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Power statistics of Otto heat engines with the Mpemba effect
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The Mpemba effect is a counterintuitive relaxation phenomenon whereby a system with a higher initial
temperature may cool down to the thermal state faster than an identical system that was initially prepared
at a lower temperature. Here, we investigate heat and work in a Markovian state transition system with
cyclic switching hot-cold temperatures, which operates as an Otto heat engine working in long but finite
time, either with or without the Mpemba effect. Under the condition of the periodic steady state having been
reached, the time durations of the heating and cooling relaxation processes are determined by exploring a
distance-from-equilibrium equivalent to the Kullback-Leibler divergence. We then numerically evaluate and
compare the averages and variances of both the work and the power output of two scenarios with and without
the Mpemba effect. The results show that the Markovian Mpemba effect can enhance the machine performance
by significantly increasing the power output for a given efficiency without sacrificing the stability.
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I. INTRODUCTION

A heat engine that operates with a classical or quantum
system working between a hot and a cold reservoir is a topic
of great interest. Apart from its potential application in energy
utilization, a heat engine in finite time provides a good plat-
form for understanding the nonequilibrium thermodynamics
and statistics of the system. The heat engines from the mi-
croscale to the macroscale have been extensively investigated,
with strong emphasis on performance optimization when
these engines produce finite power [1–12]. Owing to non-
negligible fluctuations [12–23] of heat and work in finite-size
systems, for heat engines at the microscale and the mesoscale,
the power output is a stochastic variable, and the power fluc-
tuations characterizing the instability of engines [24] should
be considered. Previous studies have shown that the increase
of power leads to the increase of power fluctuations owing to
the trade-off between them, for either steady-state [25,26] or
cyclic [18,24] engine models. Therefore, it is worthwhile to
consider the power fluctuations as a figure of merit wherein
both the performance measure and the stability of the thermal
machines are involved.

Typically, it is expected that a system prepared at a cold
temperature cools down faster compared with an identical
system initiated at a hot temperature when both are cooled to a
colder reservoir. Although this is typically true, it is not always
the case, and a hot system may cool down faster compared
with a cold system. This anomalous cooling effect is called
the Mpemba effect (ME) [27–29], and its phenomenological
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description [30] was recently proposed within the context of
Markovian dynamics. However, the underlying mechanism
for the occurrence of the Mpemba effect remains elusive ow-
ing to its complexity [31,32]. Recent studies have proposed
that Mpemba-like behavior may be observed in various sys-
tems [30,32–42], including small systems [30,32] that can be
satisfactorily described by stochastic thermodynamics. Since
the performance in the finite time of heat engines is sensitive
to the working substance, a question naturally arises with
regard to whether the performance of finite-time heat engines
can be enhanced by the ME. To answer this question, we
analyze an Otto engine by adopting a three-state system as the
working substance, where ME (inverse ME) could occur along
the cooling (heating) process, assuming that the engine (with
long but not infinite cycle duration) has reached a periodic
steady state.

To model an Otto engine cycle [43–47] consisting of two
isochoric and two adiabatic processes, this study adopts two
different three-state systems: one exhibits the ME, while the
other does not. The numerical calculations show that, for
a given thermodynamic efficiency, the power output can be
significantly enhanced by the ME without sacrificing the
engine stability. The rest of this paper is organized as fol-
lows. In Sec. II, following the approach adopted in Ref. [30],
the distance-from-equilibrium is numerically investigated to
determine the time duration along an isochoric cooling pro-
cess, in both the presence and the absence of ME. The
distance-from-equilibrium is shown to be identical to the
Kullback-Leibler divergence. The performance analysis is
presented in Sec. III, wherein the effects induced by ME on
the time cycle period, power, and relative power fluctuations
are determined. Section IV summarizes the conclusions drawn
from this study.
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II. PHENOMENOLOGICAL DESCRIPTION OF MPEMBA
EFFECT BY USING MARKOVIAN DYNAMICS

