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Algebraic area enumeration of random walks on the honeycomb lattice
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We study the enumeration of closed walks of given length and algebraic area on the honeycomb lattice.
Using an irreducible operator realization of honeycomb lattice moves, we map the problem to a Hofstadter-like
Hamiltonian and show that the generating function of closed walks maps to the grand partition function of
a system of particles with exclusion statistics of order g = 2 and an appropriate spectrum, along the lines of
a connection previously established by two of the authors. Reinterpreting the results in terms of the standard
Hofstadter spectrum calls for a mixture of g = 1 (fermion) and g = 2 exclusion particles whose properties merit
further studies. In this context we also obtain some unexpected Fibonacci sequences within the weights of the
combinatorial factors appearing in the counting of walks.
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I. INTRODUCTION

Random walks on lattices emerge in the study of various
problems of physical interest. The dynamics of electrons (or
quasiparticles) on an atomic lattice can be well approximated
by their hopping to the ground-state levels of different atoms
in the lattice: Hopping to excited states would introduce ex-
tra effective discrete degrees of freedom but such transitions
are generally energetically suppressed; likewise, hopping to
atoms beyond the few near neighbors of the atom presently
binding the electron is also suppressed. As a consequence,
the entire dynamical process can be described by a random
lattice walk. Percolation processes, Brownian-type diffusion
processes, and various other statistical processes can also be
modeled as random walks.

The algebraic area enumeration of closed random walks
on two-dimensional lattices is a topic with rich mathematical
and physical implications. Indeed, it is well known that the
algebraic area of a walk introduces in the quantum case an
interaction of the particle performing the walk with a constant
magnetic field perpendicular to the plane of motion. The al-
gebraic area is defined as the total oriented area spanned by
the walk as it traces the lattice. A unit lattice cell enclosed
in a counterclockwise (positive) direction has an area +1,
whereas when enclosed in a clockwise (negative) direction it
has an area −1. The total algebraic area is the area enclosed
by the walk weighted by its winding number: If the walk
winds around more than once, then the area is counted with
multiplicity. Figure 1 represents examples of closed random
walks on the square, triangular, and honeycomb lattices.
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In the case of the square lattice, the algebraic area enumer-
ation is embedded in the quantum dynamics of the Hofstadter
model [1] which describes the motion of an electron hopping
on a square lattice in a uniform perpendicular magnetic field,
with its spin frozen and thus nondynamical. The generating
function for the number C2n(A) of closed walks of length 2n
(necessarily even) enclosing an algebraic area A is given in
terms of the trace of the Hofstadter Hamiltonian Hγ ,∑

A

C2n(A)QA = Tr H2n
γ , (1)

where γ = 2πφ/φ0 stands for the flux per plaquette in units
of the flux quantum, Q = eiγ , and Hγ is the Hofstadter
Hamiltonian,

Hγ = u + u−1 + v + v−1.

The unitary operators u and v are unit magnetic translations
(hopping operators) in the x and y directions of the square
lattice and satisfy the magnetic translations algebra

v u = Q u v (2)

due to the perpendicular magnetic field piercing the lattice.
Terms contributing to the trace in (1) must involve an equal
number of u and u−1 and of v and v−1. Such terms represent
closed walks, each power of Hγ representing one step. Be-
cause of the commutation rules of u and v (2), the power of the
total factor of Q for such walks can be seen to be equal to the
algebraic area A of the walk, v−1u−1vu = Q corresponding to
a walk around an elementary plaquette. In quantum mechanics
the trace becomes a sum of the expectation value of Hγ over
all quantum states, with an appropriate normalization.

In Ref. [2] the question of enumerating all walks of given
length and area was studied, and an explicit algebraic area
enumeration was obtained in terms of a sum over composi-
tions (that is, partitions where the order of terms matters) of
the integer n which is half the walk length. In Ref. [3] and
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FIG. 1. Closed random walks of length 2n = 20 on the square, triangular, and honeycomb lattice with algebraic area −2, −12, and 6,
respectively.

Ref. [4], an interpretation of this enumeration was given in
terms of the statistical mechanics of particles obeying quan-
tum exclusion statistics with exclusion parameter g (g = 0 for
bosons, g = 1 for fermions, and higher g means a stronger
exclusion beyond Fermi). The square lattice enumeration was
found to be governed by g = 2 exclusion together with a
Hofstadter-induced spectral function sk := e−βεk accounting
for the one-body quantum spectrum εk . Other, different types
of lattice walks were governed by higher values of g and, in
general, other types of spectral functions. Explicit examples
of such enumerations were given, in particular for Kreweras-
like chiral walks on a triangular lattice [3], corresponding
to yet another quantum Hofstadter-like model (chiral and
non-Hermitian, though) and g = 3 exclusion. This particular
chiral model is to be distinguished from the triangular lattice
Hofstadter-like model originally proposed in Ref. [5]. Its but-
terfly structure—among other Hosftadter-like models—has
been studied in Ref. [6].

A case of particular physical and mathematical interest
is the honeycomb lattice. It arises naturally in the form of
graphene and carbon nanotubes, and many of its quantum
properties have been extensively studied (see, for example,
Refs. [7–9]). The honeycomb lattice is also relevant in graph
theory [10] and various physical models [11–13]. The quan-
tum model for a particle hopping on the honeycomb lattice
pierced by a perpendicular magnetic field was introduced in
Refs. [14,15]. The effect of lattice defects on its spectrum was
investigated in Ref. [16] and its butterfly-like spectrum was
obtained in Ref. [17].

In this work we address the question of the algebraic area
enumeration of closed random walks on the honeycomb lat-
tice: Can this enumeration be explicitly obtained, and does
it fall in the category described in Ref. [3] and Ref. [4], i.e.,
does it correspond to a system of particles with a particular ex-
clusion statistics? We will show that, indeed, the honeycomb
enumeration can be interpreted in terms of particles with g =
2 exclusion on a single-particle level spectrum identical to the
one for the Hofstadter model, i.e., with the same spectral func-
tion, but “diluted” by additional zero-energy levels between
successive levels, in a “toothcomb” pattern. Alternatively, it
can be interpreted in terms of the (undiluted) Hofstadter level
spectrum but with a statistical mixture of g=1 and g=2
exclusion particles. This last system can, in turn, be inter-
preted as a system of fermions with the possibility that two
fermions on neighboring levels can form a bound state of
modified energy. The physical properties of these systems and

the mapping between their physical observables need further
exploration. As a by-product of our analysis we will obtain
some unexpected Fibonacci sequences, either for the number
of compositions entering the enumeration or for the sum of the
coefficients weighting particular compositions, the occurrence
of which remains to be better understood.

The paper is structured as follows: In Sec. II we review the
Hofstadter model on the square lattice, where the coefficients
of the secular determinant of the Hofstadter Hamiltonian [18]
are reinterpreted in terms of g = 2 exclusion partition func-
tions. The algebraic area enumeration is then obtained in
terms of the associated cluster coefficients. In Sec. III we
study the honeycomb lattice, establish its correspondence to
an exclusion statistics system, and calculate the relevant par-
tition functions and cluster coefficients, arriving at an explicit
algebraic area enumeration expression. Some open ques-
tions and possible physical applications are exposed under
Conclusions.

