the straight lines in Fig. 1 and defines the
generalized Lévy walk introduced by Shlesinger et al. [1]
which we will investigate in detail in the next sections. If in
addition ν = 1, the flight velocity |Vi| = c does not depend
on the flight duration leading to the standard Lévy walk often
encountered in the literature [5,6]. The special case η = ν of
the variable speed generalized Lévy walk is known in the liter-
ature as anomalous Drude model [58] or Lévy walk collision
process [10]. For η → 0 or η → ∞, successive turning points
are connected by instantaneous jumps and waiting times be-
tween them (dotted line in Fig. 1). Due to the deterministic
coupling of waiting times and jumps according to Eq. (2),
these processes are sometimes also called Lévy walks (see,
for instance, [9]). Because of the instantaneous jumps and
in order to distinguish these processes from the “real” Lévy
walks, we call them space-time coupled Lévy flights [59]. Fur-
thermore, they are also known as stored-energy-driven Lévy
flights [60,61]. Ten realizations of the generalized Lévy walk
(η = 1), the space-time coupled Lévy flight in the jump-first
(η → 0) and wait-first (η → ∞) interpretation as well as the
special case (η = 3) are shown in Fig. 2. They share the same
sequence of turning points but the paths between them are
different. Note that for general values of η, the velocity is
time-dependent also between the turning events. Our variable
speed generalized Lévy walk is related to a large number of
special cases that were thoroughly studied in the literature.

The weakly nonergodic behavior of the standard Lévy
walk (ν = 1, η = 1) with respect to the squared displacements
was investigated in [54–56]. Furthermore, it was shown that
the standard Lévy walk can also be described by a set of
coupled Langevin equations using a subordination technique
[62,63]. From that, the time-lag dependence of the ensemble-
averaged squared displacement and the ensemble average of

the time-averaged squared displacement was recovered [64].
The propagator and its moments of the standard Lévy walk
(ν = 1, η = 1) and the standard space-time coupled Lévy
flight (ν = 1, η → ∞) were discussed in detail in [65–67]
using Lévy’s central limit theorem and the so-called infinite
covariant density, i.e., a formally non-normalizable density
describing the outer tails of the propagator. Interestingly,
while the infinite covariant density was derived using a mo-
ment generating function approach, it can also be obtained by
the single big jump approach [68,69] with the idea that the
tails of the propagator are determined by the occurrence of a
very long flight event during the observation time that solely
influences the statistics of the whole trajectory. The general-
ized space-time coupled Lévy flight (η → ∞) for all relevant
values of the parameters γ and ν was investigated in detail
in the literature including weak nonergodicity with respect
to the squared displacements [60,61] as well as the propa-
gator and its moments [9]. The ensemble-averaged squared
displacement and the ensemble average of the time-averaged
squared displacement for a special case (ν = η) of the variable
speed generalized Lévy walk were derived in [70] using a
scaling Green-Kubo relation. Our model is also related to
the intermittent dynamics of one-dimensional iterated maps
with infinite invariant measure caused by the existence of
marginally unstable fixed points. These fixed points lead to
heavy-tail distributed sojourn times in their vicinity according
to Eq. (1) [71]. A famous example is the Pomeau-Manneville
map [72]. Interpreting the time series or a function of the time
series of such an iterated map as the increments of a random
walk, this leads to a Lévy-walk type of motion where consec-
utive visits of the fixed points’ vicinity, which are interupted
by short chaotic bursts, can be identified as the elementary
events, which follow the statistics of Eq. (3), but the turning
points are slightly differently connected in comparison with
Eq. (4). Such an analysis was done, for instance, in [70],
whereas in [73] the reason for the anomalous diffusion was
additionally decomposed into its constitutive causes known as
the Joseph, Noah, and Moses effect. In contrast, in [74] an
iterated map defined on the unit interval was used meaning
that the increments are strictly positive. In this case, the el-
ementary events follow the statistics in Eq. (3) without the
prefactor of 1/2 on the right-hand side. For this process, the
propagator, which is related to the distribution of the time
integral of the absolute value of the velocity process of our
model, and its moments were derived [74]. Other dynamical
behavior related to our variable speed generalized Lévy walk
is found for the diffusion of cold atoms in optical lattices.
These processes can theoretically be described by a pair of
coupled Langevin equations determining the time evolution
of position and velocity of the atoms. The velocity process
can be regarded as a sequence of random excursions from
the origin that are independently and identically distributed
because of the Markovian nature of the Langevin process.
Due to the coupling of position and velocity, these excursions
lead to elementary events following the space-time scaling in
Eq. (3) for the special case ν = 3/2 [25,26]. The propagator
and its moments (showing strong anomalous diffusion) for
this case and also for general values of ν were investigated
in detail in [75,76] using again the concept of the infinite
covariant density. Moreover, this infinite density was also
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recovered using the single big jump approach in [68]. A
general study of renewal processes with heavy-tail distributed
sojourn times including the statistics of rare events described
by non-normalizable densities can be found in [77].

As already mentioned, our variable speed generalized Lévy
walk was first introduced in the supplemental material of a
previous publication [57] and initiated further investigations.
In [78], it was shown that the parameter η only controls the
prefactor of the time-lag dependence of the mean-squared
displacements. However, for certain ranges of the parameters,
the mean-squared displacements can diverge what we discuss
later in the article. Therefore, in the following, we concentrate
our investigation on the generalized Lévy walk (η = 1) and
refer to the other space-time coupled models only if there are
some major differences between these models. The propagator
and its moments of the variable speed generalized Lévy walk
were derived in [79] using again the single big jump approach.
Moreover, the velocity process of our model was studied in
[80]. There, an analytical expression for the propagator fea-
turing an infinite invariant density as well as the connection of
the latter to the distributional behavior of certain time averages
was found. The Moses, Noah, and Joseph effects in the vari-
able speed generalized Lévy walk were investigated in [81].

In the literature, there are further studies on weak ergod-
icity breaking that go beyond the time-lag dependencies of
the mean-squared displacements. Especially, for continuous
time random walks on a lattice with heavy-tail distributed
waiting times and the corresponding nonlinear iterated maps
with marginally unstable fixed points, the distribution of the
fraction of occupation time of a certain state and its connec-
tion to the equilibrium distribution of an ensemble of random
walkers was derived [82–84]. Because the fraction of occu-
pation time can be interpreted as the probability to be in a
specific state obtained from a time average, its distribution is
key in understanding the distribution of other time averages
such as the time-averaged position of the random walker [85].
The influence of infinite invariant densities on the distribution
of some time-averaged observation functions was also inves-
tigated [86,87].

The aims for the rest of the present article are the fol-
lowing: First, we want to recall our findings from a previous
short publication [57] regarding the weak nonergodicity of
the generalized Lévy walk model (η = 1) with respect to the
squared displacements. Second, we want to present detailed
derivations of these findings. Finally and most importantly,
we want to give detailed interpretations leading to a deeper
understanding of weak nonergodicity in the generalized Lévy
walk and the other space-time coupled models that follow
from the general model defined in this section.

The rest of the paper is organized as follows. In Sec. III
we define the generalized Lévy walk as special case of our
variable speed generalized Lévy walk. Exact analytical results
concerning the ensemble-averaged squared displacement, the
ensemble average of the time-averaged squared displace-
ment, and the randomness of the time-averaged squared
displacements for the generalized Lévy walk in the full
two-dimensional parameter space are discussed in Secs. IV–
VI, respectively. Corresponding derivations of the analytical
results can be found in the Appendixes. A summary of our
findings and a final discussion are presented in Sec. VII.
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FIG. 3. One numerically generated realization of the generalized
Lévy walk (γ = 0.5, ν = 1.5, t0 = 1.0, c = 0.33), where the upper
panel shows the velocity process in dependence on time, and the
lower panel shows the corresponding integrated process, i.e., the
position in dependence on time. The trajectory consists of a sequence
of independent and identically distributed flights, where for each
flight of random duration Ti distributed according to ψ (t ) in Eq. (1),
the constant velocity Vi = ±c T ν−1

i leads to a spatial displacement
Xi = Vi Ti = c T ν

i .

III. THE GENERALIZED LÉVY WALK

The generalized Lévy walk was first introduced by
Shlesinger et al. [1] and follows from our variable speed
generalized Lévy walk introduced in Sec. II as special case for
η = 1. Therefore, it consists of a sequence of independent and
identically distributed flights (see Fig. 3), where the random
durations Ti of the flights are drawn from the heavy-tailed
probability density ψ (t ) in Eq. (1). Due to normalization, the
characteristic exponent γ must be positive. For 0 < γ � 1,
the mean flight duration 〈T 〉 = ∫

t ψ (t ) dt diverges, whereas
it is finite for γ > 1. In each flight event, a random walker
moves with a constant speed |Vi| that depends on the random
duration Ti of the flight in a deterministic way that follows
from Eq. (2),

|Vi| = |Xi|
Ti

= c T ν−1
i , ν > 0, c > 0. (5)

The characteristic exponent ν is also positive in order to
guarantee that larger flight durations imply larger covered
distances |Xi|. All possible flight directions have the same
probability such that the Lévy walk is isotropic. By a simple
change of variables, we can calculate the probability density
p(|x|) of the distances |Xi| from Eqs. (1) and (2),

p(|x|) =
∫ ∞

0
δ(|x| − ctν ) ψ (t ) dt ∼ |x|− γ

ν
−1. (6)

For 2ν < γ , the second moment 〈|X|2〉 = ∫ |x|2 p(|x|) d|x|
of this distribution is finite, whereas it diverges for 2ν �
γ . Note that in [1], the generalized Lévy walk was intro-
duced in a slightly different way. There, the distances |Xi|
were drawn randomly from the probability density p(|x|)
in Eq. (6) and the durations Ti followed deterministically,
Ti = |Xi|/|Vi| ∝ |Xi| 1

ν . Of course, this definition of the gen-
eralized Lévy walk is completely equivalent to our definition.
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The statistics of the flights is described by the multivari-
ate probability density ψ (x, t ) in Eq. (3). Another important
statistics is the distribution W (x, t ) that captures the prob-
ability W (x, t ) dd x of walking a distance ending in the
infinitesimal volume dd x around x in time t with a single flight
whose duration is larger than t ,

W (x, t ) = 1

Sd (|x|)
∫ ∞

t
δ(|x| − ct ′ν−1t ) ψ (t ′) dt ′

=
∫ ∞

1
λdt ψ (λx, λt ) dλ. (7)

Here we used the notation introduced in Eq. (3). The distri-
bution W (x, t ) is remarkable in two senses. First, it is a mul-
tivariate probability density with respect to the first argument
but a cumulative distribution with respect to the second one.
Therefore, its normalization reads limt→0

∫
W (x, t ) dd x = 1.

Second, and most importantly, the prefactor λdt in the second
line of Eq. (7) does not appear in the corresponding expression
of the distribution W (x, t ) in [1]. This seemingly little differ-
ence leads to big consequences. In Sec. IV we obtain different
time-lag dependencies of the ensemble-averaged squared dis-
placement compared to the ones in [1] what is additionally
confirmed numerically. As a consequence, we show that the
generalized Lévy walk is not able to produce a cubic increase
of the ensemble-averaged squared displacement. Moreover,
the latter diverges in a certain region of the two-dimensional
parameter space, a fact that was not realized in [1]. These
discrepancies have already been pointed out in a previous
publication of the authors [57] and, additionally, were later
confirmed by other authors [78].

The distributions ψ (x, t ) and W (x, t ) can be used to ex-
press the propagator p(x, t ), the probability density of finding
a random walker at position x at time t with initial condition
p(x, t = 0) = δ(x), in terms of convolutions. The latter can
be simplified by applying Fourier (k) and Laplace (s) trans-
forms. Following the derivation in [6] for the one-dimensional
case, we obtain for d dimensions an analogous result
(see Appendix A),

p(k, s) = W (k, s)

1 − ψ (k, s)
, (8)

where the arguments (x, t ) or (k, s) indicate the space we are
working in. Diffusion processes are typically characterized by
the time-lag dependence of the mean-squared displacement
(MSD) that can be determined either as ensemble aver-
age or as time average. In the next section, we investigate
the ensemble-averaged squared displacement while the time-
averaged squared displacement is studied in Secs. V and VI.

IV. ENSEMBLE-AVERAGED SQUARED DISPLACEMENT
(EASD)

The ensemble-averaged squared displacement (EASD) for
an ensemble of N trajectories xi(t ) is defined as

〈
x2(τ )〉E = 〈[x(τ ) − x(0)]2〉E

= lim
N→∞

1

N

N∑
i=1

[xi(τ ) − xi(0)]2. (9)

In Eq. (9) and in the following, the symbols 〈. . . 〉E and 〈. . . 〉T

denote ensemble and time averages, respectively. Of course,
in experiments and simulations, the limit in the second line
of Eq. (9) cannot be performed, so one approximates the
EASD by its sample mean for a finite ensemble. Typically
for anomalous diffusion, the EASD increases asymptotically
according to a power law [88–90],

〈
x2(τ )〉E 
 〈Dα〉E τα (τ → ∞), (10)

where α is the diffusion exponent and the symbol 〈Dα〉E de-
notes the generalized diffusion coefficient. Depending on the
value of α, one distinguishes different kinds of anomalous dif-
fusion. For α < 1, one has subdiffusion, while the case α > 1
is called superdiffusion. The special case α = 1 corresponds
to normal diffusion, and α = 2 is referred to as ballistic
diffusion. The case α > 2 is often called superballistic dif-
fusion. Because of the initial condition p(x, t = 0) = δ(x) of
the propagator, which implies that xi(0) = 0, the EASD is
identical to the second moment of the propagator. Because the
Fourier transform of the propagator is a moment-generating
function [also see Eq. (B1) of Appendix B], the EASD can be
calculated via

〈
x2(τ )〉E =
∫
Rd

x2 p(x, τ ) dd x

= L−1

{
− ∂2

∂k2
p(k, s)

∣∣∣∣
k=0

; s, τ

}
, (11)

where we use the symbol L−1 for the inverse Laplace trans-
form. The arguments τ and s refer to the time lag and its
Laplace conjugated variable, respectively. Applying Abelian
and Tauberian theorems [91,92] to Eq. (11) together with
Eq. (8) shows that the long-time behavior (τ → ∞) of
the EASD is determined by the small-s behavior of the
transformed distributions ψ (k, s) and W (k, s). Calculating
the corresponding asymptotics and inserting the results into
Eq. (11), we obtain the asymptotic behavior of the time-lag
dependence of the EASD. The details of the calculations
as well as the final equations are presented in Appendix B.
For the following discussion, it is only important to realize
that the character of the diffusive behavior is only deter-
mined by the two positive exponents γ and ν. Therefore,
the effective parameter space of the generalized Lévy walk
is two-dimensional. The analytical results of the EASD for
the full two-dimensional parameter space are summarized in
the phase diagram in Fig. 4(a). Furthermore, a comparison
of the analytical results with numerical simulations of the
generalized Lévy walk is shown in Fig. 5. We can see a very
good agreement.