Following Ref. [30], the dynamics of a system in contact
with an ideal thermal bath with a constant inverse temperature
βr (kB ≡ 1, βr = 1/Tr) can be determined using the stochastic
master equation [48]:

d pn(t )

dt
=

∑
m

Rnm pm(t ), n = 1, 2, 3, . . . , (1)

where pn(t ) denotes the occupation probabilities for states n
at time t , and Rnm is the element of the stochastic transition
matrix that represents the transition rate from state m to state
n. Elements Rnm depend on the energy (εm), the energy barrier
between the states (Bmn = Bnm), and the inverse temperature
of the thermal bath βr . These elements take the Arrhenius
form, as follows:

Rnm =
{
γ e−βr (Bnm−εm ), n �= m,

−∑
l �=m Rlm, n = m,

(2)

where γ is a constant. When the system achieves ther-
mal equilibrium steady state, the occupation probabilities pn

must approach their equilibrium values πn determined by the
Boltzmann distribution, as follows: πn = e−βrεn/Z, where
Z = ∑

n e−βrεn is the canonical partition function. In stochas-
tic thermodynamics, the total entropy production rate of a
system coupled to a heat bath can be obtained as follows:

Ṡ(t ) =
∑
n<m

Jmn ln
Rnm pm

Rmn pn
, (3)

where Jnm = Rnm pm − Rmn pn = −Jmn, and thus Jnm denotes
the net probability current from state m to state n. For a system
at thermal equilibrium, −→p (t ) = −→π (βr ) and Rmnπn = Rnmπm,
and the entropy production rate vanishes, that is, Ṡ = 0.

To describe how far the system deviates from the thermal
equilibrium, we explore the distance-from-equilibrium func-
tion F[−→p (t ); βr], which can be defined by integrating Ṡ from
time t to ∞ [30] as F[−→p (t ); βr] = ∫ ∞

t Ṡ(t ′)dt ′. By inserting
Eq. (3), one readily obtains

F[−→p (t ); βr] =
∑

n

[βrεn(pn − πn) + pn ln pn − πn ln πn].

(4)
This is a decreasing function of time t and vanishes at t →
∞ since

−→
p(t )|t→∞ = −→π (βr ). Alternatively, we can prove

that this distance function is equivalent to the Kullback-
Leibler divergence [49] (also called relative entropy, or
information divergence) between the probability distributions−→p (t ) and −→π :

F[−→p (t ); βr] =
∑

n

pn ln(pn/πn), (5)

since
∑

n[βrεn(pn − πn)] = ∑
n[−(pn − πn) ln πn] by using

probability conservation
∑

n pn = ∑
n πn = 1.

Let us assume that two copies of the same system are
prepared at two equilibrium states with inverse temperature
βa and βb > βa, respectively. Then, they are cooled by a cold
heat bath with inverse temperature βr , where βr > βb > βa. If
the ME holds in the system, the relationship F[−→p a(t ); βr] <

F[−→p b(t ); βr] should be satisfied for t > tν , where tν is the

finite time length of the relaxation. In other words, when
t > tν , the distance from the equilibrium of the initially hotter
system is smaller than that of the initially colder system owing
to the ME. When the initial temperature is given for the system
under consideration, the distance-from-equilibrium function
(4) can be numerically determined by solving the master
equation (1).

Let us consider two different three-state systems (cooled
with a cold thermal bath), namely, S1 and S2, where S1 may
exhibit the ME but S2 does not. A three-well potential energy
landscape [Fig. 1(a)] is a mapping of these three states in
the system with the transition rates sketched in Fig. 1(b). To
determine the time duration of a relaxation process, we should
consider the distance function (4) that indicates the distance
from the thermal equilibrium.