II. SQUARE LATTICE WALKS ALGEBRAIC AREA
ENUMERATION

From now on we consider the flux γ per lattice cell to
be rational, i.e., φ/φ0 = p/q with p and q coprime, so Q =
exp(2iπp/q).

A. Hofstadter Hamiltonian

When the magnetic flux is rational the magnetic transla-
tions algebra has a finite-dimensional irreducible representa-
tion in which u and v are represented by the q × q matrices
[19]

u = eikx

⎛
⎜⎜⎜⎜⎜⎜⎝

Q 0 0 · · · 0 0
0 Q2 0 · · · 0 0
0 0 Q3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Qq−1 0
0 0 0 · · · 0 Qq

⎞
⎟⎟⎟⎟⎟⎟⎠

,

v = eiky

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
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(u and v are often referred to as “clock” and “shift” matrices:
quantum states correspond to the q “time” positions on a
circular clock; u “reads” the time when applied on them,
while v “shifts” the time by one unit); kx and ky are the
quasimomenta (remnants of Bloch momenta) in the x and
y directions and are related to the Casimirs of the u, v

algebra

uq = eiqkx , vq = eiqky .

The Casimirs make clear that the relevant range of kx and
ky is [0, 2π/q]. Indeed, shifting either kx or ky by 2π/q
in (3) amounts to performing a unitary transformation on

u, v:

kx → kx + 2π

q
⇔ u → vruv−r,

ky → ky + 2π

q
⇔ v → u−rvur, with r p = 1 (mod q).

Since uq and vq perform translations by q lattice units in the
x or the y direction, and they are set to a phase, this represen-
tation corresponds to making the lattice q × q periodic, with
quantum states picking up a phase eiqkx,y on going around each
period. Because of this structure, the algebra of u, v is often
called the “quantum torus” algebra, and we will refer to it by
this name in the sequel.

In this representation the Hofstadter Hamiltonian becomes
the q × q matrix,

Hq =

⎡
⎢⎢⎢⎢⎢⎢⎣

Qeikx + Q−1e−ikx eiky 0 · · · 0 e−iky

e−iky Q2eikx + Q−2e−ikx eiky · · · 0 0
0 e−iky () · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · () eiky

eiky 0 0 · · · e−iky Qqeikx + Q−qe−ikx

⎤
⎥⎥⎥⎥⎥⎥⎦

,

whose spectrum follows from the zeros of the secular determi-
nant det(1 − zHq), where z denotes the inverse energy. Hq has
q eigenvalues, which, on varying kx and ky, become q bands.
The evolution of these bands as the magnetic flux 2πp/q takes
nearby values but with drastically different q gives rise to the
fractal spectral flow known as the “Hofstadter butterfly.”

The secular determinant det(1 − zHq) has been shown [18]
to rewrite as

det(1 − zHq) =
�q/2�∑
n=0

(−1)nZ (n)z2n − 2[cos(qkx )

+ cos(qky)]zq, (4)

where the Z (n)’s are given by the nested trigonometric sums

Z (n) =
q−2n∑
k1=0

k1∑
k2=0

· · ·
kn−1∑
kn=0

4 sin2

[
π (k1 + 2n − 1)p

q

]

× 4 sin2

[
π (k2 + 2n − 3)p

q

]
· · ·

× 4 sin2

[
π (kn−1 + 3)p

q

]
4 sin2

[
π (kn + 1)p

q

]
(5)

with Z (0) = 1.
As we shall see, Z (n) in (5) is at the core of the lattice

walks algebraic area enumeration. To recover (5) let us use
an alternative form of the Hofstadter Hamiltonian involving
a different but equivalent representation of the operators u
and v, namely −uv and v (this corresponds to performing a
modular transformation on the lattice that leaves it invariant).
They still satisfy the same quantum torus algebra

v (−uv) = Q (−uv) v,

albeit with a different Casimir (−uv)q = −eiq(kx+ky ), and lead
to the new Hamiltonian

H ′
q = −uv − (uv)−1 + v + v−1,

i.e.,

H ′
q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 (1 − Qeikx )eiky 0 · · · 0 (1 − Q−qe−ikx )e−iky

(1 − Q−1e−ikx )e−iky 0 (1 − Q2eikx )eiky · · · 0 0
0 (1 − Q−2e−ikx )e−iky 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 (1 − Q(q−1)eikx )eiky

(1 − Qqeikx )eiky 0 0 · · · (1 − Q−(q−1)e−ikx )e−iky 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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or, denoting ω(k) = (1 − Qkeikx )eiky ,

H ′
q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ω(1) 0 · · · 0 ω̄(q)
ω̄(1) 0 ω(2) · · · 0 0

0 ω̄(2) 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 ω(q − 1)
ω(q) 0 0 · · · ω̄(q − 1) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Its secular determinant is the same as that of Hq given in (4) but for the new Casimirs, that is,

det(1 − zH ′
q) =

�q/2�∑
n=0

(−1)nZ (n)z2n −
[

q∏
j=1

ω( j) +
q∏

j=1

ω̄( j)

]
zq

=
�q/2�∑
n=0

(−1)nZ (n)z2n − 2[cos(qky) − cos(qkx + qky)]zq. (6)

Let us set ω(q) = 0, which makes the cosine term in (6) vanish and the matrix H ′
q tridiagonal,

H ′
q|ω(q)=0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 (1−Q1−q)eiky 0 · · · 0 0
(1−Qq−1)e−iky 0 (1−Q2−q)eiky · · · 0 0

0 (1−Qq−2)e−iky 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 (1−Q−1)eiky

0 0 0 · · · (1−Q)e−iky 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This form provides an iterative procedure for calculating the
Z (n)’s. Putting aside for a moment that Q = exp(2iπp/q) and
leaving it as a free parameter, independent of q, we introduce
the spectral function

sk = (1 − Qk )(1 − Q−k ), k = 1, 2, . . . , q. (7)

Denoting the secular determinant det[1 − zH ′
q|ω(q)=0] = dq,

its expansion in terms of the first row yields

dq = dq−1 − z2sq−1 dq−2, q � 2, (8)

where, by convention, d0 = d1 = 1. Expanding dq as a poly-
nomial in z and solving the corresponding recursion relation
for its coefficients, we obtain (see subsection 1 in the
Appendix)

Z (n)=
q−2n+1∑

k1=1

k1∑
k2=1

· · ·
kn−1∑
kn=1

sk1+2n−2sk2+2n−4 · · · skn−1+2skn , (9)

which, on restoring Q to its actual value exp(2iπp/q), i.e.,
the spectral function sk to its actual form sk = 4 sin2(πkp/q),
gives (5).

The recursion (8) is at the root of the connection between
square lattice walks and g = 2 exclusion statistics. Interpret-
ing the spectral function sk as the Boltzmann factor for a
one-body level e−βεk and −z2 as the fugacity x = eβμ, (8) can
be interpreted as an expansion of a grand partition function
Zq−1—here identified with dq—of noninteracting particles
in q − 1 quantum levels ε1, . . . , εq−1, obeying the exclusion
principle that no two particles can occupy adjacent levels,
namely

Zq−1 = Zq−2 + xsq−1 Zq−3

in terms of the last level εq−1 being empty (first term) or
occupied (second term). Then (6) identifies Z (n) as the n-body
partition function for particles occupying these q − 1 quantum
states, with gaps of 2 between successive terms reproducing
g = 2 exclusion.