In the following, we want to discuss the phase diagram for
the EASD of the generalized Lévy walk in Fig. 4(a). A first
interesting observation is that the dependence of the diffusion
exponent on the two characteristic parameters γ and ν is
identical to that of the corresponding generalized space-time
coupled Lévy flight (η → ∞) [59–61,93], where the flights
of the generalized Lévy walk are replaced by waiting times
and jumps of corresponding duration and length, respectively.
The same dependence is found for the special case η = ν of
the variable speed generalized Lévy walk [10]. This indicates
that the diffusion exponent is only determined by the statistics

014113-5



TONY ALBERS AND GÜNTER RADONS PHYSICAL REVIEW E 105, 014113 (2022)

2 ν

γ

〈Δx2(τ)〉E

 0

 1

 2

 3

 4

 0  1  2

τγ
τ

τ2ν

τ1+2ν-γ

∞

(a)

2 ν

γ

〈〈Δx2(τ)〉T〉E

 0

 1

 2

 3

 4

 0  1  2

Tγ-1τ

τTγ-1τ1+2ν-γ

τ1+2ν-γ

T2ν-2τ2

T2ν-γ-1τ2∞

(b)

2ν

γ

EB

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

Mγ
D

Aγ,ν

Bγ,ν
Cγ,ν

∞

(c)

superballistic diffusion
ballistic diffusion
superdiffusion
normal diffusion
subdiffusion

(d)

FIG. 4. From [57]. Phase diagram for the ensemble-averaged squared displacement (a), the ensemble average of the time-averaged squared
displacement (b), and the ergodicity breaking parameter (c). Different ranges of validity of the analytical results are separated by thick black
lines in the two-dimensional parameter space. Different kinds of diffusion are color coded as indicated in the key. The dotted lines in (c) serve
as a guide to the eye for a better comparison with the phase diagram in (b).

of the turning points but not by their connection in time and
space what was later confirmed in [78]. As a consequence,
as long as the EASD is finite, our phase diagram in Fig. 4(a)
is valid for all values of η. However, the divergence of the
EASD of the generalized Lévy walk for 2ν � γ + 2 in the

〈Δ
x2 (τ

)〉
E

τ

γ=0.6, ν=0.2 → α=0.6
γ=1.2, ν=0.2 → α=1.0
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γ=1.1, ν=1.5 → α=2.9
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FIG. 5. Ensemble-averaged squared displacement numerically
determined from N = 106 realizations of the generalized Lévy walk
for different values of the parameters γ and ν (t0 = 1.0, c = 0.33)
as specified in the key. The colors of the symbols indicate resulting
types of anomalous diffusion according to Fig. 4(d). The black lines
are the corresponding theoretical curves obtained from Eq. (B7) and
Eq. (B8) and are in good agreement with the numerical results.

two-dimensional parameter space [white in Fig. 4(a)] does not
occur for the space-time coupled Lévy flight and the special
case η = ν and has not been recognized in [1]. As a con-
sequence, and in full contrast to [1], an asymptotic time-lag
dependence of the EASD which is equal or faster than a cubic
increase cannot be found for the generalized Lévy walk. We
want to give a simple explanation for the divergence of the
EASD of the generalized Lévy walk and the convergence of
the EASD for the other models. To do so, we calculate a
lower bound of the EASD by considering the contribution to
the latter coming from all realizations of the process whose
duration T1 = t1 of the first elementary event is larger than τ .
Furthermore, we use that for these trajectories according to
Eq. (4), the squared displacement after time lag τ is given by
(ctν−η

1 τ η )2. Therefore, we obtain the following bound:

〈
x2(τ )〉E >

∫ ∞

τ

(
ctν−η

1 τ η
)2

ψ (t1) dt1

∼
∫ ∞

τ

t2ν−2η−γ−1
1 dt1 = ∞ if 2ν � γ + 2η. (12)

For the special case η = 1 of our variable speed generalized
Lévy walk, we get from Eq. (12) the correct condition for
the divergence of the EASD of the generalized Lévy walk.
Furthermore, we can see that for the generalized space-time
coupled Lévy flight (η → ∞) and the special case η = ν

of the variable speed generalized Lévy walk, the condition
for the divergence of the EASD cannot be fulfilled, which
explains the finiteness of the EASD for these models. There-
fore, we can conclude that while the diffusion exponents are
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FIG. 6. Distribution of generalized diffusivities, Eq. (13), numer-
ically determined from N = 106 trajectories of the generalized Lévy
walk (η = 1) (a) and the space-time coupled Lévy flight (η → ∞)
(b) for γ = 0.5 and ν = 1.5 (t0 = 1.0, c = 1.0). The black line in
(a) describes the asymptotic behavior of the distribution for the
generalized Lévy walk leading to a divergence of the first moment
and, therefore, to a divergence of the ensemble-averaged squared
displacement. The distribution of generalized diffusivities for the
space-time coupled Lévy flight, however, has a cutoff at Dmax = c2

leading to a finite ensemble-averaged squared displacement.

determined by the statistics of the turning points, the diver-
gence or the convergence of the EASD depends on the specific
connections between the turning points in time and space.

The finiteness or divergence of the EASD for the different
models can be visualized with the distribution of generalized
diffusivities (DOGD), which was first introduced for inhomo-
geneous and anisotropic normal diffusion processes [94,95]
and later extended to anomalous diffusion [96]. We define a
generalized diffusivity Dα (τ ) as a single squared displace-
ment rescaled by the asymptotic time-lag dependence of the
EASD, Dα (τ ) = 
x2(τ )/τα . From an ensemble of trajecto-
ries, we can obtain the DOGD,

pα (D, τ ) = 〈δ(D − Dα (τ ))〉E. (13)

Of course, the DOGD could also be obtained as time average
from a long single-particle trajectory. The advantage of the
rescaling of the squared displacements is that the distribution
may become stationary. The first moment of the DOGD is
asymptotically equal to the generalized diffusion coefficient,∫

D pα (D, τ ) dD 
 〈Dα〉E for τ → ∞. The DOGD that is
numerically obtained for the generalized Lévy walk and the
generalized space-time coupled Lévy flight for γ = 1/2 and
ν = 3/2 is shown in Fig. 6. According to Shlesinger et al.
[1], this parameter choice corresponds to the Richardson case,
where a cubic increase of the EASD of the generalized Lévy
walk was expected. This cubic increase can actually be found
for the generalized space-time coupled Lévy flight but not
for the generalized Lévy walk, because for the latter, the
EASD diverges; see the black dot in the phase diagram in
Fig. 4(a). However, the DOGDs for both models actually
become stationary if the scaling exponent α is equal to three.
The DOGD for the generalized Lévy walk has a heavy tail,
which leads to a divergence of the first moment of the DOGD
and, therefore, also to a divergence of the EASD. The DOGD
for the generalized space-time coupled Lévy flight, however,
has a cutoff leading to a finite first moment and a finite EASD.
The heavy tail of the DOGD for the generalized Lévy walk
can be obtained by a simple estimation. Large diffusivities are
obtained by large displacements which are caused by large
flight velocities that are connected to large flight durations t f

for ν > 1. In this case, we can write Dα (τ ) = (ctν−1
f τ )2/τα ∝

t2ν−2
f . A simple change of variables from flight durations

t f distributed according to ψ (t f ) to generalized diffusivities
leads to the asymptotic behavior of the DOGD, pα (D, τ ) 
∫

δ(D − Dα (τ )) ψ (t f ) dt f ∼ D−γ /(2ν−2)−1 for D → ∞. The
first moment of this distribution diverges for 2ν � γ + 2
meaning that we recover the condition for the divergence of
the EASD of the generalized Lévy walk. The cutoff of the
DOGD for the generalized space-time coupled Lévy flight is
caused by the fact that there is a maximal jump length that
can occur in the time interval [0, τ ] generated by a preceding
waiting time of duration τ . Therefore, the maximal squared
displacement reads 
x2(τ )max = (cτ ν )2. For 0 < γ < 1 and
2ν > γ , the corresponding asymptotic time-lag dependence
of the EASD is proportional to τ 2ν . This leads to the cutoff of
the DOGD at Dmax = c2.

The kind of observed diffusion ranging from subdiffusion
to superdiffusion in the phase diagram for the EASD of the
generalized Lévy walk in Fig. 4(a) can also be explained.
Keep in mind that for a normal diffusion process, the diffusion
coefficient 〈D1〉E, i.e., the prefactor of the linear increase of
the EASD, is given by 〈D1〉E = 〈X2〉/〈T 〉, where 〈X2〉 is the
second moment of the covered distances per flight, and 〈T 〉 is
the mean flight duration. The former is finite for 2ν < γ and
diverges for 2ν � γ . 〈T 〉 is finite for γ > 1 and diverges for
γ � 1. This means, for γ > 1 and 2ν < γ , the normal diffu-
sion coefficient is finite, and, therefore, we observe a linear
increase of the EASD. For γ > 1 and 2ν � γ , the normal
diffusion coefficient diverges, which means superdiffusion.
For γ � 1 and 2ν < γ , the normal diffusion coefficient van-
ishes, which means subdiffusion. For γ � 1 and 2ν � γ , both
characteristic quantities of the generalized Lévy walk, 〈X2〉
and 〈T 〉, diverge, and so, we can observe in this region of
the two-dimensional parameter space subdiffusion as well as
superdiffusion. Because 〈X2〉 ∝ 〈T 2ν〉, subdiffusion is found
for 2ν < 1 and superdiffusion for 2ν > 1.

In the next section, we contrast the asymptotic time-lag
dependence of the EASD with the one for the time-averaged
squared displacement.

V. TIME-AVERAGED SQUARED DISPLACEMENT (TASD)

The time-averaged squared displacement (TASD) for a
long stochastic or chaotic trajectory x(t ) of length T is
defined as

〈
x2(τ )〉T = 1

T − τ

∫ T −τ

0
[x(t + τ ) − x(t )]2 dt . (14)

Because the TASD is a random variable for every finite T and
in some cases even for T → ∞, we first investigate its mean,
i.e., the time-lag dependence of the ensemble average of the
TASD (EATASD),

〈〈
x2(τ )〉T〉E = lim
N→∞

1

N

N∑
i=1

〈

x2

i (τ )
〉
T, (15)

where, of course, the limit N → ∞ cannot be performed in
experiments and simulations. The distribution of the TASD
is the topic of the next section. The details of the analyti-
cal derivation of the asymptotic time-lag dependence of the
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FIG. 7. Ensemble average of the time-averaged squared dis-
placement numerically determined from N = 104 realizations of
length T = 108 of the generalized Lévy walk for different values of
the parameters γ and ν (t0 = 1.0, c = 0.33) as specified in the key.
The colors of the symbols indicate resulting kinds of anomalous dif-
fusion according to Fig. 4(d). The black lines are the corresponding
theoretical curves obtained from Eq. (C25) and Eq. (C27) and are in
good agreement with the numerical results.

EATASD can be found in Appendix C. Here we focus on the
discussion of the analytical results, which are again illustrated
in the form of a phase diagram now in Fig. 4(b). A comparison
of the analytical results with numerical simulations can be
found in Fig. 7, where we can see again a very good agree-
ment.

First of all, we recognize that also the EATASD of the
generalized Lévy walk diverges for 2ν � γ + 2. Again, the
possible divergence of the EATASD of our variable speed
generalized Lévy walk defined in Eqs. (1), (3), and (4) can be
explained by considering a lower bound. For all trajectories
whose duration T1 of the first elementary event is longer than
the measurement time T , the TASD according to the definition
in Eq. (14) and taking account of Eq. (4) is given by

〈
x2(τ )〉T1>T
T = 1

T − τ

∫ T −τ

0

{
cT ν−η

1 [(t + τ )η − tη]
}2

dt

T �τ∼ T 2ν−2η

1 τ 2T 2η−2. (16)

If we only consider the contribution to the EATASD coming
from these trajectories, we obtain

〈〈
x2(τ )〉T〉E �
∫ ∞

T
〈
x2(τ )〉T1>T

T ψ (T1) dT1

∼
∫ ∞

T
T 2ν−2η−γ−1

1 dT1 = ∞ if 2ν � γ + 2η. (17)

When we compare this result with Eq. (12), we see that the
estimated conditions for the divergence of the EASD and the
EATASD are equal. Therefore, this simple estimation explains
why the EATASD can diverge for the generalized Lévy walk
(η = 1) but not for the space-time coupled Lévy flight in the
wait-first interpretation (η → ∞) or the special case η = ν.

FIG. 8. Schematic representation of one realization of a Lévy
flight, where the squared displacement [x(t + τ ) − x(t )]2 is nonva-
nishing only if at least one jump occurs in the interval [t, t + τ ].

In the following, we want to discuss in detail the phase
diagram for the EATASD of the generalized Lévy walk in
Fig. 4(b) in the section of the two-dimensional parameter
space where the EATASD is finite. At first sight, we can see
that the colors indicating the kind of anomalous diffusion
are in general different from the ones appearing in the phase
diagram for the EASD in Fig. 4(a). Therefore, we can say that
the generalized Lévy walk is nonergodic with respect to the
squared displacements. Interestingly, and in full contrast to
the generalized Lévy walk, the EATASD of the space-time
coupled Lévy flight in the wait-first interpretation (η → ∞)
always shows a linear time-lag dependence [60,61] although
both models have the same turning point statistics and the
same diffusion exponents with respect to the EASD. The
reason is the different connection of the turning points in both
models. For the space-time coupled Lévy flight, a squared dis-
placement during the time interval [t, t + τ ] is only nonzero
if at least one jump occurs during this time window. This can
be inferred from Fig. 8. The nonvanishing contribution to the
TASD coming from a single jump is proportional to the length
of the time window, i.e., to the time lag τ . This contribution
is asymptotically dominant for T � τ over the contributions
where more than one jump occurs during the time interval
[t, t + τ ] [97]. In [60], it was shown that this relation holds
for all values of the parameters γ and ν. Therefore, we can
conclude that the linear time-lag dependence of the EATASD
of the space-time coupled Lévy flight is a consequence of the
special structure of the trajectories consisting of jumps and
waiting times. For the generalized Lévy walk with its ballistic
connections of the turning points, however, several time-lag
dependencies of the EATASD arise.

