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In this paper we examine some foundational issues of a class of quantum engines where the system consists
of a single quantum parametric oscillator, operating in an Otto cycle consisting of four stages of two alternating
phases: the isentropic phase is detached from any bath (thus a closed system) where the natural frequency of the
oscillator is changed from one value to another, and the isothermal phase where the system (now rendered open)
is put in contact with one or two squeezed baths of different temperatures, whose nonequilibrium dynamics
follows the Hu-Paz-Zhang (HPZ) master equation for quantum Brownian motion. The HPZ equation is an
exact non-Markovian equation which preserves the positivity of the density operator and is valid for (1) all
temperatures, (2) arbitrary spectral density of the bath, and (3) arbitrary coupling strength between the system
and the bath. Taking advantage of these properties we examine some key foundational issues of theories of
quantum open and squeezed systems for these two phases of the quantum Otto engines. This includes (1) the
non-Markovian regimes for non-Ohmic, low-temperature baths, (2) what to expect in nonadiabatic frequency
modulations, (3) strong system-bath coupling, as well as (4) the proper junction conditions between these two
phases. Our aim here is not to present ways for attaining higher efficiency but to build a more solid theoretical
foundation for quantum engines of continuous variables covering a broader range of parameter spaces that we
hope are of use for exploring such possibilities.
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I. INTRODUCTION

In the broad range of applications of classical thermo-
dynamics the subject of thermal engines and refrigerators
certainly stands out, not only in terms of its practical appli-
cation utility, but also in view of their foundational theoretical
values. Thermodynamic laws are often phrased in terms of
engine or refrigerator efficiency: “No engine can have a higher
efficiency than that of an ideal Carnot engine” (Second Law);
“No refrigerator can cool a physical object to the absolute
zero temperature” (Third Law). In the new field of quantum
thermodynamics [1] the subject of quantum engines and re-
frigerators [2] occupy an equally important place. One can
ask, e.g., how would the Third Law be phrased in terms
of a quantum refrigerator [3]? Quantum nature takes promi-
nence beyond the validity ranges of classical thermodynamics
in small systems [4], at low temperatures, with strong cou-
pling.1 between the system and its environment [5,6] and
in regimes where non-Markovian behaviors associated with
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1For a system modeled by a harmonic oscillator of frequency ω

coupled to a bath of temperature β−1, low temperature refers to the
regime βω � 1, and strong coupling refers to the cases when the
damping constant γ is of the order of magnitude of ω.

quantum memory and correlations (see, e.g., [7–9]) can no
longer be ignored. Add to this list the increased weight of
quantum fluctuations and under out-of-equilibrium conditions
(see, e.g., [10] and references therein); for instance, there are
claims that heat engines may be operated beyond the Carnot
limit by exploiting stationary, nonequilibrium reservoirs [11].

The exploration and exploitation of these new elements,
new regimes and new processes hold great promises for
advancing quantum sciences and engineering involving the
thermodynamics of such systems. However, the familiar
paradigms, tools and concepts in traditional equilibrium
thermodynamics, mean field dynamics, and linear response
theories cannot serve these purposes well. Fortunately, two
related families of powerful theories, one for open and
dissipative quantum systems [12–14] and the other for
nonequilibrium quantum fields [15–19], which have been in
development over the last three decades, are pretty well estab-
lished now to meet these new challenges.

a. Otto engines: Quantum engines are a topic of active
current interest; e.g., a quantum engine made up of a single
calcium ion in a Paul trap operating between a cold reser-
voir of laser-cooling beam and a hot reservoir of electric
field noise [20,21] has received much recent attention. We
refer to the lucid reviews by Kosloff and co-workers [2,22]
and the references cited therein for a general background
to quantum heat engines and refrigerators (see also [11,23–
26] before the 2017 review and [27,28] with those in [29]
thereafter). In this paper we examine a class of quantum Otto
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engines with continuous system variables (in contrast to dis-
crete systems such as spins or qubits) interacting with a bath
also of continuous variables (in contrast to stochastic actions
such as in the collision models). Our system is a quantum
parametric oscillator (with time-dependent natural frequency)
which in principle can interact with two squeezed baths at
different temperatures, operating under fully nonequilibrium
conditions. In the simpler setup we shall analyze here, the
parametric oscillator enter in one isentropic phase without
any bath, and in another isochoric phase where the oscillator’s
frequency does not change, but it interacts with a fixed valued
squeezed thermal bath. Thus, it can also be referred to as an
isothermal phase [22].

The classical Otto cycle consists of four stages made up
of two alternating phases: the adiabatic (no heat exchange)
phase and the isothermal (equal temperature) phase. [We use
the same labeling and ordering as Fig. 1(b) of [25].] We shall
use the terminology “isentropic” (no heat exchange) for the
former, reserving the term adiabatic and nonadiabatic to de-
scribe how fast the natural frequency of the system oscillator
is modulated and “isothermal” for the latter, as the system
will be brought in contact with a constant temperature heat
bath. In the isentropic phase a modulation in the frequency of
the system oscillator is implemented, but since the system is
thermally insulated from its environment and its evolution is
unitary, we shall view it as a closed system (i.e., not account-
ing for an external drive which alters the oscillator frequency).
This phase is sometimes called the “power phase.” In the
isothermal phases the system can be placed in contact with
two baths of different squeezing parameters. (In the simpler
setup we’ll analyze only one bath is squeezed.) As such the
standard processes in open systems occur, like relaxation, dis-
sipation, decoherence, etc. These phases are sometimes called
the “relaxation phase” of the cycle, but of course there are
more activities than just relaxation.

b. Theoretical background: Many factors are involved in
these two phases but for reasons elaborated below we shall
focus on a selected few of foundational theoretical interest.
By “foundational” we are referring to the theories of open
quantum systems and of squeezing quantum systems in the
two different phases of the Otto cycle. We first explain the
reasons why for the description of the open system phases the
commonly invoked Lindblad or the Caldeira-Leggett master
equations are inadequate for treating the very low-temperature
regimes. We then introduce the route we take here based
on the Hu-Paz-Zhang (HPZ) master equation for quantum
Brownian motion (QBM). The HPZ equation is an exact
non-Markovian equation which preserves the positivity of the
density operator and is valid for (1) all temperatures, (2) ar-
bitrary spectral density of the bath, and (3) arbitrary coupling
strength between the system and the bath. The non-Ohmic,
low-temperature regime is where non-Markovian behavior
gets pronounced.

Using this generic model and taking advantage of these at-
tractive properties we shall examine the theoretical foundation
of quantum engines based on the quantum Brownian motion
in aspects pertaining to (1) the very low-temperature regime,
(2) the late-time squeezed thermal state, correcting some flaws
in the literature, (3) the strong system-bath coupling in the
isothermal phases as well as (4) the nonadiabatic frequency

variation in the isentropic phases, and finally (5) the junction
conditions between the end state of one phase and the start
state of another phase.2 This entails, specifically, finding the
correct late time end state of the isothermal phase and how it
joins with the isentropic phase. We emphasize that the aim of
this work is not to present ways for attaining higher efficiency
in the sense of “you can do this for better results,” but to
provide a more solid and broader foundation for different
aspects of the theories involved. For example, we shall include
non-Markovian behavior, strong coupling, and nonadiabatic
drives in our discussions but make clear that at the present
level of theoretical understanding, we can work only with
weak coupling in the engine design, likewise for adiabatic
drives, since they yield higher efficiency. The purposes for
our foundational theoretical studies are twofold: to scrutinize
the validity of assumptions and approximations in the existing
theories so mistakes can be avoided, and to prepare a broader
base for future searches into wider parameter spaces for more
efficient engines or other quantum thermodynamic applica-
tions.

A. Theories based on Markovian master equations

Quantum heat engines operating at sufficiently high tem-
peratures are relatively easy to construct, and the theories
supporting them are well understood (see, e.g., [21,24]). The
challenge is for low temperatures. Many theoretical work in
quantum heat engines invoke the “collision model” for the
baths [29]. For instance, the claimed pride of the nice and
thorough work of Ref. [25] is the derivation of the efficiency
of a quantum Otto engine at low temperatures. The authors
justified the use of the Lindblad equation with a collision
model derivation. At sufficiently high temperatures this is
justified, but we have serious reservations in the adequacy of
Markovian collision models to describe very low-temperature
phenomena. Single-hit collision assumption for the descrip-
tion of the dynamics of gas molecules yields good results
primarily for dilute gases at high temperatures.