B. Algebraic area enumeration on the square lattice

As already stressed, when Q = exp(2iπp/q) the algebraic
area counting (1),∑

A

C2n(A)QA = 1

q
Tr H2n

q , (10)

involves a trace over a finite number q of quantum states. To
normalize the contribution of each walk to QA and reproduce
the left-hand side of (10), a factor of 1/q must be included in
the normalization. Also, when 2n � q the trace involves extra
terms arising from the Casimirs kx, ky similarly to the cosine
terms in (4), corresponding to open walks that close only up
to periods (q, q) on the lattice (“umklapp” on the quantum
torus). These spurious contributions can be eliminated by
integrating the Casimirs kx and ky over [0, 2π] which makes
all factors of eiqkx and eiqky vanish. So the definition of the
trace in (10) is

Tr H2n
q = 1

(2π)2

∫ 2π

0
dkx

∫ 2π

0
dky tr H2n

q ,

which corresponds to summing over the q bands of the spec-
trum and over the scattering states labeled by kx, ky, in a
continuum normalization (we harmlessly extended the range
of kx, ky to the full interval [0, 2π] to simplify the expression).

To relate this trace to the Z (n)’s in (5) or, equivalently, in
(9), we make use of the fact that det(1 − zHq) is interpreted
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as a grand partition function and the Z (n) as n-body partition
functions. These lead to cluster coefficients b(n) defined via
the expansion of the grand potential

log

[ ∞∑
n=0

Z (n)xn

]
=

∞∑
n=1

b(n)xn (11)

with x the fugacity. Using the identity

log det(1 − zHq) = tr log(1 − zHq) = −
∞∑

n=1

zn

n
tr Hn

q ,

setting x = −z2 in (11), keeping in mind that trivially
tr H2n+1

q = 0, and comparing the two expressions we reach the
conclusion [2,3] that the trace in (10) for 2n is nothing but the
cluster coefficient b(n) up to a trivial factor

Tr H2n
q = 2n(−1)n+1b(n). (12)

The cluster coefficients can be directly calculated in terms of
the spectral function. One obtains

b(n) = (−1)n+1
∑

l1,l2,...,l j
composition of n

c(l1, l2, . . . , l j )
q− j∑
k=1

s
l j

k+ j−1 · · · sl2
k+1sl1

k , (13)

where the c(l1, l2, . . . , l j )’s are labeled by the compositions of the integer n with

c(l1, l2, . . . , l j ) =
(l1+l2

l1

)
l1 + l2

l2

(l2+l3
l2

)
l2 + l3

· · · l j−1

(l j−1+l j

l j−1

)
l j−1 + l j

. (14)

Further, the trigonometric sums 1
q

∑q− j
k=1 s

l j

k+ j−1 · · · sl2
k+1sl1

k can also be computed [2,4]

1

q

q− j∑
k=1

s
l j

k+ j−1 · · · sl2
k+1sl1

k =
∞∑

A=−∞
cos

(
2Aπp

q

) l3∑
k3=−l3

l4∑
k4=−l4

· · ·
l j∑

k j=−l j

(
2l1

l1 + A +∑ j
i=3(i − 2)ki

)(
2l2

l2 − A −∑ j
i=3(i − 1)ki

)

×
j∏

i=3

(
2li

li + ki

)
. (15)

Using (12), (13), (14), and (15), we deduce the desired algebraic area counting

∑
A

C2n(A)QA = 1

q
Tr H2n

q = 2n
∑

l1,l2,...,l j
composition of n

c(l1, l2, . . . , l j )
1

q

q− j∑
k=1

s
l j

k+ j−1 · · · sl2
k+1sl1

k ,

i.e.,

C2n(A) = 2n
∑

l1,l2,...,l j
composition of n

(l1+l2
l1

)
l1 + l2

l2

(l2+l3
l2

)
l2 + l3

· · · l j−1

(l j−1+l j

l j−1

)
l j−1 + l j

l3∑
k3=−l3

l4∑
k4=−l4

· · ·
l j∑

k j=−l j

(
2l1

l1 + A +∑ j
i=3(i − 2)ki

)

×
(

2l2
l2 − A −∑ j

i=3(i − 1)ki

) j∏
i=3

(
2li

li + ki

)
. (16)

We also note that, since

∑
l1,l2,...,l j

composition of n

c(l1, l2, . . . , l j ) =
(2n

n

)
2n

,

and, when q → ∞ [2,3],

1

q

q− j∑
k=1

s
l j

k+ j−1 · · · sl2
k+1sl1

k →
(

2(l1 + l2 + . . . + l j )

l1 + l2 + . . . + l j

)
, (17)

the overall closed square lattice walks counting

2n
∑

l1,l2,...,l j
composition of n

c(l1, l2, . . . , l j )

(
2(l1 + l2 + . . . + l j )

l1 + l2 + . . . + l j

)

=
(

2n

n

)2

is recovered as it should (see subsection 2 in the Appendix for
some enumeration examples).
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III. HONEYCOMB LATTICE WALKS ALGEBRAIC AREA
ENUMERATION

We saw that the algebraic area enumeration of walks on
the square lattice is directly related to the quantum mechan-
ics of an underlying particle system and invokes statistical
mechanical concepts that put the calculations and results in
a physical context. We plan to follow the same route to obtain
an explicit algebraic area enumeration for closed walks on the
honeycomb lattice.

A. Honeycomb Hamiltonian

Consider a particle hopping on a honeycomb lattice pierced
by a constant magnetic field (see Fig. 2). The honeycomb lat-
tice is bipartite and each individual hop moves the particle to
a site of the other part, so unitary operators representing such
translations act off-diagonally in the two sublattices. This also
means that we can define a unique hopping operator for each
of the three orientations of links, irrespective of the direction
of the move, since the action of such operators is uniquely
determined by the sublattice on which they act. Therefore, we
define three operators U , V , and W generating the hops in
each direction and such that when the particle hops around
a honeycomb cell it picks up a phase Q due to the magnetic
field. They satisfy the “honeycomb algebra”

U 2 = V 2 = W 2 = 1, (UVW )2 = Q. (18)

U , V , and W are both unitary and Hermitian. The Hofstadter-
like Hamiltonian follows as

Hhoneycomb = aU + bV + cW,

with a, b, c ∈ R+ transition amplitudes. The physical Hilbert
space consists of the irreducible representations of the honey-
comb algebra. As in the square lattice case, the quasimomenta
are encoded in the Casimirs of the algebra.

In the case of a rational flux Q = exp(2iπp/q) with p and
q coprime, the irreducible representation of U , V , and W for
generic quasimomenta (Casimirs) becomes 2q-dimensional

FIG. 2. Hopping operators U , V , and W on the honeycomb lat-
tice with U 2 = V 2 = W 2 = 1 and (UVW )2 = Q.

(see subsection 3 in the Appendix) and can be realized as

U =
(

0 u
u−1 0

)
, V =

(
0 v

v−1 0

)
,

W =
(

0 Q1/2vu−1

Q−1/2uv−1 0

)
(19)

with u, v given in (3) and Q±1/2 understood to stand for
exp(±iπp/q). The Casimirs of this algebra for rational flux
can be written as

C1 := (UV )q + (VU )q = −2(−1)q cos[q(kx − ky)],

C2 := (VW )q + (WV )q = 2(−1)p cos(qkx ),

C3 := (WU )q + (UW )q = 2(−1)p cos[q(ky − 2kx )],

where the second expressions evaluate them in the specific
realization (19).