For 2ν < γ , a linear time-lag dependence of the EATASD
is also found for the generalized Lévy walk. For γ > 1, this
result is hardly surprising because in this case, both the second
moment 〈X2〉 of the covered distances per flight as well as the
mean flight duration 〈T 〉 are finite, and we recover normal and
ergodic diffusion with respect to the squared displacements.
For γ < 1, however, the mean flight duration diverges leading
to ergodicity breaking because the total measurement time
T cannot be much longer than the typical timescale of the
system. Interestingly, in this case, the nonergodicity resembles
the one for the subdiffusive continuous time random walk
[44,45,96], i.e., we obtain subdiffusion from the EASD and
“normal diffusion” from the EATASD. For γ < 2ν < γ + 1
and γ > 1, the EASD and the EATASD coincide with re-
spect to the diffusion exponent but not with respect to the
diffusion coefficient. This kind of nonergodicity was observed
earlier [54,98] for the special case of the standard Lévy walk
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(ν = 1) and was called ultraweak ergodicity breaking. The
reason is that the statistics of the squared diplacements is
nonstationary in the sense that it depends on the so-called
aging time ta, the elapsed time between the beginning of the
process and the beginning of the measurement. For ta → ∞,
however, stationarity and also ergodicity is recovered in the
sense that also the diffusion coefficients obtained from the
EASD and the EATASD coincide. For γ + 1 < 2ν < γ + 2
and γ > 1, we obtain ballistic diffusion from the EATASD
but superballistic diffusion from the EASD. For the complete
section of the two-dimensional parameter space where γ < 1,
we observe differences in the obtained diffusion exponents
and diffusion coefficients in general as expected from the
diverging timescale of the system, i.e., the diverging mean
flight duration 〈T 〉. Especially interesting is the triangular
region γ < 1 and γ < 2ν < 1, where the EASD shows sub-
diffusion but the EATASD indicates superdiffusion. To our
knowledge, such kind of ergodicity breaking, which we call
“subdiffusion appearing as superdiffusion”, has not been rec-

ognized before in any model of anomalous diffusion, but it has
significant impact on the interpretation of data coming from
experiments or simulations. For example, it means that one
could measure subdiffusion in a pulsed field gradient nuclear
magnetic resonance experiment, where ensemble averages
are measured, but superdiffusion in a single-particle tracking
experiment on the same system, where time averages are
measured. Whereas the observed types of anomalous diffusion
from the EASD have already been explained in the previous
section with the divergence or finiteness of the characteristic
quantities 〈X2〉 and 〈T 〉, we want to give in the following
descriptive explanations for the kinds of anomalous diffusion
appearing in the EATASD.

To do so, we first decompose the time integral in the defini-
tion of the TASD in Eq. (14) into two contributions, where the
first one captures the NT completed flights until measurement
time T and the second one describes the contribution from
the backward recurrence time [99], i.e., from the time interval
[tNT , T ] containing the last incomplete flight,

〈
x2(τ )〉T = 1

T − τ

∫ T −τ

0
[x(t + τ ) − x(t )]2 dt

T �τ
 1

T

∫ T

0
[x(t + τ ) − x(t )]2 dt

= 1

T

{
NT∑
i=1

∫ ti

ti−1

[x(t + τ ) − x(t )]2 dt +
∫ T

tNT

[x(t + τ ) − x(t )]2 dt

}
. (18)

If we perform the ensemble average of the TASD in Eq. (18), we obtain for the EATASD the following decomposition:

〈〈
x2(τ )〉T〉E = 1

T

{〈
NT∑
i=1

∫ ti

ti−1

[x(t + τ ) − x(t )]2 dt

〉
E

+
〈∫ T

tNT

[x(t + τ ) − x(t )]2 dt

〉
E

}
. (19)

These two contributions to the EATASD correspond to the
completed flights and to the last incomplete flight and are
studied in detail in Appendixes D and E, respectively. Here
we summarize the results. In Appendix D, we show that long
completed flights lead to superdiffusion for γ < 2ν < γ + 1
and ballistic diffusion for 2ν > γ + 1 in accordance with
the phase diagram in Fig. 4(b). Interestingly, for 2ν < γ ,
long completed flights lead to subdiffusion, but this contri-
bution is dominated by the one of short completed flights that
cause normal diffusion as expected. This can be understood
as follows. For ν → 0, the coupling between flight duration
Ti and traveled distance |Xi| ∝ T ν

i is weak. This means that
traveled distances of a certain order of magnitude can be
caused by long flights or short flights, i.e., these distances are
covered in a long or a short time, respectively. Long flights
lead then to subdiffusion similar to the long waiting times in
the subdiffusive continuous time random walk. Short flights,
however, lead to normal diffusion. In contrast, in Appendix
E, we show that the contribution from the last incomplete
flight always leads to ballistic diffusion with the asymptotics
shown in Fig. 4(b) for 2ν > γ + 1. For 2ν < γ + 1, this
contribution is dominated by the superdiffusive contribution
of the long completed flights. Note that also the dependence
on the total measurement time T and the condition T � τ

for meaningful time averaging has thereby to be taken into
account. In this way, the full phase diagram for the EATASD
of the generalized Lévy walk in Fig. 4(b) is explained. Fur-

thermore, these considerations explain why in the triangular
region γ < 1 and γ < 2ν < 1 of the two-dimensional pa-
rameter space, where the EASD shows subdiffusion because
the second moment 〈X2〉 ∝ 〈T 2ν〉 of the covered distances
per flight diverges weaker than the mean flight duration 〈T 〉,
the EATASD indicates superdiffusion. However, such kind
of ergodicity breaking cannot be found for the space-time
coupled Lévy flight in the wait-first interpretation (η → ∞)
although the turning point statistics as well as the diffusion
exponents obtained from the EASD are identical to that of
the generalized Lévy walk. For wait and jump models with
heavy-tailed distributed waiting times such as the subdiffusive
continuous time random walk or the space-time coupled Lévy
flight, linear time-lag dependencies of the EATASD were
found [44,45,60,61] caused by the geometry of the trajectories
as explained previously in this section.

VI. ERGODICITY BREAKING (EB) PARAMETER

Last but not least, in this section, we want to investigate the
fluctuations of the TASD with respect to different realizations
of the generalized Lévy walk. To do so, we consider the
rescaled random variable

ξ̂ (τ ) = 〈
x2(τ )〉T

〈〈
x2(τ )〉T〉E
, (20)

whose mean value is equal to unity due to the rescaling, i.e.,
〈̂ξ (τ )〉E = 1. The variance of the random variable ξ̂ (τ ), which
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FIG. 9. Distribution p(ξ, τ ) of rescaled time-averaged squared displacements numerically determined from N = 106 realizations of length
T = 107 of the generalized Lévy walk for γ = 0.6 (infinite mean flight duration) and increasing values of the parameter ν (t0 = 1.0, c =
0.33, τ = 100) belonging to different kinds of anomalous diffusion according to the phase diagram of the EASD in Fig. 4(a): (a) ν = 0.4,
subdiffusion, (b) ν = 0.9, superdiffusion, (c) ν = 1.0, ballistic diffusion, and (d) ν = 1.1, superballistic diffusion. In (a) the distribution is
compared with the Mittag-Leffler distribution known, for instance, from the distribution p(ξ, τ ) of the subdiffusive continuous time random
walk, where the same temporal behavior of the mean-squared displacements was found, i.e., subdiffusion with respect to the EASD and
normal diffusion regarding the EATASD [45]. The case ν = 1.0 in (c) belongs to the standard Lévy walk, where according to [55,56], a delta
distribution is expected. The inset in (d) for ν = 1.1 shows the distribution p(ξ, τ ) in a double-logarithmic plot on a larger scale in order to
pronounce the heavy tail of the distribution. Panel (a) belongs to the sector Mγ in the phase diagram of the EB parameter in Fig. 4(c). All other
figures belong to sector Aγ ,ν .

is the square of the relative fluctuations of the TASD, is known
in the literature as ergodicity breaking (EB) parameter [45],

EB(τ ) = Var(̂ξ (τ )) = 〈̂ξ 2(τ )〉E − 〈̂ξ (τ )〉2
E. (21)

The distribution p(ξ, τ ) = 〈δ(ξ − ξ̂ (τ ))〉E of the random vari-
able ξ̂ (τ ) fully captures the random nature of the TASD.
For an ergodic process, the TASDs determined from different
realizations of the process coincide if the measurement time
T goes to infinity. As a consequence, the EB parameter goes
asymptotically to zero and the distribution p(ξ, τ ) becomes
a delta distribution, i.e., limT →∞ p(ξ, τ ) = δ(ξ − 1). Often
for anomalous diffusion processes, the TASDs obtained from
different realizations of the process coincide with respect to
the diffusion exponent but not with respect to the diffusion
coefficient, i.e., in a double-logarithmic plot, different TASDs
correspond to parallel lines with different absolute terms. In
this case, the random variable ξ̂ (τ ) does not depend on the
time lag τ and is equal in distribution to the random variable
ξ ∗ defined as rescaled time-averaged squared velocity,

ξ̂
d= ξ ∗, ξ ∗ =

∫ T
0 v2(t ) dt〈∫ T

0 v2(t ) dt
〉
E

. (22)

This was shown in previous publications of the authors
[52,100] by using the Green-Kubo formula [54,101,102] [see
Eq. (C1)], which connects the TASD with the autocorrelation
function of the velocity process defined as time average [see
Eq. (C2)]. Moreover, because [x(t + τ ) − x(t )]2 
 v2(t ) τ 2

for τ → 0, this equality in distribution generally holds in
the limit τ → 0. An analytical treatment of the random vari-
able ξ ∗ is much simpler than the original problem because
the velocity process v(t ) = |v(t )| is piecewise constant. In
Appendix F, an analytical derivation of the EB parameter,
which also allows conclusions on the full distribution p(ξ, τ )
of the generalized Lévy walk, is presented. Our analytical
results for the EB parameter are again illustrated in the form
of a phase diagram in Fig. 4(c). Furthermore, numerically
determined distributions p(ξ, τ ) for several values of the pa-
rameters γ and ν are shown in Figs. 9–11. In the following,
we want to discuss the phase diagram in Fig. 4(c) in detail.

Similarly to the MSDs, the EB parameter of the gener-
alized Lévy walk also can diverge, what we call “infinitely
strong ergodicity breaking”, but contrary to the MSDs, the
condition for the divergence reads 2ν � γ /2 + 2. As a con-
sequence, the EB parameter can even diverge when the MSDs
are finite. Again, the possible divergence of the EB parameter
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FIG. 10. Distribution p(ξ, τ ) of rescaled time-averaged squared displacements numerically determined from N = 106 realizations of length
T = 107 of the generalized Lévy walk for γ = 1.2 (finite mean flight duration) and increasing values of the parameter ν (t0 = 1.0, c = 0.33,
τ = 100) belonging to different kinds of anomalous diffusion according to the phase diagram of the EASD in Fig. 4(a) and belonging to
different sectors in the phase diagram of the EB parameter in Fig. 4(c): (a) ν = 0.8, superdiffusion, sector D, (b) ν = 1.08, superdiffusion,
sector Bγ ,ν , (c) ν = 1.2, superballistic diffusion, sector Cγ ,ν , (d) ν = 1.4, superballistic diffusion, sector ∞. The insets show the distributions
p(ξ, τ ) in a double-logarithmic plot on a larger scale to emphasize the heavy tails of the distributions.

of the models following from the variable speed generalized
Lévy walk can be understood by considering a lower bound
coming from all trajectories whose duration T1 of the first
elementary event is longer than the measurement time T .
Because the EB parameter is essentially determined by the
second moment of the random TASD and using Eq. (16), we
obtain

EB �
∫ ∞

T

(〈
x2(τ )〉T1>T
T

)2
ψ (T1) dT1

∼
∫ ∞

T
T 4ν−4η−γ−1

1 dT1 = ∞ if 2ν � γ

2
+ 2η. (23)

For the generalized Lévy walk (η = 1), we obtain with this
simple estimation the correct condition for the divergence of
the EB parameter. Furthermore, we can see that, for instance,
the EB parameter does not diverge for the space-time coupled
Lévy flight in the wait-first interpretation (η → ∞) or the
spacial case η = ν.

We continue our discussion with the sections of the phase
diagram in Fig. 4(c) where the EB parameter is finite. For pa-
rameter choices from the section γ < 1, where the mean flight
duration diverges, TASDs obtained from different realizations
of the generalized Lévy walk show the same temporal scaling,
i.e., the distribution of rescaled TASDs and the EB parameter
do not depend on the time lag τ . In sector Mγ (γ < 1 and
2ν < γ + 1), the EB parameter is given by Eq. (F24) and is
equal to the variance of the Mittag-Leffler distribution. There-

fore, we conclude that the distribution of rescaled TASDs is
given by the Mittag-Leffler distribution,

p(ξ ) = �1/α (1 + α)

αξ 1+1/α
lα

[
�1/α (1 + α)

ξ 1/α

]
, (24)

where lα (t ) is the one-sided Lévy stable probability den-
sity function whose Laplace transform is exp(−sα ) [88].
This analytical result is confirmed numerically; see Fig. 9(a).
Furthermore, there is a simple explanation for this finding.
According to Eq. (22), the random variable ξ̂ is equal in
distribution to the random variable ξ ∗. The time integral of
the squared velocity appearing in the numerator of ξ ∗ can be
approximated as∫ T

0
v2(t ) dt ≈

NT∑
i=1

V2
i Ti ≈ NT

〈
V2

i Ti
〉
, (25)

where again NT is the number of completed flights up to mea-
surement time T. Therefore, the random variable ξ ∗ is equal in
distribution to the random variable NT /〈NT 〉E. From renewal
theory [88] it is known that this random variable follows the
Mittag-Leffler distribution. Because this consideration only
holds if the mean value 〈V2

i Ti〉 ∝ 〈T 2ν−1
i 〉 = ∫∞

0 t2ν−1ψ (t ) dt
is finite, which is the case for 2ν < γ + 1, this explains the
occurence of the Mittag-Leffler distribution in sector Mγ .