Markovian processes are aptly described by Markovian
master equations, such as the very popular Lindblad equation.
The question is, can one still use this model for the opposite
regime of very low temperatures or very high density—when
correlations build up in collisions and ignoring the memory
becomes untenable? We only raise the issue here but save the
discussion to a sequel paper [32] where we shall examine
the collision models, both Markovian and non-Markovian,
and analyze them in relation to the corresponding quantum

2In fact, drawing from classical thermodynamics, the junction con-
dition relates to the problem of continuity of the thermodynamic
potentials. In a classical ideal cycle, the system goes from one
stage to another being subjected in some sudden fashion to different
boundary conditions. However, in reality, this discontinuity is often
curbed by the dissipative or nonequilibrium elements present in
the cycle. More thorough discussions on this aspects can be found
in [30,31]. Such considerations are typically neglected in quantum
thermodynamics, thus worth further investigation, in particular, at
strong coupling.
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Brownian models where a reliable master equation is indeed
available for the study of non-Markovian effects.

Another important Markovian master equation is the
Caldeira-Leggett (CL) master equation for quantum Brownian
motion. Unfortunately both the Lindblad and the CL master
equations have problems at low temperatures: Lindblad vi-
olates the uncertainty principle while CL loses the positive
definiteness of the density matrix. This is an important point
which needs some elaboration.

a. Lindblad-GKS and Caldeira-Leggett master equations
are problematic at very low temperatures. Many theoretical
models of quantum engines use the Lindblad [33] and Gorini-
Kossakowski-Sudarshan (GKS) master equation [34] because
(1) it is mathematically sound, having a completely positive
(CP) dynamical semigroup property, (2) it is commensurate
with the Born-Markov master equation [35] often used in
quantum optics, and (3) it is consistent with the Caldeira-
Leggett (CL) master equation [36] for a Brownian motion
model valid with Ohmic bath at high temperatures; note that
the CL master equation for the density matrix is not positive-
definite [37]. All is well until one explores its low-temperature
behavior.

As pointed out by Haake [38], Garraway [39], and many
others, there are serious problems of the Lindblad master
equation at very low temperatures. For example, it leads to
a violation of the Heisenberg uncertainty principle. There are
proposals to ameliorate these maladies; e.g., in Ref. [40] a
term is added to the Born-Markov master equation, which
vanishes in the classical limit, bringing the equation to the
Lindblad form and satisfying the uncertainty principle. In
Ref. [41] a Lindblad-form master equation for weakly damped
systems accurate for all regimes is derived, which can serve
as a replacement for the Bloch-Redfield equation for thermal
damping that is completely positive. These amendments target
one kind of deficiency but remain restricted by other limita-
tions or approximations.

Thus the focus of attention would be to find a master
equation, for the particular class of problems one wants to
solve, which is both mathematically correct and physically
sound at low temperatures, the regime where non-Markovian
behaviors become important.

B. QBM non-Markovian master equation valid for non-Ohmic
baths at low temperatures

For systems and baths which can suitably be modeled by
quantum harmonic oscillators there is such an equation, the
Hu-Paz-Zhang (HPZ) master equation for quantum Brown-
ian motion [42,43]. (An equivalent representation is via the
Fokker-Planck equation governing the reduced Wigner func-
tion [44].) It is an exact non-Markovian master equation which
preserves the positivity of the density operator and is valid
for all temperatures, arbitrary spectral density of the bath and
arbitrary coupling strength between the system and the bath.
This offers a much broader range of utilities such as for strong
couplings and for non-Ohmic baths at ultralow temperatures,
where non-Markovian behavior are pronounced. Since it has
both the sound mathematical (positive definite, unlike the CL
equation) and physical properties (respecting the uncertainty
principles, unlike the Lindblad) at low temperatures, the HPZ

equation can also serve as a good benchmark where results
obtained from other trial models can be compared. We will
explore the viability of the popular non-Markovian collision
models at low temperatures in our sequel paper [32].

C. Master equation for QBM of parametric oscillators

The Hu-Paz-Zhang master equation [42,43] is for a
system of one quantum harmonic oscillator of fixed (time-
independent) frequency interacting with a bath of harmonic
oscillators also of fixed frequencies. For the quantum engine
we are interested, in the isentropic phases, the system oscil-
lator frequency varies with time (parametric oscillators), but
without contact with any bath. In the isothermal phases the
system oscillator has a fixed frequency but it interacts with
a squeezed thermal bath. A more general theory which en-
compasses both aspects exists. The HPZ master equation for
a parametric quantum oscillator in a general squeezed thermal
bath valid for all spectral densities, at all temperatures, and
for arbitrary coupling strength between the system and its
environment was derived by Hu and Matacz [45] using the
same method as in the derivation of the original HPZ equa-
tion for the Brownian motion of quantum oscillators. It was
used to demonstrate the more versatile kinematic approach in
the derivation of the Unruh and Hawking effects and going
beyond for situations in more general nonequilibrium condi-
tions [46]. Cosmological particle creation as squeezing was
discussed in [47] and entropy generation in squeezed quantum
open systems in [48]. (For representative works along similar
lines of reasoning; see references in, e.g., [49–51].)

The non-Markovian HPZ master equation for parametric
oscillators in a squeezed thermal bath [45] is an example of
a theory with a broader base and more solid foundation we
referred to earlier. Besides non-Ohmic baths at low tempera-
tures, its validity for arbitrary couplings between the system
and the bath enables one to examine the coupling strength
dependence. We shall show the marked differences between
strong and weak coupling. However, for strong coupling there
is some arbitrariness in what portion of the interaction energy
should be considered as internal energy there may be some
intrinsic ambiguity in how heat is defined. While this issue
is under investigation [52], we will return to the practical
level when evaluating the engine efficiency, and restrict our
consideration to only weak coupling between the system and
the bath.

Squeezing being the centerpiece in the quantum engine
under study, both in the sense of changing the natural fre-
quency of the oscillator in the isentropic phase and for the
squeezed thermal bath in the isothermal phase, we give in
Sec. II some background description of squeezed states and
squeezed thermal baths. We show how a system placed in con-
tact with a squeezed thermal bath evolves and determine the
quantum state of the system at late times after equilibration.
This is of essential interest to the problem at hand because the
end state of this isothermal phase becomes the initial state of
the isentropic phase. It then affects the implementation of the
junction condition between two phases and the optimization
scheme in the latter phase. In Sec. III we describe the Otto
cycle. We first treat the simpler isentropic phases—no contact
with a bath—by the Fokker-Planck-Wigner equation, where
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the natural frequency of the harmonic oscillator is allowed to
change, both adiabatically (gradual variation) and nonadiabat-
ically (sudden quench). We discuss the cost versus the gain in
the performance in both situations. In Sec. IV we move on to
the isothermal phase where a squeezed thermal bath is brought
into contact, and show the proper treatment of the energy
transfer between the oscillator and the bath during the isother-
mal phase when the correct end state is used. We combine the
results from the previous section to calculate the performance
efficiency of the Otto quantum engine, in a broader scope
of low-temperature and nonadiabaticity effects. We conclude
in Sec. V. In the Appendix we provide the coefficients and
expressions which enter into the HPZ equation at late times.

II. SQUEEZED STATE FOR THE CLOSED
AND OPEN SYSTEMS

In this section we wish to examine more closely the nature
and effects of squeezed states in the two separate phases of
the Otto cycle. In the isentropic phase the oscillator is not in
contact with a heat bath. Although its natural frequency is
changed (sometimes the change of frequency is referred to as
squeezing), it remains a closed system which follows unitary
evolution. In the isothermal phase, the system is in contact
with a squeezed thermal bath and thus it constitutes an open
system. Of special interest to us is whether there exists a
stationary state of the system after it interacts with a squeezed
thermal bath for some time, and what state it would be after
equilibration. This is needed because that state becomes the
initial state of the succeeding isentropic phase in the Otto
cycle.

We first review the relevant properties of squeezing.
Squeezing manifests itself slightly differently in the context
of a closed versus an open systems.