C1, C2, and C3 are not independent, but satisfy

C2
1 + C2

2 + C2
3 + (−1)q C1C2C3 = 4,

leading to two independent Casimirs, as expected for a two-
dimensional lattice, encoded in the phases uq, vq. From the
definitions of U , V , and W in Fig. 2 we see that C2 generates
translations by one plaquette width in the vertical direction
(up or down depending on the sublattice), while C1 and C3

generate translations in directions at angles ±2π/3 from the
vertical. C2 =2(−1)p cos(qkx ) then indicates that kx is actually
the pseudomomentum in the vertical direction, whereas the
values of C1 and C3 imply that 3kx − 2ky is the pseudomo-
mentum in the horizontal direction.

For an isotropic lattice, a = b = c = 1, the honeycomb
Hamiltonian reduces to

H2q =
(

0 u+v+Q1/2vu−1

u−1 +v−1 +Q−1/2uv−1 0

)

=
(

0 A
A† 0

)
. (20)

As expected, it is block off-diagonal. Its square, however, is
block-diagonal

H2
2q =

(
AA† 0

0 A†A

)
=
(

Hq 0
0 H̃q

)
,

where Hq = AA† and H̃q = A†A have identical spectra equal
to the square of the honeycomb Hamiltonian spectrum.
Denoting

ω(k) = Q−k
(
1 + e−ikx Q

1
2 −k
)
e−i(kx−ky ),
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Hq can be rewritten as

Hq =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + ω(2)ω̄(2) ω(2) 0 · · · 0 ω̄(1)
ω̄(2) 1 + ω(3)ω̄(3) ω(3) · · · 0 0

0 ω̄(3) () · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · () ω(q)
ω(1) 0 0 · · · ω̄(q) 1 + ω(1)ω̄(1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

with secular determinant

det
(
1 − zH2q

) = det(1 − z2Hq)

=
q∑

n=0

(−1)nZ (n)z2n +
[

(−1)q
q∏

j=1

ω( j)ω̄( j) −
q∏

j=1

ω( j) −
q∏

j=1

ω̄( j)

]
z2q

=
q∑

n=0

(−1)nZ (n)z2n + 2{−(−1)p[cos(qky − 2qkx ) + cos(qkx )] + (−1)q[cos(qky − qkx ) + 1]}z2q. (22)

B. Honeycomb coefficients Z(n)

Our aim is to find for the Z (n) in (22) an expression analo-
gous to the one in (5) or (9) obtained in the Hofstadter case. To
this end, we reduce the honeycomb matrix (21) to a tridiagonal
form by making both corners ω(1) and ω̄(1) vanish, i.e., by

setting e−ikx = −Q
1
2 so that ω(k) becomes

ω(k)|ω(1)=0 = −Q
1
2 −k (1 − Q1−k )eiky ,

and

Hq

∣∣∣∣
ω(1)=0

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + (1−Q−1)(1−Q) −Q− 3
2 (1−Q−1 )eiky 0 · · · 0 0

−Q
3
2 (1−Q)e−iky 1 + (1−Q−2 )(1 − Q2 ) −Q− 5

2 (1−Q−2 )eiky · · · 0 0

0 −Q
5
2 (1−Q2 )e−iky () · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · () −Q
1
2 −q(1−Q−(q−1) )eiky

0 0 0 · · · −Qq− 1
2 (1−Qq−1)e−iky 1 + (1−Q−q )(1 − Qq )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This also eliminates the z2q umklapp term in (22), i.e., the
secular determinant reduces to

det
[
1 − z2Hq|ω(1)=0

] =
q∑

n=0

(−1)nZ (n)z2n.

This has again the suggestive form of a grand partition func-
tion, with Z (n) the n-body partition function and x = −z2 the
fugacity. However, the analogy with the Hofstadter (square
lattice) case is imperfect, since Hq in (21) has a nonvanishing
diagonal. As a result, the exclusion statistics connection is not
straightforward. Nevertheless, we will proceed as before: We
will consider Q as a free parameter and denote dq = det[1 −
z2Hq|ω(1)=0]. Then expanding dq in terms of its bottom row we
obtain the recursion relation

dq = {
1 − [1 + (1 − Qq)(1 − Q−q)]z2

}
dq−1 −z4(1 − Qq−1)

× (1 − Q−(q−1))dq−2, q � 1,

i.e.,

dq = [1 − (1 + sq)z2]dq−1 − z4sq−1dq−2, (23)

with d0 = 1, d j = 0 for j < 0, and sk as in (7). From (23) we
can iteratively derive the Z (n)’s in (22) (see subsection 4 in
the Appendix).

The recursion relation (23) is distinct from (8) but still
admits a simple g = 2 exclusion statistics interpretation. Con-
sider a set of 2q energy levels with spectral parameters Sr ,
r = 1, 2, . . . , 2q given by

S2k−1 = 1, S2k = sk,

that is, sk “diluted” by unit insertions: 1, s1, 1, s2, . . . , 1, sq,
and consider the grand partition function of g = 2 exclusion
particles in the above spectrum with fugacity parameter x.
Calling Zr the truncated grand partition function for levels
S1, S2, . . . , Sr and expanding it in terms of the last level r
being empty or filled, we obtain the recursion relations

r = 2k : Z2k = Z2k−1 + xskZ2k−2,

r = 2k−1 : Z2k−1 = Z2k−2 + xZ2k−3.

From the r = 2k relation we can express the odd func-
tions Z2k−1 in terms of even ones, Z2k−1 = Z2k − xskZ2k−2.
Substituting this expression in the r = 2k − 1 relation and
rearranging we obtain

Z2k = (1 + x + xsk )Z2k−2 − x2sk−1Z2k−4.

This is identical to the recursion (23) on putting x = −z2

and identifying Z2k = dk . Moreover, Z2k satisfies the same
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initial conditions as dk , namely Z0 = 1, Z2k = 0 for k < 0.
Therefore, dq = Z2q.

It follows that the expressions for the n-body partition
functions Z (n) and the cluster coefficients b(n) are identical
to the corresponding expressions (9) and (13) for square lat-
tice walks but now, instead of the spectrum sk , one has to
consider the diluted spectrum Sk , k = 1, . . . , 2q (but note that
S2q = sq = 0, so the levels effectively end at S2q−1 = 1)

Z (n) =
2q−2n+2∑

k1=1

k1∑
k2=1

· · ·
kn−1∑
kn=1

Sk1+2n−2Sk2+2n−4 · · · Skn−1+2Skn ,

b(n) = (−1)n+1
∑

l1,l2,...,l j
composition of n

c(l1, l2, . . . , l j )

×
2q− j+1∑

k=1

S
l j

k+ j−1 · · · Sl2
k+1Sl1

k

with the same Hofstadter combinatorial factors
c(l1, l2, . . . , l j ) given in (14). The new diluted trigonometric

sums 1
q

∑2q− j+1
k=1 S

l j

k+ j−1 · · · Sl2
k+1Sl1

k now entering the
definition of the b(n)’s have to computed. They can
be obtained using the same tools [4] as for the usual

trigonometric sums (15) (see subsection 5 in the Appendix
for an explicit expression).