In sector Aγ ,ν (γ < 1 and γ + 1 < 2ν < γ /2 + 2), the EB
parameter is given by a complicated formula that depends on
both parameters γ and ν; see Eq. (F26). Note that this formula,
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FIG. 11. Comparison of the distributions p(ξ, τ ) of rescaled time-averaged squared displacements numerically determined with simple
sampling [left figures (a) and (c)] and hybrid sampling [simple sampling + importance sampling, right figures (b) and (d)] for two parameter
combinations both belonging to sector Bγ ,ν in the phase diagram of the EB parameter in Fig. 4(c): (a,b) γ = 1.8, ν = 1.3 (c,d) γ = 2.2,
ν = 1.4. N = 2 × 106 realizations of duration T = 104 of the generalized Lévy walk were used (t0 = 1.0, c = 0.33, τ = 1.0). The insets
show the distributions p(ξ, τ ) in a double-logarithmic plot on a larger scale in order to show the advantage of hybrid sampling versus simple
sampling. Parameters for the hybrid sampling: ξ ∗ = 10.0, p = 0.000625, t∗ = 3000 (b) and ξ ∗ = 10.0, p = 0.0005, t∗ = 1000 (d).

which was initially derived in [100], was reproduced recently
in [80], where it was also shown that the transition line be-
tween sector Mγ and Aγ ,ν is associated with the observable
changing from being integrable to becoming nonintegrable
with respect to an associated infinite density. For a fixed value
of the parameter γ and for increasing values of the parameter
ν starting from the boundary between the sectors Mγ and
Aγ ,ν , the EB parameter first decreases until it becomes zero
for ν = 1, and then it increases until it even diverges for
2ν � γ /2 + 2. Correspondingly, the distribution of recaled
TASDs first becomes narrower until it converges to a delta
distribution for ν = 1, and then it becomes a heavy-tailed
distribution that is responsible for the divergence of the EB
parameter for 2ν � γ /2 + 2. This evolution of the distribu-
tion of rescaled TASDs for a fixed value of the parameter γ

and increasing values of the parameter ν is shown in Fig. 9.
The asymptotic behavior of the distribution p(ξ ) for ν > 1 can
be estimated by a simple consideration. Large values of ξ are
related to large TASDs which are connected to the occurrence
of long flights because large flight durations lead to large flight
velocities for ν > 1 and, therefore, to large displacements.
According to Eq. (16), for large flight durations t f , the TASD
is proportional to t2ν−2

f . By a change of variables from long
flight durations t f distributed according to ψ (t f ) to the random
variable ξ̂ ∼ t2ν−2

f , we obtain

p(ξ ) ∼
∫

δ
(
ξ − t2ν−2

f

)
ψ (t f ) dt f ∼ ξ−1− γ

2ν−2 . (26)

This asymptotic behavior of the distribution of rescaled
TASDs is confirmed numerically; see the insets in Figs. 9–11.
Furthermore, from this asymptotic behavior, we can infer that
the EB parameter, which is essentially determined by the
second moment of p(ξ ), diverges for 2ν � γ /2 + 2 in full
agreement with the phase diagram in Fig. 4(c). Note that the
vanishing EB parameter for ν = 1 corresponds to the standard
Lévy walk with constant flight velocities independent on the
flight durations. This case was investigated in detail in [55,56].

In the section γ > 1, where the mean flight duration is
finite, the EB parameter increases and the distribution of
rescaled TASDs becomes broader for increasing values of the
time lag τ . In this case, our analytical results for the EB pa-
rameter are only valid in the limit τ → 0. In sector D (γ > 1
and 2ν < γ /2 + 3/2), the EB parameter goes to zero for T →
∞ [see Eq. (F28)], and the distribution p(ξ, τ ) converges to
a delta distribution. This is what we expect for the normal
diffusion sector in the two-dimensional parameter space and
is in agreement with the previous findings for the standard
Lévy walk (ν = 1) [54–56]. In sectors Bγ ,ν and Cγ ,ν (γ > 1
and γ /2 + 3/2 < 2ν < γ /2 + 2), the process becomes non-
ergodic in the sense that the EB parameter becomes larger
for increasing values of T and is given by a complicated
T -dependent expression; see Eq. (F30) and Eq. (F32). This
transition from an ergodic to a nonergodic behavior can be
understood with the help of the Khinchin theorem [103–106],
which states that the EB parameter goes to zero for T →
∞ if the covariance function of the squared displacements
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x2(t ′, τ ) = [x(t ′ + τ ) − x(t ′)]2 and 
x2(t ′ + t, τ ) goes to
zero for t → ∞,

Cov(
x2(t ′, τ ),
x2(t ′ + t, τ ))
t→∞−→ 0. (27)

For a simple estimation of the covariance function, we
use the relation 
x2(t ′, τ ) 
 v2(t ′)τ 2 (τ → 0). Therefore, for
τ → 0, the covariance function is essentially determined by
〈v2(t ′)v2(t ′ + t )〉E. We only consider the contributions where
the instants of time t ′ and t ′ + t belong to the same flight of
duration t f > t . This only occurs if the forward recurrence
time (FRT) t ′

f , i.e., the remaining duration of a flight at time
t ′, is longer than t . From renewal theory [99], it is well known
that for γ > 1 (finite mean flight duration), the correspond-
ing distribution of the FRT becomes stationary for t ′ → ∞,
limt ′→∞ ψFRT

t ′ (t ′
f ) ∼ t ′−γ

f (t ′
f → ∞). For ν > 1, we underes-

timate the velocity at time t ′ and t ′ + t by calculating the
velocity from the FRT t ′

f instead from the real flight duration
t f > t ′

f . Therefore,

lim
t ′→∞

〈v2(t ′)v2(t ′ + t )〉E >

∫ ∞

t

(
ct ′ν−1

f

)4
lim

t ′→∞
ψFRT

t ′ (t ′
f ) dt ′

f

∼
∫ ∞

t
t ′4ν−γ−4

f dt ′
f = ∞ if 2ν � γ

2
+ 3

2
. (28)

We conclude that for 2ν � γ /2 + 3/2, the Khinchin theorem
is violated which explains the transition from ergodic to non-
ergodic behavior. The evolution of the distribution of rescaled
TASDs for a fixed value γ > 1 and increasing values of ν is
shown in Fig. 10. Note that for ν > 1, the asymptotic behavior
of the distribution is again described by Eq. (26) explaining
the divergence of the EB parameter for 2ν � γ /2 + 2.

A very interesting observation from the phase diagram in
Fig. 4(c) is that the EB parameter can even diverge in the
section of the two-dimensional parameter space where normal
diffusion occurs. This may happen for γ > 4. However, it
is very difficult to observe this kind of ergodicity breaking
numerically. The reason is that the divergence of the EB
parameter is caused by very long flights that become rare
because the mean flight duration 〈T 〉 = t0/(γ − 1) decreases
for increasing values of the parameter γ and the tail of the
distribution ψ (t ) of flight durations decays faster. If the flights
become shorter, more flights have to be generated in order
to produce trajectories of a certain length T . In other words,
for increasing values of the parameter γ , computer simula-
tions become more time-consuming. In order to limit the time
exposure for the numerical simulations, shorter trajectories
have to be used. For these trajectories, numerically determined
distributions p(ξ, τ ) are depicted in Figs. 11(a) and 11(c). We
can see that the second algebraic decay of the distribution,
which is described by Eq. (26) and is responsible for the di-
vergence of the EB parameter, is not visible even for γ = 1.8
and γ = 2.2.

In order to numerically determine this second tail of the
distribution of rescaled TASDs, one can use importance sam-
pling [107,108]. In order to get the full distribution, we use a
method that we call hybrid sampling. The basic idea is that we
determine the bulk of the distribution with simple sampling
and the tail with importance sampling. In the following, we
briefly describe the hybrid sampling method for a general

case and then specify the method for the determination of
the distribution of rescaled TASDs of the generalized Lévy
walk. Let us consider a general random variable X ∈ R+ with
probability density p(x). The random variable X could be
identified, for instance, with the TASD or the random variable
ξ̂ (τ ). By introducing some threshold value x∗, the distribution
p(x) can be divided in two parts, the bulk for x < x∗ and the
tail for x > x∗. We want to calculate the average of an arbitrary
function f (X ) with respect to the probability density p(x). We
can write

〈 f (X )〉p =
∫ ∞

0
f (x) p(x) dx

=
∫ x∗

0
f (x) p(x) dx︸ ︷︷ ︸

=I1

+
∫ ∞

x∗
f (x)

p(x)

p̃(x)
p̃(x) dx︸ ︷︷ ︸

=I2

,

(29)

where the probability density p̃(x) is chosen such that large
values of the random variable X are more likely compared
with the original distribution p(x). The integrals I1 and I2 can
be interpreted as expectation values 〈�(x∗ − X ) f (X )〉p and
〈�(X − x∗) f (X )p(X )/p̃(X )〉p̃ with respect to the probability
densities p(x) and p̃(x), respectively. Of course, these mean
values can be estimated by corresponding sample means.
Therefore, an unbiased estimator for I1 is

Î1 = 1

N

N∑
i=1

�(x∗ − Xi ) f (Xi ), Xi
IID∼ p, (30)

and an unbiased estimator for I2 is

Ĩ2 = 1

N

N∑
i=1

�(Xi − x∗) f (Xi )
p(Xi )

p̃(Xi )
, Xi

IID∼ p̃. (31)

In order to determine the distribution of the random vari-
able ξ̂ (τ ) defined in Eq. (20), we first have to calculate the
EATASD. For this first step, the random variable X can be
identified with the TASD, and we have f (X ) = X . After es-
timating the EATASD, we can determine the distribution of
rescaled TASDs. In this second step, the random variable X
can be identified with ξ̂ (τ ), and for the estimation of the prob-
ability P(X ∈ [a, b]), we have f (X ) = �(X − a)�(b − X ).
Additionally, for both steps, we have to specify the likelihood
ratio p(x)/p̃(x). The probability for the occurrence of a certain
TASD is connected with the probability for the corresponding
realization of the generalized Lévy walk that is essentially
determined by the probability of the associated sequence of
flight durations. For the simple sampling, we use the original
distribution ψ (t ) of flight durations defined in Eq. (1). For the
importance sampling, we use a distribution of flight durations,

ψ̃ (t ) = (1 − p) ψ (t ) + pψ (t |t > t∗),

ψ (t |t > t∗) = �(t − t∗)
ψ (t )∫∞

t∗ ψ (t ) dt
, (32)

which for 0 < p � 1 guarantees that long flights of duration
t > t∗ are more likely. The advantage of this choice for the
distribution ψ̃ (t ) is that the likelihood ratio of a single flight
only depends on whether the flight duration t is smaller or
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larger than the threshold value t∗. The likelihood ratio for one
single flight is given by

LSF(t ) = ψ (t )

ψ̃ (t )
=
{ 1

1−p , t < t∗
1

1−p+p/λ , t > t∗ , λ =
∫ ∞

t∗
ψ (t ) dt,

(33)
and, therefore, the likelihood ratio for a complete trajectory
reads

LTraj =
(

1

1 − p

)Nt<t∗ ( 1

1 − p + p/λ

)Nt>t∗

, (34)

where Nt<t∗ and Nt>t∗ is the number of flights in one complete
trajectory with flight durations smaller and larger than t∗,
respectively. Using hybrid sampling, we obtain the numeri-
cally determined distributions of rescaled TASDs for γ = 1.8
and γ = 2.2 shown in Figs. 11(b) and 11(d). A comparison
of the left part of Fig. 11 with the right part of Fig. 11
shows the advantage of hybrid sampling over simple sam-
pling. Now we can see the second algebraic decay of the
distribution of rescaled TASDs which is described by Eq. (26)
and is responsible for the divergence of the EB parameter for
2ν � γ /2 + 2. In order to get the full distribution of rescaled
TASDs for γ > 4, where long flights are even more unlikely,
one would have to apply a hybrid sampling method which also
divides the tail of the distribution in several parts in order to
resolve the complete tail.

VII. SUMMARY AND DISCUSSION

In this article, we defined the variable speed generalized
Lévy walk consisting of a sequence of independent and iden-
tically distributed space-time coupled elementary events. This
general model includes several special cases which have been
investigated previously in the literature. All these models have
in common that they possess the same statistics of turning
points, but they differ in the spatio-temporal paths between
them. The main focus of the paper was the generalized Lévy
walk, which consists of flight episodes, where the velocities
of the flights deterministically depend on the heavy-tailed
distributed flight durations. We investigated this model in
full analytical detail, provided descriptive explanations for all
the observed phenomena, and compared our findings with
previous results for the other models that follow from the
general model. We found that the resulting types of anomalous
diffusion based on the time-lag dependence of the ensemble-
averaged squared displacement only depend on the statistics
of the turning points, whereas the spatio-temporal paths be-
tween them control whether the ensemble-averaged squared
displacement may diverge or not for certain parameter ranges.
Furthermore, we derived the time-lag dependencies of the
time-averaged squared displacement of the generalized Lévy
walk and compared them with the corresponding results for
the space-time coupled Lévy flight that consists of jumps and
waiting times. While the time-averaged squared displacement
of the space-time coupled Lévy flight always increases lin-
early, the generalized Lévy walk shows a richer spectrum
of time-lag dependencies indicating that the spatio-temporal
paths between the turning points crucially influence the be-
havior of time averages. For a certain range of parameters
of the generalized Lévy walk, the time-lag dependence of

the ensemble-averaged squared displacement leads to sub-
diffusion, whereas the time-averaged squared displacement
indicates superdiffusion. We argued that this kind of ergod-
icity breaking (“subdiffusion appearing as superdiffusion”) is
general insofar as it should also be observed in almost all the
other space-time coupled models that follow from the general
model. Whereas the subdiffusive behavior is caused by the
fact that the second moment of the traveled distances with
each elementary event diverges weaker than the mean event
duration, the superdiffusive behavior is caused by the continu-
ous motion during long elementary events. An investigation of
the random nature of the time-averaged squared displacement
based on the analytical derivation of the ergodicity breaking
parameter revealed further surprising results. We found that
the fluctuations of the time-averaged squared displacements
can become so large that the ergodicity breaking parameter
diverges (“infinitely strong ergodicity breaking”) although the
mean-squared displacements are finite. Even more surpris-
ingly, we argued that this can also happen for parameter
ranges where the generalized Lévy walk shows normal dif-
fusion. The reason is that, although the second moment of
the traveled distances per flight and the mean flight duration
are finite leading to normal diffusion, the algebraically decay-
ing distribution of flight durations can still cause very long
flights that lead to a heavy-tailed distribution of time-averaged
squared displacements which is responsible for the divergence
of the ergodicity breaking parameter. All the observed surpris-
ing results and kinds of ergodicity breaking are essential for
the interpretation of time averages obtained, for instance, from
single-particle tracking experiments.
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APPENDIX A: DERIVATION OF THE PROPAGATOR

In this Appendix, we derive the propagator p(x, t ) in terms
of the probability distributions ψ (x, t ) and W (x, t ) defined in
Eqs. (3) and (7), respectively. The propagator can be written
as

p(x, t ) =
∫
Rd

∫ t

0
Q(x − x′, t − t ′)W (x′, t ′) dt ′ dd x′, (A1)

where Q(x, t ) dd x dt is the probability that a random walker
arrives with a completed flight at an infinitesimal vol-
ume dd x around x in the time interval [t, t + dt]. We can
further write

Q(x, t ) =
∞∑

n=0

Qn(x, t ), (A2)

where Qn(x, t ) is the probability density to reach posi-
tion x at time t after n flights with Q0(x, t ) = δ(x) δ(t )
and

Qn(x, t ) =
∫
Rd

∫ t

0
Qn−1(x − x′, t − t ′) ψ (x′, t ′) dt ′ dd x′.

(A3)
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A combined Fourier F{ f (x); x, k} = ∫
Rd f (x) eikx dd x and Laplace L{g(t ); t, s} = ∫∞

0 g(t ) e−st dt transform [109] of the con-
volutions, Eq. (A1) and Eq. (A3), together with Eq. (A2) gives the Fourier and Laplace transform of the propagator according to
Eq. (8),

p(k, s) = W (k, s)

1 − ψ (k, s)
. (A4)

APPENDIX B: DERIVATION OF THE ENSEMBLE-AVERAGED SQUARED DISPLACEMENT (EASD)

The following derivation and the ones in Appendixes C and F are among others the multidimensional extensions of the results
obtained in [100].