A. Brief overview of squeezing

Suppose we have a free harmonic oscillator of mass m and
natural frequency ω, prepared in a squeezed thermal state,
whose density matrix ρ̂

(χ )
ST takes the form

ρ̂
(χ )
ST = Ŝ(ζ )ρ̂ (χ )

β Ŝ†(ζ ), (2.1)

where ρ̂
(χ )
β is the thermal state of the harmonic oscillator, and

Ŝ(ζ ) is the squeezed operator

Ŝ(ζ ) = exp

[
1

2
ζ ∗â2 − 1

2
ζ â†2

]
. (2.2)

The squeeze parameter ζ ∈ C, assumed to be a frequency-
independent constant, is usually conveniently written in the
polar form ζ = η eiθ with η ∈ R+ and 0 � θ < 2π . The
creation and annihilation operators satisfy the standard com-
mutation relation [â, â†] = 1, such that the displacement χ̂

and the corresponding conjugate momentum p̂ of the oscilla-
tor, obeying the Heisenberg equation ¨̂χ (t ) + ω2 χ̂ (t ) = 0, can
be expressed as

χ̂ (t ) = 1√
2mω

(â e−iωt + â† e+iωt ),

p̂(t ) = i

√
mω

2
(â† e+iωt − â e−iωt ). (2.3)

Here the overhead dot denotes the time derivative and h̄ = 1
is chosen.

Since the squeezed thermal state is a Gaussian state, its sta-
tistical properties are fully described by the first two moments
of â, â†. The higher moments can be obtained by the Wick
expansion. Thus we need only

〈â〉ST = 0 = 〈â†〉ST,

〈â2〉ST = −e+iθ sinh 2η

(
〈N̂〉β + 1

2

)
,

〈â†â〉ST = cosh 2η

(
〈N̂〉β + 1

2

)
− 1

2
, (2.4)

where the last term carries the average number of particles

〈N̂〉ST = cosh 2η 〈N̂〉β + sinh2 η, (2.5)

in which the factor 〈N̂〉β + 1
2 is often conveniently written as

〈N̂〉β + 1

2
= 1

2
coth

βω

2
, (2.6)

and β is the inverse temperature of the thermal state.
The covariance matrix elements 〈χ̂2〉ST, 〈p̂2〉ST, and

1
2 〈χ̂ (t ), p̂(t )〉ST characterize the natures of the states of the
oscillator. The corresponding density matrix elements can be
uniquely constructed from them. For a harmonic oscillator in
a squeezed thermal state, its covariance matrix elements are
related to the corresponding elements in a thermal state by

〈χ̂2(t )〉ST = [cosh 2η − cos(2ωt − θ ) sinh 2η] 〈χ̂2〉β, (2.7)

〈p̂2(t )〉ST = [cosh 2η + cos(2ωt − θ ) sinh 2η] 〈p̂2〉β. (2.8)

In particular the cross correlation between the canonical vari-
ables reveals information about the stationarity of the state

1

2
〈{χ̂ (t ), p̂(t )}〉ST = sinh 2η sin(2ωt − θ )

(
〈N̂〉β + 1

2

)
.

(2.9)

These elements are time dependent, in contrast to their coun-
terparts in the thermal state. Observe that the factors before
〈χ̂2〉β and 〈p̂2〉β are positive real numbers, so they can be
smaller or larger than unity, depending on the choice of the
squeeze angle θ and time t . Namely, one may suppress the
dispersion of the χ quadrature at the expense of the momen-
tum uncertainty. Thus one can use the squeeze parameter to
tune the coherence of the oscillator such that, in this case,
the noise level of the χ quadrature can be much lower than
that of the ground state. This trick has been widely applied
in quantum optics to bring down the quantum noise in high
precision interferometer measurements such as in the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [53].

The mechanical energy of the free oscillator in a squeezed
thermal state is

E (C)
ST = 1

2m
〈p̂2〉ST + mω2

R

2
〈χ̂2〉ST

=
(

〈N̂〉ST + 1

2

)
ω = cosh 2η E (C)

β , (2.10)

where E (C)
β is the thermal energy of the oscillator, so it does not

depend on the squeeze angle θ , as well as the factor sinh 2η. It
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is clearly seen that even if one has effectively suppressed the
uncertainty in one quadrature, this induces a large uncertainty
in the complementary conjugated quadrature, such that the
total energy still increases.

Finally we note the Hadamard function of the harmonic
oscillator in the squeezed thermal state

G(χ )
H,ST(t, t ′) = 1

2
Tr[ρ̂ST{χ̂ (t ), χ̂ (t ′)}]

= 1

4mω
coth

βω

2
{cosh 2η [e−iω(t−t ′ ) + e+iω(t−t ′ )]

− sinh 2η [e−iω(t+t ′ )e+iθ + e+iω(t+t ′ )e−iθ ]}
(2.11)

is not invariant under time translation, and thus the oscilla-
tor has nonstationary correlation, while the expression in the
brackets next to cosh 2η is stationary.3 Thus it is easily seen
that a squeezed thermal state is not a steady state, while a
thermal state is.

B. Open system: Squeezed thermal baths

We consider a harmonic oscillator of fixed natural fre-
quency bilinearly coupled to a thermal bath, modeled by a
massless quantum scalar field initially in a squeezed thermal
state of temperature β−1. The bath thus has a gapless spec-
trum. Once the oscillator is brought into contact with the bath,
both the oscillator and the bath will undergo nonequilibrium
evolutions even though the change of the bath in general is
negligible due to its overwhelmingly larger number of degrees
of freedom. The effects of the coupling are manifested in the
forms of the quantum noise from the bath and the damping
force on the oscillator. The quantum noise drives the oscillator
away from its initial configuration, while the damping coun-
teracts the influence of the driving noise. The latter plays a
special role in how squeezing, in the current setting, is passed
from the bath to the system it interacts with.

Compared to a thermal bath, the squeezed thermal bath
has several remarkable features. As discussed in the previ-
ous section, the quantum noise of a squeezed thermal bath
is nonstationary. This immediately raises a concern whether
the dissipative effect can fully counteract the driving of the
nonstationary noise such that the oscillator can relax to a
stationary or equilibrium state? We are interested in the sim-
ilarities and dissimilarities in the behavior of the oscillator in
such an equilibrium state compared to that of the oscillator in
the closed-system highlighted in the previous section.

Detailed calculations presented elsewhere [54] show that
when the oscillator is bilinearly coupled to the squeezed ther-
mal bath, even though the bath gives a nonstationary driving
force, the oscillator will eventually approach an equilibrium
state. Its correlation function—the Hadamard function—
starting off nonstationary in time will become invariant in time

3We call a two-point function G(t, t ′) “stationary” if it is a function
of t − t ′, i.e., “time-translation-invariant” or “homogeneous in time”;
otherwise it is “nonstationary.” We call a function which does not de-
pend on time “static” or time-independent, thus there is an enormous
difference between “static” and “nonstationary.”

translation after the relaxation time. It will take the form

G(χ )
H (t, t ′) = cosh 2η G(χ )

H,β (t − t ′), (2.12)

for t , t ′ � γ −1 where γ is the damping constant, and η is
the squeeze parameter of the bath in its initial configuration.
The Hadamard function G(χ )

H,β (t − t ′) gives the correlation of
the oscillator when it is coupled to a plain thermal state. In
contrast to (2.11), we see that the nonstationary component is
absent at late times. Details can be found in [54].

Physically, when the oscillator is coupled to a bath, it
behaves like a driven, damped oscillator, instead of the free
oscillator in the closed system configuration. It can be shown
that although the driving force coming from the bath is non-
stationary, the damping will respond in a delicate way. The
strength of dissipation depends on both the dissipation kernel,
determined by the form of coupling and the property of the
bath field, and the state of the oscillator’s motion. Thus when
the oscillator is driven by (nonstationary) quantum fluctua-
tions of the bath, the damping will adjust itself to match the
driving force in accordance, such that in the end the energy
exchange between the oscillator and the bath is balanced, and
the system reaches equilibration. This final state, in the weak
coupling limit, is essentially a thermal state at an effective
temperature β−1

S , satisfying

coth
βSω

2
= cosh 2η coth

βω

2
, (2.13)

in contrast to the squeezed thermal state of the free oscillator
introduced in the previous section found in the literature.
They have distinct features. The latter is clearly nonstation-
ary, thus in conflict with the notion of an equilibrium state.
The former is stationary and should be the very state that is
often referred to at the end of the isothermal phase of the
Otto engine when its working medium is in contact with a
squeezed thermal bath. This subtle difference is not clearly
noticed or stated in the literature,4 and confusion may arise
when misidentification occurs. Equally noteworthy is that this
behavior, specifically, the nonstationarity of the two-point
function G(χ )

H (t, t ′), will not be restored to the form in (2.11),
that is, not reverting to the squeezed thermal state, even in the
limit of ultraweak coupling, in stark contrast to the situation
when the oscillator interacts with a plain thermal bath. In the
latter case, in the weak coupling limit, the dynamical behavior
of the oscillator in the final equilibrium state is pretty much
the same as that of the oscillator in the canonical thermal state
in a closed system description. In other words, if the bath is
initially in a squeezed state, the oscillator will not inherit the

4A system interacting with a squeezed thermal bath is often mis-
taken to have assumed a squeezed thermal state as its end state
(e.g., [24,25,56]). This is at odds with the concept of equilibration
when the system is fully relaxed, because, as is discussed earlier, the
two-point function of the system in such a squeezed thermal state is
not stationary. The fully relaxed system in fact ends up in a thermal
state with a slightly different temperature, which depends on the
squeeze parameters of the bath and is given by (2.13). Even if the
system is in contact with a squeezed thermal bath for a shorter time,
the resultant squeezing is quite limited. See [54] for further details.
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state of the bath at the end in the limit of vanishing coupling
strength.