Finally, following the same steps as in Sec. II B regard-
ing the number C2n(A) of closed random walks of length 2n
enclosing an algebraic area A on the honeycomb lattice, i.e.,
considering on the one hand∑

A

C2n(A)QA = 1

2q
Tr H2n

2q ,

which is the analog of (10) for the honeycomb Hamiltonian
(20) [where the factor 1/q is replaced by 1/(2q) in view of
the normalization over 2q states], and on the other hand

Tr H2n
2q = 2n(−1)n+1b(n),

which generalizes (12), the expressions above directly lead
to an algebraic area enumeration similar to the square lattice
walks enumeration (16).

In the sequel, we will consider dq in terms of the original
(undiluted) Hofstadter spectrum sk . In that case, the g = 2
exclusion interpretation does not hold anymore and has to be
traded for a mixture of g = 2 and g = 1 statistics, as we are
going to show in detail.

C. Modified statistics for the spectral function sk

If we insist on keeping sk as the spectral function, then the
first few Z (n) can be written in the form

Z (1) = +
q∑

i=1

(1 + si ),

Z (2) = +
q−1∑
i=1

i∑
j=1

(1 + si+1)(1 + s j ) −
q−1∑
i=1

si,

Z (3) = +
q−2∑
i=1

i∑
j=1

j∑
k=1

(1 + si+2)(1 + s j+1)(1 + sk ) −
q−2∑
i=1

i∑
j=1

(1 + si+2)s j −
q−2∑
i=1

i∑
j=1

si+1(1 + s j ),

Z (4) = +
q−3∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

(1 + si+3)(1 + s j+2)(1 + sk+1)(1 + sl ) −
q−3∑
i=1

i∑
j=1

j∑
k=1

(1 + si+3)(1 + s j+2)sk

−
q−3∑
i=1

i∑
j=1

j∑
k=1

(1 + si+3)s j+1(1 + sk ) −
q−3∑
i=1

i∑
j=1

j∑
k=1

si+2(1 + s j+1)(1 + sk ) +
q−3∑
i=1

i∑
j=1

si+2s j,

etc.
Studying the above nested sums we can infer some general

rules for their structure. The Z (n)’s are combinations of all
possible nested sums of products of 1 + sk and −sk distributed
over all k = 1, 2, . . . , q in a natural alphabetical ordering in-
ferred from their nested indices i, j, k, . . . , r such that

(i) The rightmost factor is either −sr or 1 + sr .
(ii) Any factor multiplying −sl immediately on its left

obeys g = 2 exclusion, i.e.,
∑

k

∑
l sksl or −∑k

∑
l (1 + sk )sl

where k − l � 2.
(iii) Any factor multiplying 1 + sl immediately on its

left obeys g = 1 exclusion, i.e., −∑k

∑
l sk (1 + sl ) or∑

k

∑
l (1 + sk )(1 + sl ) where k − l � 1.

(iv) The leftmost factor is either −si+n−2 or 1 + si+n−1

with summation range
∑q−(n−1)

i=1 .
It follows that products will have n1 factors 1 + sl and n2

factors −sl such that n1 + 2n2 = n.
These rules admit a simple physical interpretation: Con-

sider a system of one-body levels k = 1, 2, . . . , q with
fermions in level k having Boltzmann factor 1 + sk and two-
fermion bound states in levels k, k + 1 having Boltzmann
factor −sk . Then Z (n) is the n-fermion partition function with
all possible bound states. The two-fermion bound states be-
have effectively as g = 2 exclusion particles. The honeycomb
lattice secular determinant can, therefore, be described as the
grand partition function of a mixture of g = 1 and g = 2
exclusion particles.
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From these rules and the definition (11) we get the b(n)’s in
terms of single sums of products of sk (up to terms involving
sq which vanish anyway) with a form a bit more complicated
than in the Hofstadter case

b(1) =
q−1∑
k=1

sk +
q∑

k=1

s0
k ,

−b(2) = 1

2

q−1∑
k=1

s2
k + 2

q−1∑
k=1

sk + 1

2

q∑
k=1

s0
k ,

b(3) = 1

3

q−1∑
k=1

s3
k + 2

q−1∑
k=1

s2
k +

q−2∑
k=1

sk+1sk + 3
q−1∑
k=1

sk

+ 1

3

q∑
k=1

s0
k ,

−b(4) = 1

4

q−1∑
k=1

s4
k + 2

q−1∑
k=1

s3
k +

q−2∑
k=1

s2
k+1sk +

q−2∑
k=1

sk+1s2
k

+ 5
q−1∑
k=1

s2
k + 4

q−2∑
k=1

sk+1sk + 4
q−1∑
k=1

sk + 1

4

q∑
k=1

s0
k ,

(24)

etc. Note that it is again possible to rewrite these expressions
in terms of the Boltzmann factors of fermions 1+sk and
bound states −sk; e.g.,

b(1) =
q∑

k=1

(1 + sk ),

−b(2) = 1

2

q∑
k=1

(1 + sk )2 +
q−1∑
k=1

sk,

b(3) = 1

3

q∑
k=1

(1 + sk )3 +
q−1∑
k=1

sk (1 + sk ) +
q−1∑
k=1

(1 + sk+1)sk,

−b(4) = 1

4

q∑
k=1

(1 + sk )4 +
q−1∑
k=1

sk (1 + sk )2

+
q−1∑
k=1

(1 + sk+1)sk (1 + sk ) +
q−1∑
k=1

(1 + sk+1)2sk

+
q−2∑
k=1

sk+1sk + 1

2

q−1∑
k=1

s2
k ,

etc. The form of these expressions satisfy the physical inter-
pretation discussed before since it identifies them as cluster
coefficients of a mixture of g=1 fermions and g=2 bound
states particles. Pure fermionic terms (1 + sk )n/n are the fa-
miliar fermion cluster coefficients, while pure g=2 terms
(arising only for even n) are the exclusion-2 cluster coeffi-
cients found in Ref. [2]. Mixed terms consist of g=2 cluster
terms, involving factors −sk , with fermions accumulating on
levels k and k + 1 for each such factor with appropriate mul-
tiplicities.

Coming back to the algebraic area enumeration we focus
on the b(n)’s in (24) expressed solely in terms of the sk’s to
infer in general that

b(n) = (−1)n+1
∑

l1,l2,...,l j

composition of n′=0,1,2,...,n
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j )

×
q− j∑
k=1

s
l j

k+ j−1 · · · sl2
k+1sl1

k . (25)

The combinatorial coefficients cn(l1, l2, . . . , l j ) appearing in
(25) are labeled by the compositions of n′ = 0, 1, 2, . . . , n
with a number of parts j � min(n′, n − n′ + 1) (by conven-
tion the unique composition of n′ = 0 has only one part and
the trigonometric sum becomes

∑q
k=1 s0

k ). Since the number
of compositions of an integer n′ with j parts is

(n′−1
j−1

)
, the total

number of such compositions is

1 +
n∑

n′=1

min(n′,n−n′+1)∑
j=1

(
n′ − 1

j − 1

)
= 1 +

�(n+1)/2�∑
j=1

n− j+1∑
n′= j

(
n′ − 1

j − 1

)

=
�(n+1)/2�∑

j=0

(
n − j + 1

j

)

= Fn+2.