The energy barriers Bmn(m �= n) (with m, n = 1, 2, 3) are
selected as follows: B12 = 1.5, B13 = 0.8, and B23 = 1.2 in
system S1 [30]; the energy barriers are B12 = 0.2, B13 = 1.7,
and B23 = 1.9 for system S2; the energies are the same ε1 = 0,
ε2 = 0.1, and ε3 = 0.7 for both systems S1 and S2. For two
different initial temperature values, the distance function is
plotted as a function of the time duration for systems S1

[Fig. 1(c)] and S2 [Fig. 1(d)]. At two different initial temper-
atures, system S2 evolves according to two non-overlapping
paths toward the asymptotic thermal state π (βr ), while the
distance function of system S1 along the protocol of the higher
initial temperature decays faster than that along the protocol
of the lower initial temperature. Hence, ME is observed in
system S1 but absent in system S2. Notably, regardless of
the presence or absence of the ME, the distance function
F[−→p (t ); βr] monotonically decreases as the interaction dura-
tion t increases and vanishes when the system reaches thermal
equilibrium, as expected. For each initial inverse temperature
βi (i = a and b), the relaxation time for the system that reaches
thermal equilibrium is, in principle, determined by setting the
distance function to zero. Importantly, a hotter system can
cool down much faster owing to the ME, which motivates
the implementation of a heat engine operating with a system
wherein the ME is present.

III. PERFORMANCE ANALYSIS OF OTTO ENGINES

An Otto heat engine that works with the three-state sys-
tem and consists of two isochoric and two adiabatic strokes
is sketched in Fig. 1(e). The engine cycle consists of four
consecutive steps, wherein the working system is alternatingly
coupled to the two heat baths at inverse temperatures βr

c and
βr

h , respectively.
(i) Cooling stroke A → B. While being coupled to a cold

thermal bath of constant inverse temperature βr
c in a time pe-

riod τc, the system with a fixed energy spectrum (i.e., constant
energies εc

n) is releasing heat to the bath.
(ii) Adiabatic branch B → C. The system with varying

frequency is decoupled from the heat reservoir. Here, the
adiabatic process is idealized as the sudden jumps of the
potential, and therefore its time duration is negligible [50]. In
this isentropic stroke, the occupation probabilities pn remain
constant owing to the constant entropy S = −∑

n pn ln pn.
Hence, as the only variable of pn, βεn must be unvaried,
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(a) (b)

(c) (d)

(e)

FIG. 1. (a) Sketch of three-well potential landscape with three
states. (b) sketch of transition rates Rmn [Eq. (2)] in potential land-
scape as a three state system. Distance-from-equilibrium function
of systems (c) S1 and (d) S2 versus time duration of system-bath
interaction interval. A logarithmic scale is used for the distance func-
tion. For system S1, the energy barriers are B12 = 1.5, B13 = 0.8,
and B23 = 1.2; for system S2 the energy barriers are B12 = 0.2,
B13 = 1.7, and B23 = 1.9. Systems S1 and S2 both have the same
energies: ε1 = 0, ε2 = 0.1, and ε3 = 0.7. The inverse temperature of
the cold thermal bath is βr

c = 5. (e) Otto engine cycle consisting of
a three-state system and working between a hot and a cold heat bath
with inverse temperatures βr

h and βr
c .

which implies that the following relationship exists along this
process: βεn = const.

(iii) Heating stroke C → D. The system is weakly coupled
to a hot heat reservoir at the inverse temperature βr

h in the time
duration τh, with constant energies εn = εh

n .
(iv) Adiabatic process D → A. Again, by isolating the

system from these two thermal baths, adiabatic compression
in the sudden limit is performed to complete the cycle with
the cycle period of τcyc = τh + τc.

For isochoric cooling (i) and heating (iii), the system
reaches the thermal equilibrium with the inverse temperature
bath βr

α (α = c and h) at the end of the stroke, if and only if the
thermalization is complete with infinite τc or τh. However, ow-
ing to the finite time operation, the system of the cyclic engine
in an isochoric stroke relaxes to the unique periodic steady
state [51,52] (see the Appendix for details). As we show in
the Appendix, when the two baths’ inverse temperatures βr

c
and βr

h are given, there are many periodic steady states for the
Otto cycle, which are determined by setting F to be different
non-negative values. In what follows, we consider one of these
many periodic states that the heat engine under time-periodic
driving has reached, which corresponds to the case when the
distance function is much closer to zero and thus τc and τh

are very long but not infinite. In such a periodic steady state,
the system is close to thermal equilibrium at the end of each
isochore.