In the final equilibrium state, the covariance matrix ele-
ments 〈χ̂2(∞)〉, 〈p̂2(∞)〉 are given by

〈χ̂2(∞)〉 = cosh 2η 〈χ̂2(∞)〉β,

〈p̂2(∞)〉 = cosh 2η 〈p̂2(∞)〉β,
1

2
〈{χ̂ (∞), p̂(∞)}〉 = 0,

(2.14)

where 〈χ̂2(∞)〉β and 〈p̂2(∞)〉β represent the corresponding
covariance matrix elements when the bath is initially prepared
in a thermal state. The constancy of the first two expressions
is distinct from their counterparts in (2.7) in the closed system
description. In addition, the elements in (2.14) do not contain
the contribution from the nonstationary component, which is
typically proportional to sinh 2η. In the weak coupling limit,
we have

〈χ̂2(∞)〉β = 1

2mω
coth

βω

2
, 〈p̂2(∞)〉β = mω

2
coth

βω

2
,

(2.15)

so the forms of 〈χ̂2(∞)〉 and 〈p̂2(∞)〉 also support the identi-
fication of the effective thermal state in (2.13).

The internal energy, defined as the mechanical energy of
the oscillator, is then given by

E (∞) = 1

2m
〈p̂2(∞)〉 + mω2

R

2
〈χ̂2(∞)〉 = cosh 2η Eβ (∞).

(2.16)
The expression Eβ (∞) is the internal energy of the oscillator
if it is initially coupled to an unsqueezed thermal bath at tem-
perature β−1, and, in the ultraweak coupling limit, it assumes
the form

Eβ (∞) = ω

2
coth

βω

2
. (2.17)

The results in (2.16) happens to take on the same functional
form as the internal energy in (2.10) in the closed system
description, even though the states of the system in both
formulations have totally different characteristics. This simili-
tude may not come as a surprise because in the weak coupling
limits, the squeeze parameter and the temperature of the sys-
tem are equal to those of the bath, and because the constant
energy expression in (2.10) does not depend on the squeeze
angle θ or the factor sinh 2η. Therefore, even if one inadver-
tently misidentified the squeezed thermal state, one would still
get the correct internal energy expression to compute the heat
during the isothermal processes of the Otto engine. This happy
end result inconspicuously conceals some oversights or mis-
treatments in the literature of the nonequilibrium dynamics of
quantum systems interacting with a squeezed thermal bath.

In (2.13), since cosh 2η � 1, the effective system temper-
ature β−1

S is always greater than the initial bath temperature
β−1. It implies that if the hot thermal bath is initially squeezed,
then squeezing can boost the effective temperature of the sys-
tem at the end of the hot isothermal process. This can enhance
the idealized Carnot efficiency.

C. Closed system: Oscillator with varying frequency
and unsqueezing

With these details available, we now make some com-
ments on the equivalence between frequency modulation
and squeezing, as well as the protocol of unsqueezing. Un-
squeezing is understood as a procedure to introduce another
squeezing to cancel out the preexisting squeezing in the state
of the oscillator, the working medium of the Otto engine. It
is often implemented during the isentropic stage that follows
the hot squeezed isothermal phase in an attempt to restore the
initial state in the isentropic phase back to a thermal state for
the purpose of enhancing the overall efficiency. However, as
shown in (2.12), (2.14), and (2.16), the final equilibrium state
of the isothermal stage is a steady state, essentially a thermal
state, stationary in time since the first two moments of the
oscillator have the forms given by some canonical thermal
state. If this state serves as the initial state of the subsequent
isentropic stage, then performing unsqueezing will in fact
introduce nonstationarity into the oscillator. Suppose at time
t = 0, the initial time of an isentropic stage, we carry out an
instantaneous unsqueezing by ζ ∗ = η∗ eiθ∗

, then according to
(2.7) and (2.9), we cannot find a suitable squeeze parameter to
remove the η dependence in the covariance matrix elements in
(2.14).

A variant of unsqueezing is proposed to carry out at the end
of the isentropic phase on account of the possibility that the
frequency modulation may introduce squeezing. This is most
easily seen in the Heisenberg picture, where the canonical
operators χ̂ (t ) and p̂(t ) can be expressed by

χ̂ (t ) = d1(t ) χ̂ (0) + d2(t )

m
p̂(0),

p̂(t ) = mḋ1(t )χ̂ (0) + ḋ2(t ) p̂(0),
(2.18)

where d1(t ) and d2(t ) are a special set of solutions to the clas-
sical equation of motion of the parametric oscillator χ̈ (t ) +
ω2(t ) χ (t ) = 0, with the initial conditions d1(0) = 1, ḋ1(t ) =
0 and d2(0) = 0, ḋ2(0) = 1. The frequency modulation, in this
phase of duration τ , will vary from ω(0) = ωH to ω(τ ) = ωL.
Then the cross correlation 〈{χ̂ (t ), p̂(t )}〉 is given by

1

2
〈{χ̂ (t ), p̂(t )}〉

= m d1(t )ḋ1(t )〈χ̂2(0)〉 + 1

m
d2(t )ḋ2(t )〈p̂2(0)〉

+ 1

2
[d1(t )ḋ2(t ) + ḋ1(t )d2(t )]〈{χ̂ (0), p̂(0)}〉, (2.19)

where the expectation value is taken with respect to the initial
state of the oscillator in the isentropic phase. Since the initial
state is stationary, Eq. (2.19) reduces to

1

2
〈{χ̂ (τ ), p̂(τ )}〉

= m

2

d

dτ
〈χ̂2(τ )〉

= 1

2
coth

βSωH

2

d

dτ

[
1

ωH

d2
1 (τ ) + ωH d2

2 (τ )

]
, (2.20)

at the end of the isentropic phase. For a harmonic oscillator of
fixed frequency ωH, the expression inside the square brackets
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is a constant and thus (2.20) gives zero. However, for a general
parametric oscillator, (2.20) is not zero, so the end state of the
oscillator is not stationary and acquires squeezing. Similarly
we can find 〈χ̂2(τ )〉 and 〈p̂2(τ )〉:

〈χ̂2(τ )〉 = 1

2mωH

coth
βSωH

2

[
d2

1 (τ ) + ω2
Hd2

2 (τ )
]
, (2.21)

〈p̂2(τ )〉 = mωH

2
coth

βSωH

2

[
1

ω2
H

ḋ2
1 (τ ) + ḋ2

2 (τ )

]
, (2.22)

for this end state. Then according to (3.9)–(3.11) in [55], for
the oscillator with frequency ω in a general Gaussian state,
parametrized by the squeezed parameters (ηS, ψS) and an

inverse temperature-like parameter ϑ , the covariance matrix
elements take on the form

〈χ̂2〉 = 1

2mωL

coth
ϑ

2
(cosh 2ηS − sinh 2ηS cos ψS), (2.23)

〈p̂2〉 = mωL

2
coth

ϑ

2
(cosh 2ηS + sinh 2ηS cos ψS), (2.24)

1

2
〈{χ̂ , p̂

}〉 = −1

2
coth

ϑ

2
sinh 2ηS sin ψS. (2.25)

Comparing (2.23)–(2.25) with (2.20)–(2.22), we identify ϑ =
βSωH, and the effective squeeze parameter ηS,

ηS = 1

2
cosh−1

{
1

2

[
ωL

ωH

d2
1 (τ ) + ωHωL d2

2 (τ ) + 1

ωHωL

ḋ2
1 (τ ) + ωH

ωL

ḋ2
2 (τ )

]}
, (2.26)

of the oscillator at the end of the isentropic phase. We use
(2.25) to find the corresponding squeeze angle ψS. These can
then be used to unsqueeze the oscillator state. The expression
in the curly brackets can serve as a measure of the degree of
nonadiabaticity, which is essentially the ratio of the energy at
the end of an arbitrary parametric process to its counterpart,
the energy for the adiabatic process if the oscillator is initially
in the ground state.