Note that the Fibonacci number Fn+2 is also the number of
compositions of (n + 1) with only parts 1 and 2.

We obtain for the cn(l1, l2, . . . , l j )’s

cn(l1, l2, . . . , l j ) = 1

l1l2 . . . l j

min(l1,l2 )∑
m1=0

min(l2,l3 )∑
m2=0

· · ·
min(l j−1,l j )∑

mj−1=0

×
( j−1∏

i=1

mi

(
li
mi

)(
li+1

mi

))

×
(

n +∑ j
i=1 li −∑ j−1

i=1 mi − 1

2
∑ j

i=1 li − 1

)
, (26)

and also note that by ignoring the n-dependent bino-

mial
(n+∑ j

i=1 li−
∑ j−1

i=1 mi−1

2
∑ j

i=1 li−1

)
in the sums (26) one recovers the

c(l1, l2, . . . , l j ) in (14), that is, thanks to the identity

1

l1l2

min(l1,l2 )∑
m=0

m

(
l1
m

)(
l2
m

)
=
(l1+l2

l1

)
l1 + l2

,

one has

1

l1l2 . . . l j

min(l1,l2 )∑
m1=0

min(l2,l3 )∑
m2=0

· · ·
min(l j−1,l j )∑

mj−1=0

j−1∏
i=1

mi

(
li
mi

)(
li+1

mi

)

=
(l1+l2

l1

)
l1 + l2

l2

(l2+l3
l2

)
l2 + l3

· · · l j−1

(l j−1+l j

l j−1

)
l j−1 + l j

.

We find

n
n∑

l=0

cn(l ) = F2n+1 + F2n−1 − 1,
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where again a Fibonacci counting appears, and

n
∑

l1,l2,...,l j

composition of n′
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j ) =
(

n

n′

)2

,

from which we infer

n
∑

l1,l2,...,l j

composition of n′=0,1,2,...,n
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j ) =
(

2n

n

)
.

Last, again using (17), the counting of closed honeycomb lattice walks of length 2n is, as it should, recovered as

n
∑

l1,l2,...,l j

composition of n′=0,1,2,...,n
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j )

(
2(l1 + l2 + . . . + l j )

l1 + l2 + . . . + l j

)
=

n∑
n′=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
∑

l1,l2,...,l j

composition of n′
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j )

(
2(l1 + l2 + . . . + l j )

l1 + l2 + . . . + l j

)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
n∑

n′=0

(
n

n′

)2(2n′

n′

)
.

D. Algebraic area enumeration on the honeycomb lattice

Remembering that the spectrum of Hq is the square of that of the honeycomb Hamiltonian H2q, the generating function for
the number C2n(A) of closed walks of length 2n enclosing an algebraic area A can as well be given in terms of the trace of Hn

q
weighted by 1/q, i.e., ∑

A

C2n(A)QA = 1

q
Tr Hn

q ,

where now, following again the steps of Sec. II B,

Tr Hn
q = (−1)n+1nb(n).

We arrive at the conclusion that on the honeycomb lattice the C2n(A)’s are

C2n(A) = n
∑

l1,l2,...,l j

composition of n′=0,1,2,...,n
j�min(n′,n−n′+1)

cn(l1, l2, . . . , l j )
l3∑

k3=−l3

l4∑
k4=−l4

· · ·
l j∑

k j=−l j

(
2l1

l1 + A +∑ j
i=3(i − 2)ki

)(
2l2

l2 − A −∑ j
i=3(i − 1)ki

)

×
j∏

i=3

(
2li

li + ki

)

with the cn(l1, l2, . . . , l j )’s given in (26) and the algebraic area
bounded1 by �(n2 + 3)/12�.

A few examples of 1
q Tr Hn

q are listed below, and the corre-
sponding C2n(A) are listed in Table I:

1

q
Tr Hq = 3,

1

q
Tr H2

q = 15,

1The sequence OEIS A135711 states that the minimal perimeter of
a polyhex with A cells is 2	√12A − 3�. The maximum A for walks
of length 2n is then �(n2 + 3)/12�.

1

q
Tr H3

q = 3

(
29 + 2 cos

2πp

q

)
,

1

q
Tr H4

q = 3

(
181 + 32 cos

2πp

q

)
,

1

q
Tr H5

q = 3

(
1181 + 360 cos

2πp

q
+ 10 cos

4πp

q

)
,

1

q
Tr H6

q = 3

(
7953 + 3520 cos

2πp

q
+ 242 cos

4πp

q

+8 cos
6πp

q

)
,
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TABLE I. C2n(A) up to 2n = 14 for honeycomb lattice walks of
length 2n.

2n = 2 4 6 8 10 12 14

A = 0 3 15 87 543 3543 23 859 164 769
±1 6 96 1080 10 560 96 096
±2 30 726 11 130
±3 24 798
±4 42
Total counting 3 15 93 639 4653 35 169 272 835

1

q
Tr H7

q = 3

(
54 923 + 32 032 cos

2πp

q
+ 3710 cos

4πp

q

+ 266 cos
6πp

q
+ 14 cos

8πp

q

)
.

IV. CONCLUSIONS

We demonstrated that the area counting of honeycomb
walks derives from an exclusion statistics g = 2 system with a
“diluted Hofstadter” spectrum or, equivalently, from a mixture
of g = 2 and g = 1 statistics. This fact calls for a more detailed
justification: In previous work [3,4], two of the authors had
shown that lattice walks that map to exclusion statistics are of
the general form

H = f (u) v + v1−g g(u)

with u, v the quantum torus matrices and f (u), g(u) scalar
functions. The honeycomb Hamiltonian is apparently not of
this form. However, the expression of a walk in terms of a
Hamiltonian is not unique: Alternative versions corresponding
to modular transformations on the lattice, or, equivalently,
alternative realizations of the quantum torus algebra, can exist.
We expect that an alternative realization of the honeycomb
Hamiltonian H2q that makes its connection to g = 2 statistics
and the diluted spectral function Sk manifest does exist and
is related to the form given in Sec. III A by a unitary trans-
formation. The identification of this transformation and the
alternative form of H2q is an interesting open question.

Further, the anisotropic honeycomb Hamiltonian with gen-
eral transition amplitudes a, b, and c is of physical, but also
mathematical, interest. The corresponding generating func-
tion of lattice walks would depend on these parameters and
would “count” the number of moves in the three different
lattice directions U , V , and W separately. The calculation of

TABLE II. C2n(A) up to 2n = 10 for square lattice walks of
length 2n.

2n = 2 4 6 8 10

A = 0 4 28 232 2156 21 944
±1 8 144 2016 26 320
±2 24 616 11 080
±3 96 3120
±4 16 840
±5 160
±6 40
Total counting 4 36 400 4900 63 504

this generalized generating function through traces of powers
of the Hamiltonian appears to be within reach using the meth-
ods and techniques of this paper and constitutes a subject for
further investigation.

