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Oscillations in the nucleation preexponential
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Oscillations in the preexponential of the nucleation rate are due to the discrete nature of small nuclei. An
accurate elementary expression to describe such oscillations is derived in the limit of a high nucleation barrier.
The result is applied to the standard Becker-Döring equation in two and three dimensions, and to the lowest-
energy nucleation path in a cold lattice gas with Glauber and Metropolis dynamics (equivalent to an Ising model
on a square lattice) where oscillation effects can be more pronounced.
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I. INTRODUCTION

A typical first-order phase transition starts from nucle-
ation, which is the fluctuational formation of microscopic
amounts (“droplets”) of a new phase. While originally devel-
oped in terms of vapor condensation [1–3] and cavitation [4],
the classical theory of nucleation (CNT) was later extended
to include the crystallization of liquids and glasses, various
types of solid-to-solid transformations, polymers, biological
systems, etc. [5–8]. A deeper understanding of nucleation
fundamentals, of the strong sides and limitations of CNT, will
potentially increase control over phase transformations with a
resulting effect on multiple applications.

The CNT [1–3] treats nucleation as a random walk of
a nucleus in the space of its sizes via a random gain and
loss of monomers. Once their number exceeds the critical
value n∗, the nucleus grows deterministically towards the new
phase. The corresponding nucleation rate J is represented as
a product of exponential [1] and preexponential [4] terms.
The former became a signature feature of nucleation theo-
ries, both classical and beyond [9,10], and can be written
as exp(−W∗/T ). Here, W∗ is determined by the thermody-
namics of the metastable system, being the minimal work to
form a critical nucleus and assumed to be large compared
to temperature T measured in energy units. The preexpo-
nential, on the other hand, is sensitive to kinetics and is
more specific for each system under consideration. With a
few exceptions of glass forming melts, the exponential term
dominates and it is often hard to extract accurate information
about the preexponential from experimental data. Thus, there
is a strong interest in fully or partly solvable models of nucle-
ation where the rate J can be derived from “first principles,”
providing information on both preexponential and exponential
factors.

One of the simplest yet remarkably realistic examples of
nonclassical nucleation is the nonequilibrium Ising model on
a square lattice which is equivalent to a supersaturated lat-
tice gas (LG) described later in this paper. As T → 0, the
exponential term can be obtained [11] for arbitrary supersat-
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uration s, while for s → 0 the Wulff construction [12] can be
used to evaluate the barrier [13] at finite T , thus providing a
connection with CNT. Various spin-flip dynamics (Glauber,
Metropolis, etc.) can be considered on the background of
identical thermodynamics, allowing one to assess the sensi-
tivity of the preexponential to specifics of the kinetics. Other
types of dynamics, which can affect both the exponential and
preexponential factors, are discussed [14,15].

An intriguing feature of the Ising and LG nucleation is
the oscillations of the preexponential as a function of s. First
indications came from numerical [16,17] and analytical [18]
transfer-matrix studies of the imaginary part of the free energy
extrapolated into the metastable region around the Andreev
singularity at s = 0 [19]. The appearance of oscillations was
largely associated with the lattice structure of the Ising model.
Due to the complexity of the problem no simple expression
for the amplitude of such oscillations could be suggested,
although it was correctly conjectured that it should decrease
with T [18]. Alternatively, at small but finite T and not too
small s, a large number of contributing cluster configurations
and transition rates between them can be identified with the re-
sulting equations solved using symbolic computations. Sharp
peaks in the inverse preexponential were observed at several
integer 1/2s for various versions of the spin-flip dynamics
[20,21]. Furthermore, at T → 0 the lowest-energy nucleation
path was identified [22], allowing one to get an explicit ex-
pression for the preexponential at all s. The result, however,
contained a nonelementary elliptic function with one real and
one imaginary argument with a nonanalytic dependence on s,
which prevented an explicit extraction of the leading oscillat-
ing asymptote.