We are led to an interesting competition during the nonadi-
abatic modulation. On one hand, the nonadiabatic frequency
change of the parametric oscillator degrades the output work
due to unwanted excitations. On the other hand, allowing for
unsqueezing, as shown later, can enhance the efficiency at the
expense of the agent that performs the action. This will be
explored in greater detail in the next section.

III. ISENTROPIC STAGES: FREQUENCY CHANGE IN A
CLOSED SYSTEM

We have highlighted the relevant theories for closed and
open systems behind the respective isentropic and the isother-
mal phases of an Otto cycle.5 In this section for specificity
we first briefly describe the operational protocols of the Otto
cycle before entering into the details towards the assessment
of engine efficiency.

The Otto cycle consists of the following four stages in two
alternating phases (for illustration we use the same labeling as
in Fig. 1(b) of [25]):

(i) Isentropic compression phase (A 
→ B): At point A, the
oscillator is isolated from a thermal bath, its initial state is
a thermal state of temperature β−1

L . The natural frequency of
the oscillator is then raised to ωH from ωL < ωH by an external
agent. In this phase, the oscillator evolves as a closed system,

5For the isentropic phase, the system, modeled by a single har-
monic oscillator, is assumed closed, so the evolution is unitary. Thus
its entropy remains constant and the physical process is reversible.
In contrast, in a many-body system, we may need an additional
quasiequilibrium condition.

so there is no heat exchange, and the work6 done by the
external agent will solely change the system’s internal energy.
For our theoretical inquiry, we do not limit the isentropic
process to be adiabatically slow even though the conventional
wisdom tells that the output work from the engine tends to be
optimal for an adiabatically slow modulation of the frequency
because the excitation to higher energy levels is less likely
to occur. Unsqueezing may be introduced at the end of the
isentropic phase to reverse the squeezing brought about by the
nonadiabatic frequency modulation.

(ii) Hot isothermal phase (B 
→ C): At point B, the oscil-
lator with frequency ωH is brought back into contact with a
hot squeezed thermal bath at temperature β−1

H . The oscillator
will undergo nonequilibrium relaxation to an equilibrium state
and end up at point C of the cycle. In this phase the energy
exchange with the bath, identified as heat, will change the
internal energy of the oscillator.

(iii) Isentropic expansion phase (C 
→ D): Here the oscil-
lator frequency is lowered down to ωL. Since it is isolated
from the thermal bath, the oscillator exchanges work only with
the outside agent that modulates the frequency. In contrast to
the isentropic phase (A 
→ B), we note that in the previous
isothermal phase (B 
→ C), the bath is squeezed at the outset,
so in principle an unsqueezing is needed at the beginning
of the current phase to remove the squeezing of the system
during the isothermal phase. However, from our earlier dis-
cussions, if the oscillator in the isothermal phase prior to this
isentropic phase had undergone full relaxation, then it is not
necessary to do so. We only need to carry out unsqueezing
at the end of the isothermal phase if the expansion there is
nonadiabatic.

(iv) Cold isothermal phase (D 
→ A): At point D, the oscil-
lator of frequency ωL is placed in contact with a cold thermal
bath at temperature β−1

L . The oscillator is then relaxed to its

6Various definitions for work and heat are used in the literature,
such as the two-point measurement definition of work, in the context
of fluctuation theorems [57]. Here we define work and heat in terms
of the changes of the expectation values of energies, not in terms of
measured values.
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equilibrium state at point A, while heat is exchanged between
the oscillator and the bath. In the weak coupling limit, this
final state will be a thermal state, not a squeezed thermal state.
This completes the cycle.

Here we look into the oscillator dynamics during the isen-
tropic phases, that is, stages 1 and 3 of the Otto cycle defined
above. The oscillator is completely isolated from the thermal
bath, but driven by an external agent that modulates its natural
frequency ω(t ). Since there is no bath, we consider the para-
metric oscillator as a closed system. Assuming the oscillator
has a mass m, and its canonical variables χ , the displacement,
and the conjugate momentum p satisfy the commutation rela-
tion [χ̂ , p̂] = i. The Hamiltonian of the oscillator then takes
the form

ĤS(t ) = p̂2

2m
+ mω2(t )

2
χ̂2, (3.1)

for 0 � t � τ , where τ is the duration of the process. For
example, in the isentropic phase A) the oscillator frequency
changes from ω(0) = ωL to ω(τ ) = ωH. For simplicity, to
capture the essential physics, we assume ω2(t ) monotonically
increases during this stage according to

ω2(t ) = ω2
L + t

τ

(
ω2

H − ω2
L

)
, 0 � t � τ. (3.2)

The timescale τ describes how fast the oscillator’s natural
frequency varies and thus is a measure of the (non)adiabaticity
of this process, that is, ω̇/ω2. A small τ depicts the qualitative
features of sudden quenching while the a large value of τ

can approach ideal adiabaticity. We will not a priori assume
that the frequency modulation is adiabatically slow, but for
a typical Otto engine to produce a positive net work output,
ωH > ωC is usually required.

We further assume that the initial state of this phase
is a generic Gaussian state. Since the working medium of
the engine is modeled by a parametric harmonic oscillator
throughout this stage, it is guaranteed that the end state is
another Gaussian state. Therefore, the Wigner function of the
system during the isentropic stage takes the generic form

W (χ, p, t ) = N exp[A(t ) χ2 + B(t ) p2 + C(t ) χ p], (3.3)

where the normalization factor N is time independent, while
the coefficients A, B and C in the exponent are time depen-
dent. The Wigner function satisfies the Wigner-Fokker-Planck
equation, e.g. [44],

∂W
∂t

= − p

m

∂W
∂χ

+ mω2(t ) χ
∂W
∂ p

, (3.4)

so its solution dictates the time evolution of the parametric
oscillator. Plugging Eq. (3.3) into Eq. (3.4) gives a coupled
set of differential equations for the coefficients A, B, and C,

d

dt
A(t ) = mω2(t ) C(t ),

d

dt
B(t ) = − 1

m
C(t ),

d

dt
C(t ) = 2

[
mω2(t )B(t ) − 1

M
A(t )

]
,

(3.5)

with the initial conditions of A, B, and C determined by
the initial state of the isentropic phase. Given an arbitrary
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FIG. 1. Here we show how the squeezing of the oscillator at the
end of the isentropic stage depends on the speed of its frequency
modulation. The parameter τ is the duration of the frequency mod-
ulation. The initial state of the isentropic phase is given by the final
equilibrium state of the oscillator in the previous isothermal phase
where it is in contact with an Ohmic thermal bath of temperature
β−1

L = 0.001. We choose ωL = 1, ωH = 5ωL, m = 1, γ = 2 × 10−5,
and the cutoff for the bath �L = 1000.

function ω(t ), it is not easy to find an analytical, closed-form
solution for this set of differential equations barring a few
exceptions such as (3.2). A rather general analytical treatment
is developed in [58], where the unitary time evolution operator
in the χ representation can be constructed by a special set
of fundamental solutions to the equation of motion of the
parametric oscillator. Here we resort to numerical methods to
get the solutions of (3.5). For an arbitrary speed of frequency
modulation, Fig. 1 shows the variation of the squeezing at the
end of frequency modulation with the transition time τ . The
sudden change limit results in a squeeze parameter η given by
1
2 ln ωH/ωL. On the other hand, the adiabatic limit shows that
the squeezing parameter remains the same after the driving.
The intermediate regime shows a roughly monotonous behav-
ior between these two regimes.