The ensemble-averaged squared displacement (EASD) is defined by Eq. (9) and, according to Eq. (11), is equal to the second
moment of the propagator p(x, t ) with the initial condition p(x, t = 0) = δ(x). Because the Fourier transform of the propagator
is a moment-generating function, the Laplace transform of the EASD can be written as [6]

L{〈
x2(τ )〉E; τ, s} =
∫
Rd

x2 p(x, s) dd x

=
∫
Rd

− ∂2

∂k2
(eikx)

∣∣∣∣
k=0

p(x, s) dd x = − ∂2

∂k2
p(k, s)

∣∣∣∣
k=0

= − 
kW (k, s)

1 − ψ (k, s)

∣∣∣∣
k=0

− W (k, s)
kψ (k, s)

[1 − ψ (k, s)]2

∣∣∣∣
k=0

. (B1)

Note that ∇kψ (k = 0, s) and ∇kW (k = 0, s) are equal to zero due to the spatial isotropy of the considered random walk. The
long-time behavior of 〈
x2(τ )〉E is determined by the small-s behavior of L{〈
x2(τ )〉E; τ, s}. Therefore, and because of the
Laplace operator with respect to k at the point k = 0 in Eq. (B1), we need the small-s behavior and the Taylor expansion in
powers of k up to the second order of the quantities ψ (s), ψ (k, s), and W (k, s). For ψ (s), using the definition in Eq. (1), we find
[6]

ψ (s)
s→0


⎧⎨⎩
1 − �(1 − γ )(t0s)γ , 0 < γ < 1
1 − 1

γ−1 t0s − �(1 − γ )(t0s)γ , 1 < γ < 2
1 − 1

γ−1 t0s + 1
(γ−1)(γ−2) (t0s)2, γ > 2

. (B2)

This formula can be obtained by using the Cauchy-Saalschütz representation of the gamma function for negative arguments
[110]. For γ > 2, the small-s behavior in Eq. (B2) is identical to the Taylor expansion of ψ (s) in powers of s up to the second
order, where the prefactors of s and s2 correspond to the first and second moment of the probability density function ψ (t ) of
flight durations, respectively. The zeroth order reproduces the normalization of the distribution ψ (t ). For 1 < γ < 2, the second
moment of ψ (t ) diverges, and, therefore, the second-order term is replaced by a term of fractional order. For 0 < γ < 1, also
the first moment of ψ (t ) diverges, and so the first-order term is replaced by the fractional-order term. For γ < 0, ψ (t ) is not
normalizable and, thus, not a probability density function. A Taylor expansion of ψ (k, s) in powers of k up to the second order
gives

ψ (k, s) 
 ψ (s) − 1

2d
c2k2I1(s) (k → 0),

I1(s) =
∫ ∞

0
t2ν ψ (t ) e−st dt,

I1(s)
s→0


{
�(2ν+1)�(γ−2ν)

�(γ ) t2ν
0 , 2ν < γ

γ�(2ν − γ )tγ

0 sγ−2ν, 2ν > γ
,

(B3)

where the small-s behavior of the integral I1(s) for 2ν < γ is equal to the zeroth order of the corresponding Taylor expansion,
i.e., I1(0). For 2ν > γ , I1(0) diverges, and, therefore, the zeroth order is replaced by a fractional order, which can be obtained
from the definition of I1(s) in Eq. (B3) by using the definition of the gamma function. Finally, according to the calculation in
Eq. (B3), the small k and s expansion of W (k, s) yields

W (k, s) 
 1 − ψ (s)

s
− 1

2d
c2k2I2(s) (k → 0),

I2(s)
s→0


{�(2ν+2)�(γ−2ν−1)
3�(γ ) t2ν+1

0 , 2ν < γ − 1

γ�(2ν+1−γ )
γ+2−2ν

tγ

0 sγ−2ν−1, 2ν > γ − 1
,

(B4)
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where the double integral

I2(s) =
∫ ∞

0

∫ ∞

t
t ′2ν−2 ψ (t ′) dt ′ t2e−st dt (B5)

diverges for 2ν � γ + 2. Therefore, also the EASD, Eq. (B1), diverges under the same condition,

〈
x2(τ )〉E = ∞ if 2ν � γ + 2. (B6)

However, for 2ν < γ + 2, by inserting Eqs. (B2)–(B4) in Eq. (B1) and performing the inverse Laplace transform, we obtain for
the EASD with 0 < γ < 1,

〈
x2(τ )〉E
τ→∞


{
c2 �(2ν+1)�(γ−2ν)

�(1−γ )�(γ )�(γ+1) t
2ν−γ

0 τ γ , 0 < 2ν < γ

2c2 γ

γ+2−2ν

�(2ν−γ )
�(1−γ )�(2ν+1)τ

2ν, γ < 2ν < γ + 2
, (B7)

and for γ > 1, we get

〈
x2(τ )〉E
τ→∞


{
c2 �(2ν+1)�(γ−2ν)

�(γ−1) t2ν−1
0 τ, 0 < 2ν < γ

2c2 γ (γ−1)
γ+2−2ν

�(2ν−γ )
�(2ν+2−γ ) t

γ−1
0 τ 2ν+1−γ , γ < 2ν < γ + 2

. (B8)

The τ -dependencies in Eq. (B7) and Eq. (B8) are the ones indicated in Fig. 4(a).

APPENDIX C: DERIVATION OF THE ENSEMBLE AVERAGE OF THE TIME-AVERAGED SQUARED
DISPLACEMENT (EATASD)

Our starting point for the analytical derivation is the Green-Kubo formula [54,101,102]

〈
x2(τ )〉T = 2
∫ τ

0
(τ − t )Cv(t ) dt, (C1)

which relates the time-averaged squared displacement (TASD) with the autocorrelation function Cv(t ) of the velocity process
defined as time average,

Cv(t ) = 1

T − t

∫ T −t

0
v(t ′)v(t ′ + t ) dt ′. (C2)

With the Green-Kubo formula, we can write for the ensemble average of the time-averaged squared displacement (EATASD)

〈〈
x2(τ )〉T〉E = 2
∫ τ

0
(τ − t ) 〈Cv(t )〉E dt . (C3)

By taking the Laplace transform of Eq. (C3) and by using the convolution theorem of the Laplace transform [109], we obtain

L{〈〈
x2(τ )〉T〉E; τ, s} = 2
1

s2
L{〈Cv(t )〉E; t, s}. (C4)

According to the definition in Eq. (C2), the ensemble average of the autocorrelation function Cv(t ) of the velocity process defined
as time average is given by

〈Cv(t )〉E
T �t
 1

T

∫ T

0
〈v(t ′)v(t ′ + t )〉E dt ′. (C5)

By using the properties of the Laplace transform [109], the Laplace transform of Eq. (C5) reads

L2{T 〈Cv(t )〉E; t, s; T, u} = 1

u
L2{〈v(t ′)v(t ′ + t )〉E; t, s; t ′, u}. (C6)

The expectation value on the right-hand side of Eq. (C6) can be expressed by the probability density p(v′, t ′; v, t ′ + t ) that the
velocity of the process is equal to v′ at time t ′ and equal to v at a later time t ′ + t ,

〈v(t ′)v(t ′ + t )〉E =
∫
Rd

∫
Rd

v′v p(v′, t ′; v, t ′ + t ) dd v′ dd v, (C7)

where p(v′, t ; v, t ′ + t ) is normalized with respect to v′ and v. For this probability density, we can write

p(v′, t ′; v, t ′ + t ) = p=(v; t ′, t ′ + t ) δ(v − v′) + p�=(v′, t ′; v, t ′ + t ), (C8)

where p=(v; t ′, t ′ + t ) denotes the probability density that the two instants of time t ′ and t ′ + t belong to the same flight of
velocity v, and p�=(v′, t ′; v, t ′ + t ) denotes the probability density that the two instants of time belong to different flights of
velocity v′ and v, respectively. Note that the normalization condition for p=(v; t ′, t ′ + t ) reads limt→0

∫
p=(v; t ′, t ′ + t ) dd v =
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1. Due to the isotropy of the generalized Lévy walk, i.e., a flight with velocity v has the same probability as a flight with
velocity −v,

p�=(v′, t ′; v, t ′ + t ) = p�=(v′, t ′; −v, t ′ + t ) = p�=(−v′, t ′; v, t ′ + t ) = p�=(−v′, t ′; −v, t ′ + t ). (C9)

By inserting Eq. (C8) into Eq. (C7) and by using Eq. (C9), we get

〈v(t ′)v(t ′ + t )〉E =
∫
Rd

v2 p=(v; t ′, t ′ + t ) dd v

=
∫ ∞

0
|v|2 p=(|v|; t ′, t ′ + t ) d|v|

=
∫ ∞

0
c2t2ν−2

f p=(t f ; t ′, t ′ + t ) dt f , (C10)

where we also used the deterministic dependence of the absolute value |v| of the flight velocities on the corresponding flight
durations t f . Therefore, the calculation of the expectation value on the left-hand side of Eq. (C10) reduces to the problem of
finding an analytical expression for the probability density p=(t f ; t ′, t ′ + t ) that the two instants of time t ′ and t ′ + t belong to
the same flight of duration t f . An appropriate ansatz for solving this problem is

p=(t f ; t ′, t ′ + t ) =
∞∑

n=1

p=
n (t f ; t ′, t ′ + t ), (C11)

where p=
n (t f ; t ′, t ′ + t ) denotes the probability density that the two instants of time belong to the nth flight of duration t f . In

order to find an analytical expression for p=
n (t f ; t ′, t ′ + t ), we use methods introduced by Godrèche and Luck [99], where similar

distributions of renewal processes were investigated (these methods were also applied, e.g., in [111]). To do so, we write

p=
n (t f , t ′, t ′ + t ) =

〈
δ(t f − Tn) I

(
n−1∑
i=1

Ti < t ′ <

n∑
i=1

Ti

)
I

(
n−1∑
i=1

Ti < t ′ + t <

n∑
i=1

Ti

)〉
E

, (C12)

where I (. . . ) is a so-called indicator function, which is equal to unity if the condition in parentheses is true and zero otherwise.
Ti denotes the duration of the ith flight of a trajectory of the generalized Lévy walk. The indicator functions in Eq. (C12) account
for the above-mentioned condition that the two instants of time t ′ and t ′ + t belong to the nth flight. As usual, 〈. . . 〉E denotes
an ensemble average over all possible trajectories of the generalized Lévy walk, i.e., an average over all possible sequences of
flight durations,

〈. . . 〉E =
∫ ∞

0
· · ·
∫ ∞

0
. . . ψ (t1) · · · ψ (tn) dt1 · · · dtn. (C13)

A Laplace transform of p=
n (t f ; t ′, t ′ + t ) with respect to t can easily be calculated by using the definition of the indicator function,

L{p=
n (t f , t ′, t ′ + t ); t, s} =

〈
δ(t f − Tn)I

(
n−1∑
i=1

Ti < t ′ <

n∑
i=1

Ti

)
1

s

(
1 − e−s(

∑n
i=1 Ti−t ′ ))〉

E

. (C14)

A further Laplace transform with respect to t ′ results in

L2{p=
n (t f , t ′, t ′ + t ); t, s; t ′, u} = 1

s

〈
δ(t f − Tn)

∫ ∑n
i=1 Ti

∑n−1
i=1 Ti

(
1 − e−s(

∑n
i=1 Ti−t ′ ))e−ut ′

dt ′
〉

E

. (C15)

The integral on the right-hand side of Eq. (C15) can straightforwardly be calculated,∫ ∑n
i=1 Ti

∑n−1
i=1 Ti

(
1 − e−s(

∑n
i=1 Ti−t ′ ))e−ut ′

dt ′ = 1

u

(
e−u

∑n−1
i=1 Ti − e−u

∑n
i=1 Ti

)− 1

s − u
e−s

∑n
i=1 Ti

(
e(s−u)

∑n
i=1 Ti − e(s−u)

∑n−1
i=1 Ti

)
=
(

1

u
+ 1

s − u
e−sTn

)
e−u

∑n−1
i=1 Ti + s

u(u − s)
e−u

∑n
i=1 Ti . (C16)

By inserting Eq. (C16) into Eq. (C15) and by combining the result with the Laplace transform of Eq. (C10) and Eq. (C11), we
obtain

L2{〈v(t ′)v(t ′ + t )〉E; t, s; t ′, u} =
∫ ∞

0
c2t2ν−2

f L2{p=(t f ; t ′, t ′ + t ); t, s; t ′, u} dt f

=
∞∑

n=1

∫ ∞

0
c2t2ν−2

f L2{p=
n (t f ; t ′, t ′ + t ); t, s; t ′, u} dt f
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=
∞∑

n=1

∫ ∞

0
c2t2ν−2

f

1

s

〈
δ(t f − Tn)

[(
1

u
+ 1

s − u
e−sTn

)
e−u

∑n−1
i=1 Ti + s

u(u − s)
e−u

∑n
i=1 Ti

]〉
E

dt f

=
∞∑

n=1

1

s

〈
c2T 2ν−2

n

[(
1

u
+ 1

s − u
e−sTn

)
e−u

∑n−1
i=1 Ti + s

u(u − s)
e−u

∑n
i=1 Ti

]〉
E

. (C17)

We now can evaluate the ensemble average in Eq. (C17) by using Eq. (C13) and the definition of the Laplace transform,

L2{〈v(t ′)v(t ′ + t )〉E; t, s; t ′, u} = c2
∞∑

n=1

[ 〈T 2ν−2〉ψn−1(u)

su
+ L{t2ν−2ψ (t ); t, s}ψn−1(u)

s(s − u)
+ L{t2ν−2ψ (t ); t, u}ψn−1(u)

u(u − s)

]
.