The intent of the present paper is to show that oscillations
of the preexponential can be accurately described by an ele-
mentary function with a clear separation of the supersaturation
and temperature dependences. Moreover, it is argued that this
function is not restricted to lattice systems but will typically
appear in problems where the discrete nature of the nucleus
is important, including the CNT. We will use the latter as a
starting point for the discussion following the general outline
of Ref. [23] extended to an arbitrary dimension d , obtain-
ing an analytical result with a differently structured special
function, which allows one to deduce the elementary asymp-
tote responsible for oscillations.
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II. RESULTS

The master equation of CNT, also known as the Becker-
Döring (BD) equation, can be cast in the form [4]

dfn

dt
= jn − jn+1, jn = βn−1 f eq

n−1

(
fn−1

f eq
n−1

− fn

f eq
n

)
. (1)

Here, fn(t ) is the distribution of nuclei over “sizes”
n, the number of monomers in a nucleus, f eq

n is the
(quasi)equilibrium distribution which ensures a zero flux jn in
the n space, and βn is the kinetic gain coefficient. It is assumed
that the number of smallest nuclei at n = 1 is held fixed
with f1 = f eq

1 , while clusters at some large nmax are removed
without exhausting the system. The latter implies fn = 0 at
n = nmax and, without restricting generality, in what follows
nmax will be replaced by ∞. With these boundary conditions,
Eq. (1) has an exact nonequilibrium steady state solution with
a size-independent flux jn ≡ J [2]. Then one has fn/ f eq

n =
fn−1/ f eq

n−1 − J/βn−1 f eq
n−1, which can be extended iteratively to

give fk/ f eq
k = 1 − J

∑k−1
n=1 1/βn f eq

n . Since the latter tends to
zero as k → ∞, the flux is given by

J−1 =
∞∑

n=1

1

βn f eq
n

. (2)

Next, CNT assumes that f eq
n can be estimated from macro-

scopic thermodynamics as ∝ exp[−W (n)/T ] with W (n) being
the minimal work to form a nucleus; the preexponential of f eq

n

can involve a mild function of n, which is however irrelevant
to our discussion. The coefficient βn can be deduced from
macroscopic kinetics [4] and both βn and W (n) are expected
to be smooth functions of n [24]. The number of contributing
terms in the sum (2) is determined by

�n =
{
− 1

2T

d2W

dn2

∣∣∣∣
∗

}−1/2

, (3)

where “∗” indicates a value obtained at the critical size n∗ ,
and for �n � 1 one obtains the flux of CNT,

J−1
CNT = ACNT f eq(n∗), ACNT = �n

√
π

β(n∗)
. (4)

Note, however, that for sufficiently low T , despite the
smoothness of W (n), the exp[−W (n)/T ] does not have to be
smooth. In that case one still can expand W (n) 	 W∗ − [(n −
n∗)/�n]2 near n∗ and replace βn by β(n∗) , but the summation
in Eq. (2) cannot be replaced by integration since �n is not
necessarily large. Instead, one can extend the summation to
n = −∞, formally obtaining the preexponential relating J−1

to f eq(n∗) in terms of an elliptic theta function [25]:

A = ACNTϑ3
(−πn∗, e−π2�2

n
)
. (5)

The major differences from earlier treatments [22,23] are the
structure of the elliptic function where both arguments are
real, and its analytic dependence on n∗ which simplifies fur-
ther expansions without losing the delicate oscillation feature
[26]. The leading asymptote describing oscillations is then
given by

A 	 ACNTθ (n∗,�n), (6)

with

θ (n∗,�n) = 1 + 2 cos(2πn∗) exp
(−π2�2

n

)
, (7)

which is the main result of the present paper. In the domain
of its applicability �n � 1/π this approximation is very ac-
curate since the next correction contains the fourth power
of the exponential [25]. Also note the remarkable accuracy
of the continuous approximation in CNT when describing
the stationary flux for “regular” values of �n � 1 due to the
large numerical value of π2 under the exponential in Eq. (7).
Discreteness effects and associated oscillations can become
detectable, however, for sufficiently large values of the re-
duced barrier W∗/T .

For an extremely large barrier an opposite, strongly dis-
crete limit with �n 
 1 is approached when the inverse
flux is dominated by at most two terms J−1 	 1/β[n∗] f eq

[n∗] +
1/β[n∗+1] f eq

[n∗+1] (where [x] denotes the largest integer not to
exceed x). For a fixed barrier and variable n∗ the reduced
preexponential A/ACNT peaks at 1/�n

√
π near integer values

of n∗ . At semi-integer values of n∗ the reduced preexponential
dips to exponentially small 2 exp(−1/4�2

n)/�n
√

π due to the
overestimation of the barrier by the continuous CNT. Obvi-
ously, the approximation (7) is invalid in this limit although
it correctly locates both peaks and dips; the general Eq. (5) is
expected to remain accurate.