Since the oscillator is isolated from the bath, the external
agent that modifies the oscillator frequency will have energy
exchange with the oscillator in the form of work. By energy
conservation the work is related to the change of the internal
energy of the oscillator. During the isentropic phase A 
→ B,
that is, ωL 
→ ωH, the work is given by the internal energy
difference

WAB = EB − EA, (3.6)

where EB, for example, represents the internal energy of the
oscillator at point B. The internal energy is the expectation
value of the Hamiltonian ĤSi for i = L, H,

ĤSi = p̂2

2m
+ mω2

i

2
χ̂2. (3.7)

We adopt the convention that when W is positive, work is done
to the oscillator, but when W < 0, the oscillator outputs work.
For weak oscillator-bath coupling we immediately have EA
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given by

EA = ωL

2
coth

βLωL

2
. (3.8)

In the graduate change (AD) limit, we have

W (AD)
AB =

(ωH

2
− ωL

2

)
coth

βLωL

2
> 0, (3.9)

since the level population does not change with time. On the
other hand, in the sudden change (SC) limit, the work is given
by

W (SC)
AB = ω2

H − ω2
L

4ωL

coth
βLωL

2
> 0, (3.10)

because the state cannot adapt itself fast enough to match the
configuration change. We see that typically if we require ωH >

ωL, then the external agent needs to input more energy to the
oscillator in order to arrive at the same frequency change. This
is a consequence of the fact that when the parametric process
is nonadiabatic, additional energy goes into (is “wasted”) ex-
citing the oscillator.

Similarly for the other isentropic phase C 
→ D, i.e., ωH 
→
ωL, the internal energy of the oscillator at C is given by

EC = cosh 2η × ωH

2
coth

βHωH

2
= ωH

2
coth

βSωH

2
, (3.11)

because the hot thermal bath is initially prepared in a squeezed
thermal state. Here we would like to remind readers that the
state at C is not a squeezed thermal state even though the
internal energy of the state takes the form given by (3.11). This
will be explained in Sec. IV. After the frequency modulation,
the work during this phase is given by

WCD = ED − EC. (3.12)

Assuming no additional unsqueezing, the work would depend
on the speed of frequency modulation. In the adiabatic limit
WCD is given by

W (AD)
CD = cosh 2η

(ωL

2
− ωH

2

)
coth

βHωH

2
< 0, (3.13)

but in the sudden limit

W (SC)
CD = cosh 2η

ω2
L − ω2

H

4ωH

coth
βHωH

2
< 0. (3.14)

Clearly the output work is greater in the adiabatic limit when
ωH > ωL. For an arbitrary speed of frequency modulation, we
can write the internal energy at the end of the parametric
process formally as

ED = cosh ηS × ωH

2
coth

βSωH

2
, (3.15)

where the factor cosh ηS generically accounts for the squeez-
ing due to frequency modulation, and ηS is given by (2.26).
Note that this is a different squeeze parameter from the one
η used for the squeezed bath. If we would like to enhance
the engine’s efficiency, we may introduce unsqueezing at the
end of the isentropic phase. In so doing, we restore, apart
from a rotation, the state of the oscillator to the one according
to the adiabatic modulation, thus recovering the result given

by (3.13) for any modulation speed.7 This can be viewed as
some type of “shortcut to adiabaticity” [59] implemented in
the isentropic phase. The implementation is not limited to the
specific form of frequency modulation (3.2). From the discus-
sion in Sec. II C, we see it is quite general. We can always
identify the suitable ζS, in terms of the fundamental solutions
d1,2(τ ), to perform unsqueezing given any functional form of
ω(t ).

From Eq. (3.9) and Eq. (3.13), we learn that in the adiabatic
limit, the external agent pumps less energy to the oscillator
during the isentropic compression phase AB, but the oscillator
outputs more work to the outside in the isentropic expansion
phase CD. The net work in the adiabatic limit is thus

W (AD)
TOT = W (AD)

AB + W (AD)
CD = −

(
ωH

2
− ωL

2

)

×
(

cosh 2η coth
βHωH

2
− coth

βLωL

2

)
. (3.16)

We see that the magnitude of the total work depends on the
combinations of η, βHωH and βLωL with the constraints η � 0,
βH < βL and ωH > ωL, so the design of the engine is to find
an optimal combination to have the maximal output work for
a given incoming heat, that is, WTOT < 0 and maximal |WTOT|.
At least when βHωH < βLωL, the magnitude of the total work
increases with growing η, but independent of θ . Furthermore,
since cosh 2η � 1, we may not want to put additional squeez-
ing in the cold thermal bath if we want to extract maximal
total work. Meanwhile the condition βHωH < βLωL implies

ωL

ωH

>
βH

βL

, (3.17)

and in turn leads to the well-known fact that the efficiency of
the Otto engine is always less than that of the Carnot engine.

The θ -independence implies that the result is independent
of which quadrature is squeezed. This is very different from
the application of squeezing in LIGO, where a particular
quadrature has to be squeezed such that the effects of the cor-
responding quantum noise are suppressed in order to maintain
high coherence. In the context of heat engine, the indepen-
dence of θ can be traced to the internal energy of the oscillator
at the end of the hot isothermal phase (3.11), which is also
independent of θ . Physically speaking, when we have sup-
pressed the uncertainty in one quadrature, a large uncertainty
in the complementary conjugated quadrature will be induced.
Thus, if the elastic energy of the oscillator is suppressed by a

7Performing an unsqueezing is a procedure often invoked in the
literature with little discussion of the realistic implementations and
the cost and effect involved. We don’t have anything intelligent to
say about the practical protocols, but wish to point out a theoretical
concern. Any squeezing or unsqueezing involves an outside agent,
with which the system will engage in energy exchange. Therefore, to
be fair the assessment of engine efficiency needs to include this factor
into the consideration. And, to be complete, one needs to include the
dynamical variables of the outside agent in the model calculations.
There must also be a corresponding optimization issue of the energy
used in the (un)squeezing process. Further investigations are needed
in these aspects [60].
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factor e−2η, the kinetic energy is enhanced by e+2η such that
the total energy still gets bigger by e+2η′ ∼ cosh 2η′, and vice
versa.

In the quench limit, Eqs. (3.10) and (3.14) provide the total
work

W (SC)
TOT = W (SC)

AB + W (SC)
CD = −1

4

(
ω2

H − ω2
L

)( 1

ωH

cosh 2η coth
βHωH

2
− 1

ωL

coth
βLωL

2

)
, (3.18)

or, more compactly,

W (SC)
TOT = −1

4

(
ω2

H − ω2
L

)( 1

ωH

coth
βS,HωH

2
− 1

ωL

coth
βS,LωL

2

)
,

(3.19)
where βS,H is introduced according to (2.13) and βS,L = βL

because there is no squeezing in the low-temperature thermal
bath. Here we need a stronger condition

1

ωH

coth
βS,HωH

2
>

1

ωL

coth
βS,LωL

2
(3.20)

to guarantee an output work, rather than βHωH < βLωL. In
addition we can verify that the magnitude of the output work
in the sudden quench case is always smaller than that in the
adiabatic limit. Finally, squeezing has the same effect on the
output work as in the adiabatic process.

Next we move on to the isothermal phases.

IV. ISOTHERMAL STAGES: SQUEEZED THERMAL BATHS

In an isothermal stage our system of one quantum har-
monic oscillator with a fixed frequency is brought into contact
with a squeezed thermal bath. We shall allow the system to

evolve to relaxation whose timescale is determined by the
inverse damping constant γ −1. The existence of a steady state
wherein the energy exchange between the oscillator and the
bath is in balance and the correlation function of the oscillator
becomes stationary, that is, invariant in time translation, is
demonstrated in [54]. We rely on the HPZ equation for a
Brownian oscillator in a squeezed thermal bath derived in [45]
and provide the late time behavior of its coefficient functions
in the Appendix. We perform numerical computations from
these expressions to obtain the quantities we need for the
isothermal phases of the Otto engine.

With the Hamiltonian for an oscillator of mass m and
physical (renormalized) frequency ω given by

ĤR = p̂2

2m
+ mω2

2
χ̂2, (4.1)

the Wigner function after the system reaches a steady state
takes the generic form

WSS(χ, p) = 1

4π
√

ab
exp

[
p2

4a
+ χ2

4b

]
, (4.2)

where the coefficients b, a are related to the covariance matrix
elements 〈χ̂2(∞)〉, 〈p̂2(∞)〉 by

〈χ̂2(∞)〉 = −2b = cosh 2η
2γ

mπ

∫ �

0
dκ κ coth

βκ

2

1

|(γ + iκ )2 + ω2
r |2

, (4.3)

〈p̂2(∞)〉 = −2a = cosh 2η
2mγ

π

∫ �

0
dκ κ3 coth

βκ

2

1

|(γ + iκ )2 + ω2
r |2

, (4.4)

〈{χ̂ (∞), p̂(∞)}〉 = 0, (4.5)

if the bath is initially in a squeezed thermal state at tem-
perature β−1 and squeeze parameter ζ = η eiθ . Here ∞ in
the argument of the covariance matrix elements means that
these elements are evaluated at the final equilibrium state at
t � γ −1. The frequency ωr denotes the resonance frequency,
defined by ω2

r = ω2 − γ 2. In the weak oscillator-bath cou-
pling limit ω and ωr are approximately the same.