There are various physical systems for which the analy-
sis and results of this paper may be relevant, the quantum
mechanics of an actual particle hopping on the honeycomb
lattice sites being the most immediate example. It should be
noted that the original formulation of such a system involves
a wave function with values on each site of the full lattice and
six hopping operators, one for each of the three direction in
each sublattice. Our formulation in terms of three Hermitian
operators U , V , and W and a finite Hilbert space is a lot more
economical, and yet equivalent to the original one: It reduces
the system to specific Bloch sectors, encoded in the Casimirs
of the algebra of the operators, and uses a unique operator for
the hopping in each direction, which acts off-diagonally in the
two sublattices. It therefore reduces the problem of identifying
quantum states to its bare bones.

The case of a particle on the honeycomb lattice with no
magnetic field is well studied; less so the one with a magnetic
field and a “butterfly” spectrum. The calculation of propa-
gators in this case, and in particular of the propagator for
identical initial and final lattice points, is of physical inter-
est, since its value would indicate the rate of diffusion of a
quantum mechanical particle initially on a single site. The
calculation of this propagator in the path integral formulation
involves sums of quantities precisely of the form calculated
above. For a continuous time system a particular scaling limit
has to be taken, distinct from the continuum scaling that would
lead to a particle on a plane. The calculation of this and similar
propagators using results in the present work remains an open
question.

The relation of the area counting problem to the quantum
dynamics of a charged particle on the lattice was exploited
in Ref. [20] to calculate moments of the area distribution of
walks on a square lattice using propagator techniques. A simi-
lar calculation for the case of the honeycomb lattice would be
of interest. Moments of the area can also be computed from
the results in this paper, either using the explicit area counting,
or performing an expansion in 1/q of the Q-dependent area
generating function. Both calculations are nontrivial. These
and related issues are interesting topics for future research.
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APPENDIX

1. Z(n) for square lattice walks

We denote Z (n) as Zq(n) to include its dependence on q.
Substituting dq =∑�q/2�

n=0 (−1)nZq(n)z2n into (8) and equat-
ing the coefficient of z2n on both sides, we get

Zq(n) = Zq−1(n) + sq−1Zq−2(n − 1)

= Zq−2(n) + sq−2Zq−3(n − 1) + sq−1Zq−2(n − 1)
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= · · ·

= Z1(n) +
q−2∑
m=0

sm+1Zm(n − 1).

Since Zm(n − 1) = 0 for n − 1 > �m/2�, i.e., m < 2n − 2, we
obtain

Zq(n) =
q−2∑

m=2n−2

sm+1Zm(n − 1)

with Zq(0) = 1. Thus,

Zq(1) =
q−2∑
m=0

sm+1Zm(0) =
q−1∑
k1=1

sk1 ,

Zq(2) =
q−2∑
m=2

sm+1Zm(1)

=
q−2∑
m=2

m−1∑
k1=1

sm+1sk1 =
q−3∑
k1=1

k1∑
k2=1

sk1+2sk2 ,

Zq(3) =
q−2∑
m=4

sm+1Zm(2)

=
q−2∑
m=4

m−3∑
k1=1

k1∑
k2=1

sm+1sk1+2sk2

=
q−5∑
k1=1

k1∑
k2=1

k2∑
k3=1

sk1+4sk2+2sk3 ,

etc. Formula (9) can then be proven by induction, where we
check

Zq(n + 1) =
q−2∑

m=2n

sm+1Zm(n)

=
q−2∑

m=2n

m−2n+1∑
k1=1

k1∑
k2=1

k2∑
k3=1

· · ·
kn−1∑
kn=1

sm+1sk1+2n−2 · · · skn−1+2skn

=
q−2n−1∑

k1=1

k1∑
k2=1

k2∑
k3=1

k3∑
k4=1

· · ·
kn∑

kn+1=1

sk1+2nsk2+2n−2 · · · skn+2skn+1 .

2. Examples of algebraic area enumeration of random walks on the square lattice

A few examples of 1
q Tr H2n

q and the corresponding C2n(A)’s are listed below and in Table II.

1

q
Tr H2

q = 4,

1

q
Tr H4

q = 4

(
7 + 2 cos

2πp

q

)
,

1

q
Tr H6

q = 4

(
58 + 36 cos

2πp

q
+ 6 cos

4πp

q

)
,

1

q
Tr H8

q = 4

(
539 + 504 cos

2πp

q
+ 154 cos

4πp

q
+ 24 cos

6πp

q
+ 4 cos

8πp

q

)
,

1

q
Tr H10

q = 4

(
5486 + 6580 cos

2πp

q
+ 2770 cos

4πp

q
+ 780 cos

6πp

q
+ 210 cos

8πp

q
+ 40 cos

10πp

q
+ 10 cos

12πp

q

)
.

3. Irreducible representations of the honeycomb algebra

Define three new operators u, v, and σ as

σ = Q−1/2UVW, u = Uσ, v = V σ

⇒ U = uσ,V = vσ,W = Q1/2vσu. (A1)

From the honeycomb algebra (18) we see that σ , u, and v are
all unitary and satisfy

vu = Q uv, uσ = σu−1, vσ = σv−1, σ 2 = 1. (A2)

Since U , V , and W can be uniquely expressed in terms of σ ,
u, and v, it is sufficient to derive the irreducible representation
(“irrep” for short) of u, v, and σ .

Operators u and v satisfy the quantum torus algebra and
have a q-dimensional irrep if Q = exp(2iπp/q). However, σ

can be embedded within this irrep only for specific values of
the Casimirs uq = eiφ and vq = eiθ . Indeed, assuming σ acts
within this irrep,

eiφ = uq = σuqσ = (σuσ)q = u−q = e−iφ ⇒ eiφ = e−iφ.
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So φ can only be 0 or π (mod 2π) and similarly for θ . For
θ, φ ∈ {0, π} we can show that the irrep of (A2) is unique up to
unitary transformations, and up to the algebra automorphism
σ → −σ , and is given by the action on basis states |n〉

u|n〉 = ei(φ+2πpn)/q|n〉, n = 0, 1, . . . , q − 1,

v|n〉 = eiθ/q|n − 1〉, |−1〉 ≡ |q − 1〉,
σ |n〉 = eiθ (2n−r)/q|r − n〉, r p + φ/π = 0 (mod q). (A3)

The “pivot” r in the inversion action of σ is r = 0, if φ = 0, or
the primary solution of the Diophantine equation kq − r p =
1, if φ = π . The momenta qkx = φ and qky = θ in this irrep
are quantized as

kx = πnx

q
, ky = πny

q
, nx, ny ∈ Z.

For either θ or φ /∈ {0, π} the irrep of (A2) must decompose
into more than one q-dimensional irreps of the quantum torus
algebra u, v with σ mixing the irreps. The minimal irrep of
the full algebra (A2) involves 2 irreps of the torus algebra,
all other situations being reducible. Representing all operators
in block diagonal form in the space of the two irreps ui, vi,
i = 1, 2, with Casimirs uq

i = eiφi , v
q
i = eiθi ,

u =
(

u1 0
0 u2

)
, v =

(
v1 0
0 v2

)
, σ =

(
A B
B† C

)
,

and implementing the relations σuqσ = u−q, σvqσ = v−q

leads to(
eiφ1 − e−iφ1

)
A = (

eiφ2 − e−iφ2
)
C = (eiφ1 − e−iφ2

)
B = 0,(

eiθ1 − e−iθ1
)
A = (

eiθ2 − e−iθ2
)
C = (eiθ1 − e−iθ2

)
B = 0.