For illustration and numerical verification of Eq. (7), con-
sider a d-dimensional version of the CNT with the Gibbs
barrier W (n) = W∗[d (n/n∗)1−1/d − (d − 1)n/n∗]. Interface-
limited kinetics will be assumed with βn ∝ n1−1/d . The
parameter �n takes the form �n = n∗[W∗(1 − 1/d )/2T ]−1/2

which specifies both the classical preexponential ACNT and the
oscillating correction in Eq. (7). (We will not consider here the
strongly discrete limit �n 
 1 since the required values of
the barrier are unrealistically high). Note that the amplitude
of the oscillating correction depends on the barrier and dimen-
sion only via �n, thus certain scaling can be expected if differ-
ent systems have an identical “dimensionalized barrier” B =
(1 − 1/d )W∗/T . Alternatively, the preexponential A can be
obtained from the exact flux, Eq. (2), as A = J−1 exp(−W∗/T )
which can be used to test the accuracy of the approximation,
as in Fig. 1. Accuracy is reasonable and most likely could be
further improved by including a linear term in the approxi-
mation of βn near n∗ [23]. The aforementioned scaling also is
clearly observed.

We now apply the approach to lattice gas (LG) which
is a collection of particles on a square lattice, with nearest
neighbors linked by bonds with energies −φ. The LG has
a chemical potential μ < 0 with supersaturation s = (μ +
2φ)/2φ which determines the metastable thermodynamics of
the system. This is equivalent to a nonequilibrium Ising model
with up and down spins representing particles and empty sites
of LG, respectively, with energies of spin-spin interactions
given by ±φ/4 and external field φs. Several types of dynam-
ics will be considered. In the simplest “LG dynamics” new
particles are randomly added into the system at a constant
(unit) rate regardless of the state of the neighboring sites,
while the rate of disappearance of a particle follows from
a detailed balance. This mimics the above-mentioned CNT
models with an attachment rate proportional to the area of the
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FIG. 1. Preexponential of the inverse nucleation rate in the
standard Becker-Döring equation in d = 2- and d = 3-dimensional
systems with “dimensionalized barrier” B = (1 − 1/d )W∗/T . Re-
sults based on exact Eq. (2) are shown by solid (d = 2) and open
(d = 3) symbols. Lines are the asymptotic approximation, Eq. (7),
identical at different dimensions if barrier B is the same.

interface, and in a slightly modified version the LG dynamics
has been used for various crystallization applications [27–29].
In contrast, in the more familiar Glauber and Metropolis dy-
namics both “down-up” and “up-down” spin flips are sensitive
to their surroundings. Nevertheless, since all three models rely
on a detailed balance with equivalent energy changes, the
results are qualitatively similar. In particular, with the same
barrier to nucleation [11] and thus the same exponential term,
the models have a similar piecewise constant structure of the
preexponential at T → 0 and noninteger 1/2s [22,30,31].

In order to extract the oscillating part of the preexponen-
tial, we first single out the exponential term in the inverse
nucleation rate, exp(W ∗

Wulff/T ), consistent with the CNT. The
availability of the barrier W ∗

Wulff/T follows from the Wulff
construction [12] based on the anisotropic interfacial tension
provided by the exact Onsager solution [32] for the square
lattice Ising model. One has

W ∗
Wulff = φ

2s

(
σeff(T )

σeff(0)

)2

. (8)

Here, σeff [13] is the equivalent surface tension of a circular
nucleus, with σeff(0) = 4φ

√
π when the actual nucleus is

a perfect square. The surface tension goes to zero at Tc 	
2.269 φ/4, the critical temperature, and we will be consider-
ing small T 
 Tc .