The integral expression in 〈p̂2(∞)〉 is not well defined,
so we introduce a frequency cutoff � in the upper limit of
the κ-integral to suppress the excessive high-frequency contri-
butions. The cutoff parameter is typically the highest energy
scale below which the theory remains valid. In Fig. 2 we show
the typical dependences of the covariance matrix elements
〈χ̂2(∞)〉β and 〈p̂2(∞)〉β at late times when the oscillator is
in a plain thermal bath of temperature β−1. They differ from
〈χ̂2(∞)〉 and 〈p̂2(∞)〉 by a constant factor cosh 2η. We men-
tion several salient features: (1) When the bath temperature

is sufficiently high, both covariance matrix elements take on
the classical values, which have very weak dependence on γ .
It reflects that the quantum nature of the oscillator is heavily
suppressed by large thermal fluctuations of the bath. (2) At
low temperatures, they deviate from their counterparts in a
closed system, with a larger damping constant γ . (3) Since
they are rescaled with respect to their closed-system counter-
parts, the state of the oscillator is slightly squeezed [55] (due
to finite oscillator-bath coupling there unlike the squeezing
due to frequency modulation or a fixed squeezed thermal bath
here). (4) 〈p̂2(∞)〉β has a stronger dependence on γ at low
temperatures because typically it contains a cutoff-dependent
term like γ ln(�/ω), aimed at the ultraviolate behavior of the
vacuum fluctuations of the bath field.

We note that both elements in (4.3) and (4.4) are propor-
tional to the factor cosh 2η, independent of the squeeze angle
θ , so the initial phase information of the bath is lost. The
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FIG. 2. Dependences of the late-time covariance matrix elements 〈χ̂2(∞)〉β and 〈 p̂2(∞)〉β on the damping constant γ and the initial bath
temperature β−1 indicating the stark differences between strong and weak coupling, low and high temperature. The former is scaled with
respect to (2mω)−1 and the latter to mω/2. The variables γ and β−1 are in the unit of ω. Here we choose m = 1 × ω and the cutoff scale
� = 1000ω.

vanishing of the cross correlation between the canonical vari-
able operators also reflects the stationarity of the final state.
These properties show that the final steady state is a thermal
state at a temperature β−1

S different from the bath’s initial
temperature β−1. Essentially in the weak coupling limit, we
find

coth
βSω

2
= cosh 2η coth

βω

2
. (4.6)

Since cosh 2η � 1, we always have βS � β due to the fact that
coth z is a monotonically decreasing function of z. This im-
plies β−1

S � β−1, and the squeezing always effectively raises
the oscillator temperature, independent of the squeeze angle
θ . For a given initial state of the oscillator, more heat from
the hot thermal bath goes into the oscillator with a larger
squeeze parameter η, following (3.11) and the argument in
the previous section. This feature can be useful in boosting
the theoretical Carnot efficiency for a fixed cold thermal bath
temperature.

Since there is no external agent, the heat exchange with the
bath is what changes the internal energy of the oscillator. The

amount of heat injected into the oscillator or released to the
bath is given by the difference of the internal energy of the
oscillator between its initial and final state of the isothermal
process. For the hot isothermal phase (B 
→ C), in the weak
coupling limit, we already know the internal energy of the
oscillator at C is given by (3.11). Thus the heat exchange in
this phase is

QIN = EC − EB, (4.7)

where B denotes the final state of the previous isentropic
phase. The positive value of heat means that the heat flows
into the oscillator. If the isentropic phase (A 
→ B) are adia-
batically slow, then EB is given by

EB = ωH

2
coth

βLωL

2
, (4.8)

which gives the corresponding injected heat

QIN = EC − EB = ωH

2

(
cosh 2η coth

βHωH

2
− coth

βLωL

2

)
.

(4.9)
Thus in the adiabatic limit, the efficiency ξ (AD) of the Otto
engine in contact with the hot squeezed bath is given by

ξ (AD) =
∣∣W (AD)

TOT

∣∣
QIN

=
(

ωH

2 − ωL

2

)(
cosh 2η coth βHωH

2 − coth βLωL

2

)
ωH

2

(
cosh 2η coth βHωH

2 − coth βLωL

2

) = 1 − ωL

ωH

. (4.10)

This is the optimal efficiency of the Otto engine, and it is independent of the squeezing in the hot thermal bath and independent
of the temperatures of the baths.

In comparison, if both isentropic phases undergo a sudden frequency change, then the efficiency ξ (SC) of the engine is given
by

ξ (SC) =
∣∣W (SC)

TOT

∣∣
QIN

=
1
4

(
ω2

H − ω2
L

)(
1

ωH
coth βS,HωH

2 − 1
ωL

coth βS,LωL

2

)
ωH

2

(
coth βS,HωH

2 − coth βS,LωL

2

) , (4.11)
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with the help of (3.19). It shows the dependence of the squeeze
parameter and the bath temperatures in a nontrivial way. For
example, in the extreme squeezing limit η → ∞, the effi-
ciency ξ (SC) reduces to

lim
η→∞ ξ (SC) =

(
1 − ωL

ωH

)
ωH + ωL

2ωH

< ξ (AD). (4.12)

Between these two limits, numerical means are needed to
explore the full parameter space of the efficiency. That is, in
general EB will take the form

EB = cosh 2ηS

ωH

2
coth

βLωL

2
, (4.13)

with again ηS computed via (2.26) by the numerical approach.

V. CONCLUSION

We have investigated some foundational theoretical issues
for the isentropic and the isothermal phases of continuous
variables quantum Otto engines, based on the conceptual and
technical framework of the Hu-Paz-Zhang master equation
which gives a correct treatment of the non-Markovian regime
and strong system-bath coupling. We showed that on account
of the pathologies of the Lindblad or Caldeira-Leggett equa-
tions at very low temperatures, and for strong system-bath
coupling, the HPZ equation is more suitable for a wider range
of applicability in the development of quantum thermodynam-
ics.

An important issue which is largely ignored in quantum
thermal engines theories is the junction conditions. In the
isothermal phase, when the oscillator which is the working
medium of the quantum Otto engine studied here, interacts
with a squeezed thermal bath, the end state (t � γ −1) of
the oscillator is not a squeezed thermal state even for weak
oscillator-bath coupling. This is very different from the popu-
lar case when the oscillator is coupled to a plain thermal state.
There, in the weak coupling limit, the oscillator does end up
in a thermal state having the same temperature as the bath.
But this is not true here. The squeezed thermal state is not a
stationary state, so it cannot serve as an equilibrium state. The
deeper physics behind it, in simple words, is that the dissi-
pation on the oscillator’s motion will adapt itself to counter
the nonstationary noise from the bath, such that in the end the
oscillator still approaches a stationary equilibrium state. The
parameters in this end state depend on the initial amplitude
of bath squeezing, but not on the initial squeeze phase. Thus
the correct end state we obtained is totally different in nature
from the end state of the isothermal phase assumed in the
literature. As a consequence, a different junction condition is
needed at the interface of the isothermal and the isentropic
phases. This is not only a conceptual issue, it impacts on
the implementation of the optimization protocols used in the
ensuing isentropic phase to boost the engine efficiency.

In our treatment of the isentropic phase, we did not limit
the frequency modulation to be adiabatic. Our formalism
is general enough to account for nonadiabaticity, borrowing
well-developed ideas and treatments from cosmology and
quantum field theory in curved space. Finally, although we
have not implemented the strong oscillator-bath coupling to

the current setting of the quantum Otto engine, we have
demonstrated the emergent disparity in the behavior of the
oscillator when the coupling strength is gradually increased.
Strong coupling physics in the realm of the quantum heat
engine remains an open issue.