If all of φ1, φ2, θ1, θ2 are 0 or π , then the representation is
reducible, as we will soon demonstrate. If φ1, θ1 are 0 or
π , but not both of φ2, θ2 are, then the above relations imply
C = B = 0 and thus σ 2 = 1 is impossible, and similarly if
φ2, θ2 are both 0 or π . Therefore, both φ1, θ1 and φ2, θ2 must
have at least one angle �= 0, π . The above relations then imply
A = C = 0, and σ 2 = 1 implies B†B = 1. The last equalities
above, then, require φ1 = −φ2, θ1 = −θ2. Further, a unitary
transformation

S =
(

B† 0
0 1

)
, u → SuS−1, v → SvS−1, σ → SσS−1

eliminates B in σ , and σuσ = u−1, σvσ = v−1 imply u1 =
u−1

2 , v1 = v−1
2 . Altogether, the irrep of the honeycomb algebra

for two arbitrary Casimirs φ = φ1 = −φ2, θ = θ1 = −θ2, is
given by the 2q-dimensional matrices

u =
(

uo 0
0 u−1

o

)
, v =

(
vo 0
0 v−1

o

)
, σ =

(
0 1
1 0

)
, (A4)

where uo and vo are the basic q-dimensional quantum torus
irreps with Casimirs eiφ and eiθ . Finally, from (A1) we obtain
the corresponding irreducible forms for U , V , and W

U =
(

0 uo

u−1
o 0

)
, V =

(
0 vo

v−1
o 0

)
,

W = Q1/2

(
0 vou−1

o
v−1

o uo 0

)
.

We conclude with a demonstration that the above represen-
tation becomes reducible if φ, θ ∈ {0, π}. In that case, as we
demonstrated before in (A3), there is a q × q matrix σo (to
be distinguished from the 2q × 2q matrix σ in (A4) above)
satisfying (A2) for the matrices uo and vo. Performing the
unitary transformation

So = 1√
2

(
1 −σo

σo 1

)

on all matrices, and using σouoσo = u−1
o , σovoσo = v−1

o , we
obtain

u =
(

uo 0
0 u−1

o

)
, v =

(
vo 0
0 v−1

o

)
, σ =

(
σo 0
0 −σo

)
,

or

U =
(

uoσo 0
0 −σouo

)
, V =

(
voσo 0

0 −σovo

)
,

W = Q1/2

(
vou−1

o σo 0
0 −σovou−1

o

)
reducing to the direct sum of two q-dimensional irreps.

4. Z(n) for honeycomb lattice walks

We denote Z (n) as Zq(n) to include its dependence on q.
Substituting dq =∑q

n=0(−1)nZq(n)z2n into (23) and equat-
ing the coefficient of z2n on both sides, we get

Zq(n) = Zq−1(n) + (1 + sq)Zq−1(n − 1) − sq−1Zq−2(n − 2)

= Zq−2(n) + (1 + sq−1)Zq−2(n − 1) + (1 + sq)

× Zq−1(n − 1) − sq−2Zq−3(n − 2) − sq−1

× Zq−2(n − 2)

= · · ·

= Z1(n) +
q−1∑
m=1

(1 + sm+1)Zm(n − 1)

−
q−2∑
m=0

sm+1Zm(n − 2).

Since Zm(n) = 0 for n > m, we obtain

Zq(n) =
q−1∑

m=n−1

(1 + sm+1)Zm(n − 1) −
q−2∑

m=n−2

sm+1Zm(n − 2)

with Zq(0) = 1 and Zq( j) = 0 for j < 0. Thus,

Zq(1) =
q−1∑
m=0

(1 + sm+1)Zm(0)

=
q∑

k1=1

(1 + sk1 ),

Zq(2) =
q−1∑
m=1

(1 + sm+1)Zm(1) −
q−2∑
m=0

sm+1Zm(0)

=
q−1∑
m=1

m∑
k1=1

(1 + sm+1)(1 + sk1 ) −
q−2∑
m=0

sm+1
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=
q−1∑
k1=1

k1∑
k2=1

(1 + sk1+1)(1 + sk2 ) −
q−1∑
k1=1

sk1 ,

Zq(3) =
q−1∑
m=2

(1 + sm+1)Zm(2) −
q−2∑
m=1

sm+1Zm(1)

=
q−1∑
m=2

m−1∑
k1=1

k1∑
k2=1

(1 + sm+1)(1 + sk1+1)(1 + sk2 )

−
q−1∑
m=2

m−1∑
k1=1

(1 + sm+1)sk1 −
q−2∑
m=1

m∑
k1=1

sm+1(1 + sk1 )

=
q−2∑
k1=1

k1∑
k2=1

k2∑
k3=1

(1 + sk1+2)(1 + sk2+1)(1 + sk3 )

−
q−2∑
k1=1

k1∑
k2=1

(1 + sk1+2)sk2 −
q−2∑
k1=1

k1∑
k2=1

sk1+1(1 + sk2 ).

Likewise Zq(5) would read

Zq(5) = +
q−4∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

l∑
m=1

(1 + si+4)(1 + s j+3)(1 + sk+2)(1 + sl+1)(1 + sm)

−
q−4∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

(1 + si+4)(1 + s j+3)(1 + sk+2)sl −
q−4∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

(1 + si+4)(1 + s j+3)sk+1(1 + sl )

−
q−4∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

(1 + si+4)s j+2(1 + sk+1)(1 + sl ) −
q−4∑
i=1

i∑
j=1

j∑
k=1

k∑
l=1

si+3(1 + s j+2)(1 + sk+1)(1 + sl )

+
q−4∑
i=1

i∑
j=1

j∑
k=1

(1 + si+4)s j+2sk +
q−4∑
i=1

i∑
j=1

j∑
k=1

si+3(1 + s j+2)sk +
q−4∑
i=1

i∑
j=1

j∑
k=1

si+3s j+1(1 + sk ).

5. Diluted trigonometric sums

The diluted trigonometric sums
∑2q− j+1

k=1 S
l j

k+ j−1 · · · Sl2
k+1Sl1

k can be computed and read

1

q

2q− j+1∑
k=1

S
l j

k+ j−1 · · · Sl2
k+1Sl1

k

=
∞∑

A=−∞
cos

(
2Aπp

q

)[ l5∑
k5=−l5

l7∑
k7=−l7

· · ·
l2�( j−1)/2�+1∑

k2�( j−1)/2�+1=−l2�( j−1)/2�+1

(
2l1

l1 + A +∑2�( j−1)/2�+1
i=5
i odd

(i − 3)ki/2

)

×
(

2l3

l3 − A −∑2�( j−1)/2�+1
i=5
i odd

(i − 1)ki/2

)
2�( j−1)/2�+1∏

i=5
i odd

(
2li

li + ki

)

+
l6∑

k6=−l6

l8∑
k8=−l8

· · ·
l2� j/2�∑

k2� j/2�=−l2� j/2�

(
2l2

l2 + A +∑2� j/2�
i=6

i even
(i − 4)ki/2

)(
2l4

l4 − A −∑2� j/2�
i=6

i even
(i − 2)ki/2

)
2� j/2�∏

i=6
i even

(
2li

li + ki

)]
.
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