(C18)

The sum in Eq. (C18) can be calculated by using the geometric series,

L2{〈v(t ′)v(t ′ + t )〉E; t, s; t ′, u} = c2

1 − ψ (u)

[ 〈T 2ν−2〉
su

+ L{t2ν−2ψ (t ); t, s}
s(s − u)

+ L{t2ν−2ψ (t ); t, u}
u(u − s)

]
. (C19)

Note that this equation for the special case ν = 1 has already been found for the standard Lévy walk with constant flight velocity
[56]. By inserting Eq. (C19) into Eq. (C6) and combining the result with Eq. (C4), we obtain the double Laplace transform of
T 〈〈
x2(τ )〉T〉E,

L2{T 〈〈
x2(τ )〉T〉E; τ, s; T, u} = 2c2

s2u[1 − ψ (u)]

[ 〈T 2ν−2〉
su

+ L{t2ν−2ψ (t ); t, s}
s(s − u)

+ L{t2ν−2ψ (t ); t, u}
u(u − s)

]
. (C20)

The fractional moment appearing on the right-hand side of Eq. (C20) can be calculated by using the definition of the beta function
and its connection to the gamma function,

〈T 2ν−2〉 =
∫ ∞

0
t2ν−2 ψ (t ) dt = �(2ν − 1)�(γ + 2 − 2ν)

�(γ )
t2ν−2
0 if 1 < 2ν < γ + 2. (C21)

The small-s behavior of the Laplace transform L{t2ν−2ψ (t ); t, s} can be obtained by using the Cauchy-Saalschütz representation
of the gamma function,

L{t2ν−2ψ (t ); t, s} s→0
 〈T 2ν−2〉 − 〈T 2ν−1〉s + 1

2
〈T 2ν〉s2 + γ�(2ν − γ − 2)tγ

0 sγ+2−2ν,

〈T 2ν−1〉 = �(2ν)�(γ + 1 − 2ν)

�(γ )
t2ν−1
0 ,

〈T 2ν〉 = �(2ν + 1)�(γ − 2ν)

�(γ )
t2ν
0 . (C22)

The fractional moment in Eq. (C21) diverges for 2ν � γ + 2. Therefore, also the EATASD, Eq. (C20), diverges under the same
condition,

〈〈
x2(τ )〉T〉E = ∞ if 2ν � γ + 2. (C23)

Interestingly, the fractional moment in Eq. (C21) also diverges for 2ν � 1. This divergence, however, is compensated by the
Laplace transform L{t2ν−2ψ (t ); t, s} = ∫∞

0 t2ν−2 ψ (t ) e−st dt , which contains exactly the same divergence at the lower bound of
integration. In order to see that these divergences cancel out, one only has to bring the fractions in the square brackets on the right-
hand side of Eq. (C20) to the common denominator. Therefore, for 2ν < γ + 2, the EATASD is finite. By inserting Eq. (C21)
and Eq. (C22) into Eq. (C20), we obtain the small-s and the small-u behavior of the Laplace transform of T 〈〈
x2(τ )〉T〉E, from
which the large-τ and the large-T behavior of 〈〈
x2(τ )〉T〉E can be calculated by an inverse Laplace transform. Additionally, we
consider the asymptotic behavior for s � u in the Laplace space, which corresponds to the asymptotic behavior for T � τ in
the original space. For 0 < γ < 1, we get

L2
{
T 〈〈
x2(τ )〉T〉E; τ, s; T, u

}
(s,u)→(0,0)


⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c2〈t2ν 〉ψ (t )

�(1−γ )tγ

0
s−2u−γ−1, 0 < 2ν < γ

2c2γ�(2ν−γ−2)
�(1−γ )s2uγ+1

sγ+1−2ν−uγ+1−2ν

s−u

s�u
 2c2γ�(2ν−γ−2)
�(1−γ ) sγ−2ν−2u−γ−1, γ < 2ν < γ + 1

2c2γ�(2ν−γ−2)
�(1−γ )s2uγ+1

sγ+1−2ν−uγ+1−2ν

s−u

s�u
 − 2c2γ�(2ν−γ−2)
�(1−γ ) s−3u−2ν, γ + 1 < 2ν < γ + 2

. (C24)
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After an inverse Laplace transform of Eq. (C24), we obtain

〈〈
x2(τ )〉T〉E
1�τ�T


⎧⎪⎪⎨⎪⎪⎩
c2 �(2ν+1)�(γ−2ν)

�(1−γ )�(γ )�(γ+1) t
−γ

0 T γ−1τ, 0 < 2ν < γ

2c2 �(2ν−γ−2)
�(1−γ )�(γ )�(2ν+2−γ ) T

γ−1τ 2ν+1−γ , γ < 2ν < γ + 1

−c2γ
�(2ν−γ−2)
�(1−γ )�(2ν) T

2ν−2τ 2, γ + 1 < 2ν < γ + 2

. (C25)

Accordingly, for γ > 1, the Laplace transform of T 〈〈
x2(τ )〉T〉E reads

L2
{
T 〈〈
x2(τ )〉T〉E; τ, s; T, u

}
(s,u)→(0,0)


⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c2(γ−1)〈t2ν 〉ψ (t )

t0
s−2u−2, 0 < 2ν < γ

2c2γ (γ−1)�(2ν−γ−2)tγ−1
0

s2u2
sγ+1−2ν−uγ+1−2ν

s−u

s�u
 2c2γ (γ−1)�(2ν−γ−2)
t1−γ

0 s2ν+2−γ u2
, γ < 2ν < γ + 1

2c2γ (γ−1)�(2ν−γ−2)tγ−1
0

s2u2
sγ+1−2ν−uγ+1−2ν

s−u

s�u
 − 2c2γ (γ−1)�(2ν−γ−2)
t1−γ

0 s3u2ν+1−γ
, γ + 1 < 2ν < γ + 2

, (C26)

and in the time domain, we get

〈〈
x2(τ )〉T〉E
1�τ�T


⎧⎪⎪⎪⎨⎪⎪⎪⎩
c2 �(2ν+1)�(γ−2ν)

�(γ−1) t2ν−1
0 τ, 0 < 2ν < γ

2c2γ (γ − 1) �(2ν−γ−2)
�(2ν+2−γ ) t

γ−1
0 τ 2ν+1−γ , γ < 2ν < γ + 1

−c2γ (γ − 1)�(2ν−γ−2)
�(2ν+1−γ ) t

γ−1
0 T 2ν−γ−1τ 2, γ + 1 < 2ν < γ + 2

. (C27)

The T - and τ -dependencies in Eq. (C25) and Eq. (C27) are the ones of Fig. 4(b).

APPENDIX D: DERIVATION OF THE CONTRIBUTION OF THE COMPLETED FLIGHTS TO THE ENSEMBLE AVERAGE
OF THE TIME-AVERAGED SQUARED DISPLACEMENT (EATASD)

The derivations in Appendixes D and E provide a simpler, more intuitive understanding of the results given in Eq. (C25)
and Eq. (C27), respectively. In this Appendix, we derive the contribution of the completed flights of the generalized Lévy
walk to the ensemble average of the time-averaged squared displacement (EATASD). This contribution corresponds to the first
summand on the right-hand side of Eq. (19). In order to calculate the expectation value, we need the joint probability distribution
pN (t1, . . . , tN ; T ) for the occurrence of N completed flights up to measurement time T with durations t1 to tN . This distribution
was derived in [99] and captures the full statistical information about the number and the durations of the completed flights,

pN (t1, . . . , tN ; T ) =
N∏

i=1

ψ (ti)
∫ ∞

T −∑N
j=1 t j

ψ (t ′) dt ′ �

(
T −

N∑
j=1

t j

)
, (D1)

where �(. . . ) denotes the Heaviside step function. In the following, we concentrate on the contribution to the EATASD coming
from flights of durations Ti longer than the time lag τ because it can be expected that the long flights mainly determine
the asymptotic time-lag dependence of the EATASD. If the time window [t, t + τ ] lies completely within these flights, the
corresponding squared displacement is given by [cT ν−1

i τ ]2. Therefore, we can write for the time integral over such a flight,∫ ti−τ

ti−1

[x(t + τ ) − x(t )]2 dt = [
cT ν−1

i τ
]2

(Ti − τ ) =: f (Ti ), (D2)

which we abbreviate as f (Ti ) in the following. The expectation value of the random sum of these time integrals can now be
calculated with the distribution in Eq. (D1),〈

NT∑
i=1

f (Ti )

〉
E

=
∞∑

N=1

[∫ ∞

τ

· · ·
∫ ∞

τ

(
N∑

i=1

f (ti )

)
pN (t1, . . . , tN ; T ) dt1 · · · dtN

]

=
∞∑

N=1

N

[∫ ∞

τ

· · ·
∫ ∞

τ

f (t1) pN (t1, . . . , tN ; T ) dt1 · · · dtN

]

=
∞∑

N=1

N

[∫ ∞

τ

f (t1) pN (t1; T ) dt1

]
. (D3)

In the second line of this calculation, we used that the N-fold integral of each summand f (ti ) gives the same result due to the
symmetry of the distribution pN (t1, . . . , tN ; T ) in Eq. (D1). The integration over durations t2 to tN of this distribution leads to
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the marginal distribution pN (t1; T ) of having N completed flights up to measurement time T with the duration of the first flight
equal to t1. This marginal distribution was also derived in [99],

pN (t1; T ) = ψ (t1) pN−1(T − t1) �(T − t1), (D4)

where pN−1(T − t1) denotes the probability for the occurrence of N − 1 completed flights in the time T − t1. Inserting Eq. (D4)
into the third line of Eq. (D3) results in〈

NT∑
i=1

f (Ti )

〉
E

=
∞∑

N=1

N

[∫ T

τ

f (t1) ψ (t1) pN−1(T − t1) dt1

]

=
∞∑

N=0

(N + 1)

[∫ T

τ

f (t1) ψ (t1) pN (T − t1) dt1

]

=
∫ T

τ

f (t1) ψ (t1)
〈
NT −t1

〉
E dt1 +

∫ T

τ

f (t1) ψ (t1) dt1. (D5)

An asymptotic analysis shows that the first integral J in the third line of Eq. (D5) dominates the second one.
In order to calculate the asymptotic behavior of the first integral, we need the asymptotic behavior of the mean number 〈NT 〉E

of completed flights up to measurement time T . From the renewal theory [99], it is well known that the Laplace transform of the
mean value 〈NT 〉E is given by

L{〈NT 〉E; T, s} = ψ (s)

s[1 − ψ (s)]
. (D6)

By using the small-s behavior of the Laplace transform ψ (s) of the flight time distribution in Eq. (B2), we get

〈NT 〉E
T →∞


{ T γ

�(1−γ )�(1+γ )tγ

0
, γ < 1

γ−1
t0

T, γ > 1
. (D7)

There are simple interpretations for these results. For γ > 1, where the mean flight duration is finite, the mean number of
completed flights should be asymptotically equal to the total measurement time divided by the mean flight duration, i.e., 〈NT 〉E 

T/〈Ti〉 = (γ − 1)/t0 T . For γ < 1, where the mean flight duration diverges, one can use the generalized central limit theorem,
i.e., T ≈ ∑NT

i=1 Ti ∼ N1/γ
T ⇒ NT ∼ T γ .

Inserting the definition in Eq. (D2), the asymptotic behavior of the flight time distribution ψ (t ) ∼ t−γ−1, and the asymptotic
behavior of 〈NT 〉E for γ < 1 into the first integral in the third line of Eq. (D5) leads to

J ∼ τ 2
∫ T

τ

t2ν−γ−3
1 (t1 − τ ) (T − t1)γ dt1. (D8)

The asymptotic behavior of this integral for T � τ is given by

J
T �τ∼

{
T γ τ 1+2ν−γ , 2ν < γ + 1
T 2ν−1 τ 2, 2ν > γ + 1

. (D9)

Dividing these asymptotics by the measurement time T according to Eq. (19) results in the correct asymptotic behavior of the
EATASD for 0 < γ < 1 [see Fig. 4(b) and Eq. (C25)]. For γ > 1, we can write for the first integral in the third line of Eq. (D5)

J ∼ τ 2
∫ T

τ

t2ν−γ−3
1 (t1 − τ ) (T − t1) dt1. (D10)

The asymptotic behavior for T � τ reads

J
T �τ∼

{
T τ 1+2ν−γ , 2ν < γ + 1
T 2ν−γ τ 2, 2ν > γ + 1

. (D11)

Again, dividing these asymptotics by the measurement time T leads to the correct asymptotic behavior of the EATASD for γ > 1
[see Fig. 4(b) and Eq. (C27)].