The preexponential A of the inverse rate will be defined
from

J−1 = Aτ0 exp

(
W ∗

Wulff

T

)
, (9)

where the timescale τ0 = exp[φ(1 − 2s)/T ] related to the
propagation of a low-temperature interface is introduced for
convenience. In order to evaluate the nucleation rate J we first
identify the lowest-energy nucleation path [22], which brings
the problem closer to the one-dimensional random walk of
CNT. There is still branching of the path due to the presence
of distinct configurations with identical energies. The electric
analogy (with J−1 similar to the equivalent resistance of the

FIG. 2. Preexponential of the inverse nucleation rate for the
lowest-energy path in a lattice gas (LG) for three types of spin-flip
dynamics at T = 0.1 and T = 0.2 (with φ = 4). Symbols: from
Eqs. (9) and (10); thin solid lines: approximations by elementary
Eqs. (7) and (13). The approximations are accurate for small-to-
moderate oscillations but break down when those are large (as for the
Metropolis dynamics at T = 0.1 near 1/s = 4 and 6, when an elliptic
function approximation should be used instead—see text). There is
no visual difference between the Glauber and Metropolis dynamics
for the low temperatures considered.

chain) is applied in order to simplify the branching parts,
so that the problem is reduced to finding the resistance of
a one-dimensional chain. This is already quite analogous to
CNT although the values of individual resistances in the chain
do not follow the simple BD pattern. Unifying the results of
Ref. [22] for different types of spin-flip dynamics, one has at
s < 1/2 an expression structured similarly to Eq. (2):

J−1 	
∞∑

m=1

g(m)

[
exp

(
Wp(m)

T

)
+ exp

(
Ws(m + 1)

T

)]
.

(10)

Here, there are two types of the energies W : the primary ones
with

Wp(m) = φ[2m + 2 − 2s(m2 + m + 1)] (11)

corresponding to m × (m + 1) rectangles with an extra spin
on the longer side (which determine the critical cluster as
T → 0 [11]), and the secondary ones

Ws(m) = φ[2m + 1 − 2s(m2 + 1)] (12)

representing a square with an extra spin. The coefficients
g(m) depend on spin-flip dynamics [22]: g(m) = 1/8m for
the LG dynamics, g(m) = 3/(8m + 4) for the Metropolis, and
[3 + exp(−2φs/T )]/[8m + 4/(1 + exp(−2φs/T )/2)] for the
Glauber dynamics, respectively.

Once the primary and secondary contributions in Eq. (10)
are separated, the problem becomes similar to two indepen-
dent BD cases with the summation over n replaced by a
summation over m which identify the “magic numbers” of
spins n = m2 + m + 1 and n = m2 + 1, respectively. The final
result is expressed through the same function θ as in Eq. (7).
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With our definition of the preexponential one has

A 	 �m
√

π exp

[
φ

2sT

(
1 − σeff(T )2

σeff(0)2

)]

×
[

g

(
m∗ − 1

2

)
eφs/2T θ

(
m∗ − 1

2
,�m

)

+ g(m∗)θ (m∗,�m)

]
, (13)

with the critical size m∗ = 1/2s associated with perfect
squares and corresponding spread of contributing terms in the
series

�m =
{

− 1

2T

d2Ws

dm2

∣∣∣∣
∗

}−1/2

=
(

T

2φs

)1/2

. (14)

The oscillating part inside the square brackets in Eq. (13)
is given by 2[g(m∗) − g(m∗ − 1/2)eφs/2T ]e−π2�2

m cos(2πm∗).
Note the minus sign since contributions from the squares and
the rectangles come in opposite phases. Due to the dominant
factor e−π2�2

m the oscillation amplitude decreases with tem-
perature approximately exponentially.

Equation (13) is shown by solid lines in Fig. 2. Generally,
this approximation is accurate if compared to “exact” (within

the lowest-energy path) results shown by symbols. The break-
down of the approximation near the minima of A is expected
only for large s at small T when the oscillation amplitude
becomes large, as for the Metropolis dynamics at T = 0.1.
In such cases the accuracy of Eq. (13) can be restored by
replacing θ (m∗,�m) by ϑ3(m∗,�m) and making a similar
replacement for θ (m∗ − 1

2 ,�m) .

III. SUMMARY

In summary, fast oscillations of nucleation preexponential
as a function of inverse supersaturation appear to represent a
ubiquitous effect which is due to the discrete nature of nuclei.
The effect can be accurately described by an elementary func-
tion which can be deduced directly from the Becker-Döring
model where discreteness stems from the finite number n
of molecules in a nucleus. The same function, only with
parameters dependent not on n but on “magic numbers” corre-
sponding to locally extremal energies of nuclei, also appears
in nonclassical systems, which was illustrated by examining
the lowest-energy nucleation path in a lattice gas. The oscilla-
tion effect gets more pronounced at lower temperatures and
higher supersaturations, and should be included when high
precision of the nucleation rate prediction is required.
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