As noted earlier, by scrutinizing the validity of assumptions
and approximations in existing theories and in exploring a
broader range of parameter spaces in the open quantum sys-
tems and squeezed quantum systems, we hope to provide a
more solid theoretical foundation for the search for optimal
quantum engine performance and more general quantum ther-
modynamic applications of these systems.
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APPENDIX: LATE-TIME COEFFICIENTS OF HPZ
MASTER EQUATION

The HPZ master equation for a bath of squeezed harmonic
oscillators is derived in [45] for the convenience of readers
following that stream of work [47,48]:

i
∂ρ̂

∂t
= [Ĥren, ρ̂] + i Dpp[χ̂ , [χ̂ , ρ̂]] + i Dxx[ p̂, [ p̂, ρ̂]]

+ i (Dpx + Dxp)[χ̂ , [ p̂, ρ̂]] + �[χ̂ , { p̂, ρ̂}],

Ĥren = p̂2

2m
+ mω2χ̂2

2
, ω2 = ω2

b −
∫

dκ
I (κ )

κ
, (A1)

where ωb is the bare frequency of the system and I (ω) is the
spectral density of the bath.

The master equation is derived using the influence func-
tional formalism and the evolution operator can be expressed
with a function of initial and final values of �, � functions
of forward and backward classical trajectories multiplied by a
path-independent factor. The classical trajectories of � and �

functions can be reduced to a linear combination of initial and
final values with coefficients u1, u2, v1, v2 satisfying appro-
priate boundary conditions. For an Ohmic bath with spectral
density

I (κ ) = 2mγ κ �(� − κ )

π
, (A2)

where � is a cutoff frequency much larger than all relevant
frequency scales of the system so that the dissipation is time
local but the physical frequency remains positive, these func-
tions are given by

ω2
r = ω2 − γ 2, (A3)
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u1(s, t ) = − sin[ωr(s − t )] e−γ s

sin(ωrt )
, u2(s, t ) = sin(ωrs) e−γ (s−t )

sin(ωrt )
,

(A4)

v1(s, t ) = u2(t − s, t ), v2(s, t ) = u1(t − s, t ). (A5)

Reference [45] defines functions b1(t ), . . . , b4(t ) and ai j (t ),
where i and j take the values of 1 and 2, in terms of u
and v to be used in the expressions of the master equation
coefficients:

b1(t ) = −b4(t ) = m[ωr cot(ωrt ) − γ ], (A6)

b2(t ) = mωr eγ t

sin(ωrt )
, (A7)

b3(t ) = −mωr e−γ t

sin(ωrt )
, (A8)

ai j (t ) = 1

1 + δi j

∫ t

0
ds

∫ t

0
ds′ vi(s)ν(s, s′)v j (s

′), (A9)

ν(s, s′) =
∫ ∞

0
dκ I (κ ) coth

βκ

2
{cosh 2η cos[κ (s − s′)]

− sinh 2η cos[2θ − κ (s + s′)]}. (A10)

Notice that we set all of the bath oscillators with the same
squeezing parameters η and θ and temperature β−1 for sim-
plicity.

At this point, we need to give an expression for ai j to
evaluate the coefficients of the master equation. However,
the integral over spectral density in the expression of ν(s, s′)
cannot be solved analytically, so we will introduce its Laplace
transform ν̃(σ, σ ′) to be able to deal with the time integrals
in the expression of ai j first and then take the integral over the
spectral density numerically. It is straightforward to check that
any straight line in the complex plane with fixed real part such
that Re(σ ), Re(σ ′) > 0 is in the region of convergence once
we impose v1(t < 0) = v2(t < 0) = 0, and we stick to this
choice for our calculation. The Laplace transform of ν(s, s′)
is given by

ν̃(σ, σ ′) =
∫ ∞

0
dκ

S(κ )

(σ 2 + κ2)(σ ′2 + κ2)
{cosh 2η × (σσ ′ + κ ′2) − sinh 2η[(σσ ′ − κ2) cos 2θ + κ (σ + σ ′) sin 2θ ]}, (A11)

where S(κ ) = 2γ mκ�(�−κ )
π

coth βκ

2 . Using this expression, we can bring the expression of ai j to the form

ai j (t ) = − 1

4π2(1 + δi j )

∫ ε+i∞

ε−i∞
dσ

∫ ε+i∞

ε−i∞
dσ ′

∫ t

0
ds

∫ t

0
ds′ vi(s)ν̃(σ, σ ′)v j (s

′) eσ s+σ ′s′
, (A12)

where ε is an arbitrary real number strictly greater than zero. Plugging the expressions for v1(t ), v2(t ) into Eq. (A12) and taking
the integrals over time, we obtain the following expressions for ai j :

a11(t ) = − 1

8π2 sin2(ωrt )

∫ ε+i∞

ε−i∞
dσ

∫ ε+i∞

ε−i∞
dσ ′ ν̃(σ, σ ′)

ωre(γ+σ )t − (γ + σ ) sin(ωrt ) − ωr cos(ωrt )

(γ + σ )2 + ω2
r

× ωre(γ+σ ′ )t − (γ + σ ′) sin(ωrt ) − ωr cos(ωrt )

(γ + σ ′)2 + ω2
r

, (A13)

a12(t ) = − ȧ11

v̇1(t )
= ȧ11 sin(ωrt )

ωr eγ t
, from Eq. (D5) of Ref. [45], (A14)

a22(t ) = − 1

8π2 sin2(ωrt )

∫ ε+i∞

ε−i∞
dσ

∫ ε+i∞

ε−i∞
dσ ′ ν̃(σ, σ ′)

ωr e−γ t + [(γ + σ ) sin(ωrt ) − ωr cos(ωrt )] eσ t

(γ + σ )2 + ω2
r

× ωr e−γ t + [(γ + σ ′) sin(ωrt ) − ωr cos(ωrt )] eσ ′t

(γ + σ ′)2 + ω2
r

. (A15)

These integrals are evaluated using the residue theorem and an appropriate closed integration contour including the line from
ε − i∞ to ε − i∞, and the results are given in Eqs. (A16), (A17), and (A18) with the exponentially decaying terms omitted due
to late-time assumption:

a11(t � 1/γ ) =
∫ ∞

0
dκ

S(κ ) ω2
r e2γ t

2 sin2(ωrt )

(
cosh 2η

|(γ + iκ )2 + ω2
r |2

− sinh 2η Re

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

})
, (A16)

a22(t � 1/γ ) =
∫ ∞

0
dκ

S(κ )

2

(
cosh 2η [(γ − ωr cot ωrt )2 + κ2]

|(γ + iκ )2 + ω2
r |2

− sinh 2η [(γ − ωr cot ωrt )2 − κ2] Re

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

}

− 2κ (γ − ωr cot ωrt ) Im

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

})
, (A17)

a12(t � 1/γ ) =
∫ ∞

0
dκ

S(κ ) ωr eγ t

sin(ωrt )

[
(γ − ωr cot ωrt )

(
cosh 2η

|(γ + iκ )2 + ω2
r |2

− sinh 2η Re

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

})

+ κ sinh 2η Im

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

}]
. (A18)
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Having explicit expressions for b1, . . . , b4 and ai j , and using
Eqs. (D8) to (D11) from Ref. [45], the late-time coefficients
of Eq. (A1) are the following. The integration

∫ ∞
0 dκ S(κ ) · · ·

is omitted but implied in the expressions of Dpp and Dpχ for a
cleaner notation:

� = γ , Dχχ = 0, (A19)

−Dχ p = −Dpx = (κ2 − ω2) cosh 2η

2m|(γ + iκ )2 + ω2
r |2

+ sinh 2η

2m

(
(3κ2 + ω2) Re

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

}

− 2κγ Im

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

})
, (A20)

Dpp = −2γ κ2 cosh 2η

|(γ + iκ )2 + ω2
r |2

+ sinh 2η

(
(κ2 − ω2)κ Im

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

}

− 6γ κ Re

{
e2i(κt−θ )

[(γ + iκ )2 + ω2
r ]2

})
. (A21)

Before proceeding to find the steady state of Eq. (A1), we
can make a further approximation for Dχ p and Dpp. For a
large enough time t , we can assume the rotating terms of the
integrand behave smoothly enough with changes of κ in the
order of 1/t so that the integral over bath spectrum becomes
negligible. Eliminating these terms give the following expres-
sions8 for Dχ p and Dpp:

Dχ p = (ω2 − κ2) cosh 2η

2m |(γ + iκ )2 + ω2
r |2

, Dpp = − 2γ κ2 cosh 2η

|(γ + iκ )2 + ω2
r |2

.

(A22)

8Notice that the signs of Dχ p, Dpχ terms differ in Eqs. (3.4) and
(D6) of Ref. [45]. Equations (A19) and (A22) refer to the coefficients
of Eq. (A1).
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