We would like to point out that one also has to evaluate the contributions to the EATASD where the time window [t, t + τ ]
contains turning points marking the end of the flights and the beginning of the next flights and the related contribution coming
from flights of duration smaller than τ . Because from the random walk theory it is known that a sequence of short flights leads to
normal diffusion with a linear time-lag dependence of the mean-squared displacement, it can be expected that these contributions
to the EATASD lead to the normal diffusive behavior observed for 2ν < γ in the phase diagram of the EATASD in Fig. 4(b) as
given by Eqs. (C25) and (C27). Note that for 2ν < γ , a linear time-lag dependence dominates the asymptotic behavior found for
2ν < γ + 1 in Eq. (D9) and Eq. (D11).
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APPENDIX E: DERIVATION OF THE CONTRIBUTION OF
THE LAST INCOMPLETE FLIGHT TO THE ENSEMBLE

AVERAGE OF THE TIME-AVERAGED SQUARED
DISPLACEMENT (EATASD)

In this Appendix, we calculate the contribution of the
last incomplete flight of a generalized Lévy walk to the en-
semble average of the time-averaged squared displacement
(EATASD) in Eq. (19). If the duration t f of the last incomplete
flight is larger than the time lag τ , a squared displacement
within this flight is given by [x(t + τ ) − x(t )]2 = [ctν−1

f τ ]2.
The corresponding time integral over the last incomplete flight
reads ∫ T

tNT

[x(t + τ ) − x(t )]2 dt = [
ctν−1

f τ
]2

tB, (E1)

where tB is the so-called backward recurrence time; see
Fig. 12. The average over all possible last incomplete flights
longer than the time lag τ gives〈∫ T

tNT

[x(t + τ ) − x(t )]2 dt

〉
E

=
∫ T

τ

∫ ∞

tB

(
ctν−1

f τ
)2

tB pT (t f , tB) dt f dtB, (E2)

where pT (t f , tB) is the probability density for the occurrence
of a flight of duration t f with backward recurrence time tB at
instant of time T . Note that, of course, the duration t f of the
last incomplete flight must be larger than the backward recur-
rence time tB, which cannot be longer than the measurement
time T by definition.

In order to continue the calculation, we need the distribu-
tion pT (t f , tB) whose triple Laplace transform is derived at the
end of this Appendix,

pT (t f , tB)
L3−→ pz(s, u) = 1

u + z

ψ (s) − ψ (s + u + z)

1 − ψ (z)
.

(E3)
From this equation one can obtain, for instance, the double
Laplace transform of the distribution pT (tB) of the backward
recurrence time, which is well known from renewal theory
[99],

pT (tB) =
∫ ∞

0
pT (t f , tB) dt f

L2−→ pz(u) = lim
s→0

pz(s, u) = 1

u + z

1 − ψ (u + z)

1 − ψ (z)
. (E4)

FIG. 12. Schematic representation of one realization of a gener-
alized Lévy walk with the current flight time t f and the backward
recurrence time tB with respect to the instant of time T .

Performing the inverse Laplace transform of Eq. (E3) with
respect to the Laplace variable s results in

pz(s, u)
L−1−→
s→t f

pz(t f , u) = ψ (t f )
1 − e−(u+z)t f

(u + z)[1 − ψ (z)]
. (E5)

Another inverse Laplace transform with respect to the Laplace
variable u leads to

pz(t f , u)
L−1−→

u→tB
pz(t f , tB) = ψ (t f )

e−ztB

1 − ψ (z)
�(t f − tB),

(E6)
where �(. . . ) is the Heaviside step function. Performing the
last inverse Laplace transform with respect to the Laplace
variable z yields the distribution pT (t f , tB) in the time domain,

pz(t f , tB)
L−1−→
z→T

pT (t f , tB)

= ψ (t f )L−1

[
1

1 − ψ (z)
; z, T − tB

]
�(T − tB) �(t f − tB).

(E7)

This result can be inserted in Eq. (E2) in order to obtain
the contribution of the last incomplete flight to the EATASD
according to Eq. (19),

1

T

〈 ∫ T

tNT

[x(t + τ ) − x(t )]2 dt

〉
E

= 1

T

∫ T

τ

∫ ∞

tB

[
ctν−1

f τ
]2

tB ψ (t f )

× L−1

[
1

1 − ψ (z)
; z, T − tB

]
dt f dtB

∼ τ 2

T

∫ T

τ

t2ν−γ−1
B L−1

[
1

1 − ψ (z)
; z, T − tB

]
dtB.

(E8)

Interestingly, the inner integral in the second line of Eq. (E8)
diverges for 2ν � γ + 2 providing again the correct condition
for the divergence of the EATASD. In order to evaluate the
inverse Laplace transform in the last line of Eq. (E8), we
use the asymptotic behavior of the Laplace transform of the
distribution of the flight durations in Eq. (B2). For γ < 1, we
obtain

∼τ 2

T

∫ T

τ

t2ν−γ−1
B (T − tB)γ−1 dtB

T �τ∼ T 2ν−2τ 2, (E9)

and for γ > 1, we get

∼τ 2

T

∫ T

τ

t2ν−γ−1
B dtB

T �τ∼ T 2ν−γ−1τ 2. (E10)

We can see that the contribution of the last incomplete flight
of the generalized Lévy walk to the EATASD leads to the
quadratic time-lag dependencies that were obtained rigorously
in Eqs. (C25) and (C27) as shown in the phase diagram for the
EATASD in Fig. 4(b). Note that also the dependence on the
total measurement time T is reproduced correctly.
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Derivation of pz(s, u)

In the last part of this Appendix, we derive the triple Laplace transform pz(s, u) of the distribution pT (t f , tB). As an ansatz,
we can write

pT (t f , tB) =
∞∑

n=1

pn
T (t f , tB), (E11)

where pn
T (t f , tB) is the probability that the instant of time T belongs to the nth flight with flight duration t f and backward

recurrence time tB with respect to T . In order to find an analytical expression for this probability, we use methods of Godréche
and Luck [99] similar to the derivation in the previous Appendix. Therefore, we have

pn
T (t f , tB) =

〈
δ(t f − Tn) δ

[
tB −

(
T −

n−1∑
i=1

Ti

)]
I

(
n−1∑
i=1

Ti < T <

n∑
i=1

Ti

)〉
E

, (E12)

where I (. . . ) is again the indicator. The indicator function ensures that the instant of time T belongs to the nth flight. The double
Laplace transform of Eq. (E12) with respect to t f and tB can easily be calculated due to the δ functions,

pn
T (t f , tB)

L2−→
t f →s
tB→u

pn
T (s, u) =

〈
e−sTn e−u(T −∑n−1

i=1 Ti )I

(
n−1∑
i=1

Ti < T <

n∑
i=1

Ti

)〉
E

. (E13)

A further Laplace transform with respect to T results in

pn
T (s, u)

L−→
T →z

pn
z (s, u) =

〈
e−sTn eu

∑n−1
i=1 Ti

1

u + z

(
e−(u+z)

∑n−1
i=1 Ti − e−(u+z)

∑n
i=1 Ti

)〉
E

= 1

u + z

〈
e−sTn−z

∑n−1
i=1 Ti − e−(s+u+z)Tn−z

∑n−1
i=1 Ti

〉
E
. (E14)

The ensemble average in Eq. (E14) has to be performed according to Eq. (C13) of Appendix C. Using the definition of the
Laplace transform ψ (s) of the distribution ψ (t ) of flight durations Ti, we get

pn
z (s, u) = 1

u + z
[ψ (s) − ψ (s + u + z)]ψn−1(z). (E15)

Inserting this result in the Laplace transform of Eq. (E11) and performing the sum using the geometric series, we obtain the
triple Laplace transform of the distribution pT (t f , tB),

pz(s, u) =
∞∑

n=1

pn
z (s, u) = 1

u + z

ψ (s) − ψ (s + u + z)

1 − ψ (z)
. (E16)

APPENDIX F: DERIVATION OF THE ERGODICITY BREAKING (EB) PARAMETER

The ergodicity breaking (EB) parameter is defined in Eq. (21) as variance of the random variable ξ̂ (τ ) specified in Eq. (20).
According to Eq. (22), the random variable ξ̂ (τ ) is equal in distribution to the random variable ξ ∗ in the limit τ → 0. If the
diffusion exponents obtained from all time-averaged squared displacements (TASDs) coincide, ξ̂ (τ ) does not depend on τ ,
and the equality in distribution also holds for all values of τ . Because it is difficult to obtain an analytical expression for the
distribution of the random variable ξ ∗ for the generalized Lévy walk, we concentrate on finding an analytical expression for the
variance of the random variable ξ ∗, i.e., the EB parameter in the limit τ → 0. For the different regions of the two-dimensional
parameter space, we will infer the distribution of the random variable ξ̂ (τ ) from the corresponding formula of the EB parameter.
The first moment of the random variable ξ ∗ is equal to unity, and, therefore, we can write for the EB parameter

lim
τ→0

EB(τ ) =
〈[∫ T

0 v2(t ) dt
]2〉

E〈∫ T
0 v2(t ) dt

〉2
E

− 1. (F1)

The time integral of the squared velocity in Eq. (F1) can be interpreted as a biased Lévy walk in one spatial dimension with
modified definitions of the distributions ψ (x, t ) and W (x, t ), namely

ψ (x, t ) = δ(x − c2t2ν−1) ψ (t ) (F2)

and

W (x, t ) =
∫ ∞

t
δ(x − c2t ′2ν−2t ) ψ (t ′) dt ′. (F3)
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Then, the analytical treatment of the numerator and the denominator on the right-hand side of Eq. (F1) reduces to the calculation
of the second and the first moment of the propagator of this biased Lévy walk, respectively. However, this calculation is very
extensive. Instead, we here use the methods from Appendix C for the analytical treatment of the numerator and the denominator
on the right-hand side of Eq. (F1). The Laplace transform of the square root of the denominator is given by

L
{∫ T

0
〈v2(t )〉E dt ; T, s

}
= L{〈v2(t )〉E; t, s}

s
. (F4)

The Laplace transform on the right-hand side of Eq. (F4) can easily be calculated from Eq. (C19),

L{〈v2(t )〉E; t, s} = L
{

lim
t→0

〈v(t ′)v(t ′ + t )〉E; t ′, u
}∣∣∣

u=s

= lim
s→∞ sL2{〈v(t ′)v(t ′ + t )〉E; t, s; t ′, u}

∣∣∣
u=s

= c2 〈T 2ν−2〉 − L{t2ν−2ψ (t ); t, s}
s[1 − ψ (s)]

.

(F5)

If we insert Eq. (F5) into Eq. (F4), we obtain

L
{∫ T

0
〈v2(t )〉E dt ; T, s

}
= c2 〈T 2ν−2〉 − L{t2ν−2ψ (t ); t, s}

s2[1 − ψ (s)]
. (F6)

We now treat the numerator on the right-hand side of Eq. (F1),〈[∫ T

0
v2(t ) dt

]2
〉

E

=
∫ T

0

∫ T

0
〈v2(t )v2(t ′)〉E dt dt ′. (F7)

Because the Laplace transform of the right-hand side of Eq. (F7) with respect to T is difficult to calculate, we set the upper
bounds of integration equal to T1 and T2 and calculate the corresponding double Laplace transform,

L2

{∫ T1

0

∫ T2

0
〈v2(t )v2(t ′)〉E dt dt ′; T1, s; T2, u

}
= L2{〈v2(t )v2(t ′)〉E; t, s; t ′, u}

su
. (F8)

After an inverse double Laplace transform at the end of our derivation, we set T1 and T2 equal to T . The analytical treatment
of the Laplace transform of the correlation function of squared velocities in Eq. (F8) is analogous to the one of the Laplace
transform of the correlation function of nonsquared velocities in Appendix C.

We can write

〈v2(t )v2(t ′)〉E =
∫
Rd

∫
Rd

v2v′2 p(v, t ; v′, t ′) dd v dd v′

=
∫ ∞

0

∫ ∞

0
c2t2ν−2

f c2t ′2ν−2
f p(t f , t ; t ′

f , t ′) dt f dt ′
f , (F9)

where p(v, t ; v′, t ′) and p(t f , t ; t ′
f , t ′) denote the probability densities of having a flight of velocity v and duration t f at time t and

a flight of velocity v′ and duration t ′
f at time t ′. An appropriate ansatz for the latter is

p(t f , t ; t ′
f , t ′) =

∞∑
n,m=1

pnm(t f , t ; t ′
f , t ′), (F10)

where pnm(t f , t ; t ′
f , t ′) is the probability density of having the nth flight of duration t f at time t and the mth flight of duration

t ′
f at time t ′. Again, as in Appendix C, we use the methods introduced by Godrèche and Luck [99] to write an equation for the

probability density pnm(t f , t ; t ′
f , t ′),

pnm(t f , t ; t ′
f , t ′) =

〈
δ(t f − Tn) δ(t ′

f − Tm) I

(
n−1∑
i=1

Ti < t <

n∑
i=1

Ti

)
I

(
m−1∑
i=1

Ti < t ′ <

m∑
i=1

Ti

)〉
E

, (F11)

where I (. . . ) are again the indicator functions, which account for the above-mentioned condition that the two instants of time
t and t ′ belong to the nth and the mth flight, respectively. Ti denotes the duration of the ith flight, and the ensemble average,
Eq. (C13), takes all possible sequences of flight durations into account. The Laplace transform of Eq. (F9) combined with
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Eqs. (F10) and (F11) yields

L2{〈v2(t )v2(t ′)〉E; t, s; t ′, u} =
∫ ∞

0

∫ ∞

0
c2t2ν−2

f c2t ′2ν−2
f L2{p(t f , t ; t ′

f , t ′); t, s; t ′, u} dt f dt ′
f

=
∞∑

n,m=1

∫ ∞

0

∫ ∞

0
c2t2ν−2

f c2t ′2ν−2
f L2{pnm(t f , t ; t ′

f , t ′); t, s; t ′, u} dt f dt ′
f

=
∞∑

n,m=1

〈
c2T 2ν−2

n c2T 2ν−2
m

1

s

(
e−s

∑n−1
i=1 Ti − e−s

∑n
i=1 Ti

)1

u

(
e−u

∑m−1
i=1 Ti − e−u

∑m
i=1 Ti

)〉
E

. (F12)

Inserting Eq. (F12) into Eq. (F8) leads to

L2

{∫ T1

0

∫ T2

0
〈v2(t )v2(t ′)〉E dt dt ′; T1, s; T2, u

}
= c4

s2u2

∞∑
n,m=1

〈
T 2ν−2

n T 2ν−2
m

(
e−s

∑n−1
i=1 Ti − e−s

∑n
i=1 Ti

)(
e−u

∑m−1
i=1 Ti − e−u

∑m
i=1 Ti

)〉
E.

(F13)

The double sum on the right-hand side of Eq. (F13) can be split into three terms,

∞∑
n,m=1

=
∞∑

n=1

n∑
m=n

+
∞∑

m=1

∞∑
n=m+1

+
∞∑

n=1

∞∑
m=n+1

, (F14)

where for the first one n = m, for the second one n > m, and for the third one n < m. Evaluating the ensemble average, Eq. (C13),
in Eq. (F13) with respect to the first double sum on the right-hand side of Eq. (F14) results in

∞∑
n=1

〈
T 4ν−4

n

(
e−(s+u)

∑n−1
i=1 Ti + e−(s+u)

∑n
i=1 Ti − e−(s+u)

∑n−1
i=1 Ti−uTn − e−(s+u)

∑n−1
i=1 Ti−sTn

)〉
E

= 〈T 4ν−4〉 + L{t4ν−4ψ (t )}(s + u) − L{t4ν−4ψ (t )}(u) − L{t4ν−4ψ (t )}(s)

1 − ψ (s + u)
. (F15)

Correspondingly, with respect to the second double sum for which n > m, we get

∞∑
m=1

∞∑
n=m+1

〈
T 2ν−2

n T 2ν−2
m

(
e−s

∑n−1
i=1 Ti − e−s

∑n
i=1 Ti

)(
e−u

∑m−1
i=1 Ti − e−u

∑m
i=1 Ti

)〉
E

=
∞∑

m=1

∞∑
n=m+1

ψm−1(s + u) ψn−m−1(s)[L{t2ν−2ψ (t )}(s) 〈T 2ν−2〉

+ L{t2ν−2ψ (t )}(s + u)L{t2ν−2ψ (t )}(s) − L{t2ν−2ψ (t )}(s + u) 〈T 2ν−2〉
− L{t2ν−2ψ (t )}(s)L{t2ν−2ψ (t )}(s)], (F16)

where the double sum on the right-hand side of Eq. (F16) can easily be calculated by using the geometric series,

∞∑
m=1

∞∑
n=m+1

ψm−1(s + u) ψn−m−1(s) = 1

[1 − ψ (s)][1 − ψ (s + u)]
. (F17)

The third double sum for which n < m gives the same result as in Eq. (F16) with s and u interchanged. By combining Eqs. (F15),
(F16), and (F17), we obtain our final result,

L2

{∫ T1

0

∫ T2

0
〈v2(t )v2(t ′)〉E dt dt ′; T1, s; T2, u

}
= c4

s2u2

[ 〈T 4ν−4〉 + L{t4ν−4ψ (t )}(s + u) − L{t4ν−4ψ (t )}(s) − L{t4ν−4ψ (t )}(u)

1 − ψ (s + u)

+ [L{t2ν−2ψ (t )}(s + u) − L{t2ν−2ψ (t )}(s)][L{t2ν−2ψ (t )}(s) − 〈T 2ν−2〉]
[1 − ψ (s)][1 − ψ (s + u)]

+ [L{t2ν−2ψ (t )}(s + u) − L{t2ν−2ψ (t )}(u)][L{t2ν−2ψ (t )}(u) − 〈T 2ν−2〉]
[1 − ψ (u)][1 − ψ (s + u)]

]
.

(F18)
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The fractional moment appearing on the right-hand side of Eq. (F18) can be calculated by using the definition of the β function
and its connection to the � function,

〈T 4ν−4〉 =
∫ ∞

0
t4ν−4 ψ (t ) dt = �(4ν − 3)�(γ + 4 − 4ν)

�(γ )
t4ν−4
0 if

3

2
< 2ν <

γ

2
+ 2. (F19)

The small-s behavior of the Laplace transform L{t4ν−4ψ (t ); t, s} can be obtained by using the Cauchy-Saalschütz representation
of the � function,

L{t4ν−4ψ (t ); t, s} s→0
 〈T 4ν−4〉 − 〈T 4ν−3〉s + 1

2
〈T 4ν−2〉s2 + γ�(4ν − γ − 4)tγ

0 sγ+4−4ν,

〈T 4ν−3〉 = �(4ν − 2)�(γ + 3 − 4ν)

�(γ )
t4ν−3
0 ,

〈T 4ν−2〉 = �(4ν − 1)�(γ + 2 − 4ν)

�(γ )
t4ν−2
0 . (F20)

The fractional moment in Eq. (F19) diverges for 2ν � γ /2 + 2. Therefore, also the EB parameter diverges under the same
condition,

EB(τ ) = ∞ if 2ν � γ

2
+ 2. (F21)

The fractional moment in Eq. (F19) also diverges for 2ν � 3/2, but, similar to the discussion in Appendix C, this divergence is
compensated by the Laplace transform L{t4ν−4ψ (t ); t, s} = ∫∞

0 t4ν−4 ψ (t ) e−st dt , which contains exactly the same divergence
at the lower bound of integration. These divergences cancel out in Eq. (F18). Therefore, for 2ν < γ /2 + 2, the EB parameter
is finite. The small-s and the small-u behavior of its Laplace transform can be obtained by inserting Eqs. (F19) and (F20) into
Eq. (F18) and by inserting Eqs. (C21) and (C22) into Eq. (F6) and Eq. (F18) and by combining the results with Eq. (F1). Note
that the Laplace variables s and u in Eq. (F18) belong to the variables T1 and T2 in the time domain, where T1 and T2 have to
be set equal to T . Remember that we introduced these two variables T1 and T2 because it was too difficult to find the Laplace
transform of the right-hand side of Eq. (F7) with respect to T [see also Eq. (F8)]. Furthermore, for the inverse double Laplace
transform of Eq. (F18), we need the following relation:

L−2{s−αu−β (s + u)−γ ; s, T ; u, T } = �(α + β − 1)

�(α)�(β )�(α + β + γ − 1)
T α+β+γ−2, (F22)

which can be obtained by using the convolution theorem of the Laplace transform. In the following, we list our analytical results
for the EB parameter. To do so, we have to distinguish different cases:

For 0 < γ < 1 and 0 < 2ν < γ /2 + 1, we obtain

L
{〈∫ T

0
v2(t ) dt

〉
E

; T, s

}

 c2 �(2ν)�(γ + 1 − 2ν)

�(1 − γ )�(γ )
t2ν−γ−1
0 s−γ−1 (s → 0),〈∫ T

0
v2(t ) dt

〉
E


 c2 �(2ν)�(γ + 1 − 2ν)

�(1 − γ )�(γ )�(γ + 1)
t2ν−γ−1
0 T γ (T → ∞),

L
{〈[∫ T

0
v2(t ) dt

]2
〉

E

; T, s, u

}

 c4

s2u2

[
�(4ν − 1)�(γ + 2 − 4ν)

�(1 − γ )�(γ )
t4ν−γ−2
0 su(s + u)−γ

+ 2
�2(2ν)�2(γ + 1 − 2ν)

�2(1 − γ )�2(γ )
t4ν−2γ−2
0 s1−γ u(s + u)−γ

]
,〈[∫ T

0
v2(t ) dt

]2
〉

E


 2c4 �2(2ν)�2(γ + 1 − 2ν)

�2(1 − γ )�2(γ )�(2γ + 1)
t4ν−2γ−2
0 T 2γ (T → ∞), (F23)
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which leads to

lim
T →∞

EB = 2
�2(γ + 1)

�(2γ + 1)
− 1. (F24)

The case 0 < γ < 1 and γ /2 + 1 < 2ν < γ + 1 leads to the same asymptotic result. This is the result for region Mγ in Fig. 4(c).
For 0 < γ < 1 and γ + 1 < 2ν < γ /2 + 2, i.e., for region Aγ ,ν in Fig. 4(c), we get

L
{〈∫ T

0
v2(t ) dt

〉
E

; T, s

}

 −c2γ

�(2ν − γ − 2)

�(1 − γ )
s−2ν (s → 0),〈∫ T

0
v2(t ) dt

〉
E


 −c2γ
�(2ν − γ − 2)

�(1 − γ )�(2ν)
T 2ν−1 (T → ∞),

L
{〈[∫ T

0
v2(t ) dt

]2
〉

E

; T, s, u

}

 c4

s2u2

{
γ

�(4ν − γ − 4)

�(1 − γ )

(s + u)γ+4−4ν − sγ+4−4ν − uγ+4−4ν

(s + u)γ

+2γ 2 �2(2ν − γ − 2)

�2(1 − γ )

[(s + u)γ+2−2ν − sγ+2−2ν]sγ+2−2ν

sγ (s + u)γ

}
,〈[∫ T

0
v2(t ) dt

]2
〉

E


 2c4

[
γ 2(γ + 2 − 2ν)

�2(2ν − γ − 2)

�2(1 − γ )�(4ν − 1)

+ γ (γ + 3 − 4ν)
�(4ν − γ − 4)

�(1 − γ )�(4ν − 1)

]
T 4ν−2 (T → ∞),

(F25)

which results in

lim
T →∞

EB = 2
�2(2ν)

�(4ν − 1)
(γ + 2 − 2ν)

×
[
1+γ + 2 − 2ν

γ + 4 − 4ν

�(1− γ )�(4ν − γ − 2)

γ �2(2ν − γ − 1)

]
− 1.

(F26)

Furthermore, for γ > 1 and 0 < 2ν < γ /2 + 1, we obtain

L
{〈∫ T

0
v2(t ) dt

〉
E

; T, s

}

 c2 �(2ν)�(γ + 1 − 2ν)

�(γ − 1)
t2ν−2
0 s−2 (s → 0),〈∫ T

0
v2(t ) dt

〉
E


 c2 �(2ν)�(γ + 1 − 2ν)

�(γ − 1)
t2ν−2
0 T (T → ∞),

L
{〈[∫ T

0
v2(t ) dt

]2
〉

E

; T, s, u

}


 c4

s2u2

[
�(4ν − 1)�(γ + 2 − 4ν)

�(γ − 1)
t4ν−3
0 su(s + u)−1

+ 2
�2(2ν)�2(γ + 1 − 2ν)

�2(γ − 1)
t4ν−4
0 u(s + u)−1

]
,〈[∫ T

0
v2(t ) dt

]2
〉

E


 c4 �2(2ν)�2(γ + 1 − 2ν)

�2(γ − 1)
t4ν−4
0 T 2 (T → ∞), (F27)

which yields

lim
T →∞

EB = 0 (F28)

corresponding to ergodicity in the lower part of region D of
the phase diagram in Fig. 4(c). Additionally, for γ > 1 and

FIG. 13. Enlargement of the ergodic sector D of the phase dia-
gram of the EB parameter shown in Fig. 4(c). This sector, where the
EB parameter asymptotically goes to zero as the measurement time
T goes to infinity, is represented by the gray-shaded region bounded
by thick black lines. The thin black lines divide sector D in three
regions with different power-law dependencies of the EB parameter
on the measurement time T . Note that all exponents in this sector are
negative. The thin dotted lines serve as a guide to the eye.

014113-26



NONERGODICITY OF d-DIMENSIONAL GENERALIZED … PHYSICAL REVIEW E 105, 014113 (2022)

γ /2 + 1 < 2ν < γ + 1, we get

L
{〈∫ T

0
v2(t ) dt

〉
E

; T, s

}

 c2 �(2ν)�(γ + 1 − 2ν)

�(γ − 1)
t2ν−2
0 s−2 (s → 0),〈∫ T

0
v2(t ) dt

〉
E


 c2 �(2ν)�(γ + 1 − 2ν)

�(γ − 1)
t2ν−2
0 T (T → ∞),

L
{〈[∫ T

0
v2(t ) dt

]2
〉

E

; T, s, u

}

 c4

s2u2

[
γ (γ − 1)tγ−1

0

�−1(4ν − γ − 4)

(s + u)γ+4−4ν − sγ+4−4ν − uγ+4−4ν

s + u

+ 2
�2(2ν)�2(γ + 1 − 2ν)

�2(γ − 1)
t4ν−4
0 u(s + u)−1

]
,

〈[∫ T

0
v2(t ) dt

]2
〉

E


 2c4γ (γ − 1)(γ + 3 − 4ν)
�(4ν − γ − 4)

�(4ν − γ )
tγ−1
0 T 4ν−γ−1

+ c4 �2(2ν)�2(γ + 1 − 2ν)

�2(γ − 1)
t4ν−4
0 T 2 (T → ∞),

(F29)

which leads to

EB 

{

0,
γ

2 + 1 < 2ν <
γ

2 + 3
2

2
γ+4−4ν

�(γ−1)�(γ+1)�(4ν−γ−2)
�2(2ν)�2(γ+1−2ν)�(4ν−γ ) t

γ+3−4ν

0 T 4ν−γ−3,
γ

2 + 3
2 < 2ν < γ + 1

(T → ∞), (F30)

where the upper line corresponds to ergodicity in the upper part of region D, and the lower line corresponds to the behavior in
region Bγ ,ν in Fig. 4(c). Note, however, that the last line in Eq. (F30) is valid only below the line of EB divergence 2ν = γ /2 + 2
given by Eq. (F21).

So far, the identification of the dominant term in Eq. (F18) revealed that the EB parameter asymptotically goes to zero in
sector D. If one is interested in the details of this transition to ergodicity, i.e., the dependence of the EB parameter on the total
measurement time T , one has to incorporate additional terms in the asymptotic analysis. Because of the complicated structure
of Eq. (F18), this leads to additional cases that have to be distinguished. In Fig. 13 we summarize the dependence of the EB
parameter on the total measurement time T for sector D.

Finally, for γ > 1 and γ + 1 < 2ν < γ /2 + 2, i.e., for region Cγ ,ν in Fig. 4(c), we obtain

L
{〈∫ T

0
v2(t ) dt

〉
E

; T, s

}

 −c2γ (γ − 1)�(2ν − γ − 2)tγ−1

0 sγ−2ν−1 (s → 0),〈∫ T

0
v2(t ) dt

〉
E


 −c2γ (γ − 1)
�(2ν − γ − 2)

�(2ν + 1 − γ )
tγ−1
0 T 2ν−γ (T → ∞),

L
{〈[∫ T

0
v2(t ) dt

]2
〉

E

; T, s, u

}

 c4

s2u2

{
γ (γ − 1)tγ−1

0

�−1(4ν − γ − 4)

(s + u)γ+4−4ν − sγ+4−4ν − uγ+4−4ν

s + u

+2γ 2(γ − 1)2t2γ−2
0

�−2(2ν − γ − 2)

[(s + u)γ+2−2ν − sγ+2−2ν]sγ+2−2ν

s(s + u)

}
,

〈[∫ T

0
v2(t ) dt

]2
〉

E


 2c4γ (γ − 1)(γ + 3 − 4ν)
�(4ν − γ − 4)

�(4ν − γ )
tγ−1
0 T 4ν−γ−1, (F31)

which results in

EB 
 2(γ + 3 − 4ν)

γ (γ − 1)

�(4ν − γ − 4)�2(2ν + 1 − γ )

�(4ν − γ )�2(2ν − γ − 2)
t1−γ

0 T γ−1 (T → ∞). (F32)

Note that in sectors Bγ ,ν and Cγ ,ν in Fig. 4(c), the EB parameter is finite for every measurement time T , whereas the EB
parameter diverges for every finite T in sector ∞ for 2ν � γ /2 + 2.
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