Using the two-time measurement approach [12,18,22,23],
the probability density function of the stochastic heat qα along
the isochoric stroke without produced work can be deter-
mined by the conditional probability to obtain the following
equation:

p(qα ) = δ
[
qα − (

εα
n − εα

m

)]
pn(t0)pm(t0 + τα ), (6)

where pn(t0) is the probability of the system initially being
in state n at time t = t0, and pm(t0 + τα ) is the probability of
the system collapsing into another state m after a time period
τα with α = h and c. When the engine proceeds in finite time
by cyclic driving, we are entering the periodic steady state
pn(t0 + τc + τh) = pn(t0). By considering Eq. (6), it follows
that the average heat injection, 〈qα〉 = ∫

qα p(qα )dqα , takes
the following form:

〈qα〉 =
∑

n

εα
n [pn(t0) − pn(t0 + τα )]. (7)

where t0 = 0 for α = c, and t0 = τc for α = h.
Work is done by the system during the adiabatic compres-

sion and expansion phases, whereas heat is exchanged with
the two thermal baths during the isochoric branches. In other
words, the work done by the system is equivalent to the total
work produced along adiabatic trajectories (ii) and (iv), which
leads to the following expression:

w[n(0); m(τα )] = (
εh

n − εc
n

) − (
εh

m − εc
m

)
, (8)

where εc
n and εh

n (εh
m and εc

m) are the initial and final energy
eigenvalues along the compression (expansion), respectively;
n(t ) and m(t ) are integers indicating the states occupied by
the system at time t . The state |n(t0)〉 is independent of the
state |m(τα )〉, because the system that has reached the unique
periodic steady state is much closer to thermal equilibrium at
the end of the hot or cold isochore. Therefore, the probability
density of the stochastic work can be obtained as follows [18]:

p(w) =
∑
n,m

pn(0)pm(τc)δ{w − w[n(0); m(τc)]}. (9)

This allows us to determine all moments of stochastic work as
follows: 〈wk〉 = ∫

wk p(w)dw (k = 1, 2, . . . ). Consequently,
using Eq. (8), the average work done per cycle 〈w〉 can be
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expressed as follows:

〈w〉 =
∫

wp(w)dw =
∑

n

(
εh

n − εc
n

)
[pn(0) − pn(τc)]. (10)

Hence, the stochastic work fluctuations can be numeri-
cally determined according to 〈δw2〉 = 〈w2〉 − 〈w〉2. Notably,
the average power output and power fluctuations are P =
〈w〉/τcyc and δP2 = (〈w2〉 − 〈w〉2)/τ 2

cyc, respectively.
An adiabatic process can be realized [53] when the energy

gaps of the system are changed by the same ratio during
an adiabatic driven stroke, without consideration to energy
quantization [54]. For simplicity, the ground-state energy was
selected as the energy reference point, that is, εh

0 = εc
0 = 0,

which implies that εh
n = λεc

n. By considering Eqs. (7) and (10),
the thermodynamic efficiency of the machine can be obtained
as follows:

η = 〈w〉
〈qh〉 = 1 − 1

λ
, (11)

where λ > 1 owing to εh
n > εc

n.
To better understand the mechanism of performance en-

hancement in the finite time of the heat engine, we investigate
the influence of the ME on the average power and power
fluctuations. As an example, let us consider the Otto cycle
based on system S1 or S2 by fixing the ratio λ and, thus,
the efficiency η. While the energy barriers for system S1

are B12 = 1.5, B13 = 0.8, and B23 = 1.2, the energy barri-
ers for system S2 are B12 = 0.2, B13 = 1.7, and B23 = 1.9.
These two systems have the same energies, which are εc

1 = 0,
εc

2 = 0.1, and εc
3 = 0.7. The energies along the hot stroke are

εh
n = λεc

n, with λ = 5. When a value of the inverse tempera-
ture βr

h is set to select the initial probability −→p initial(0) and the
initial value of the system’s inverse temperature β initial

A (= λβr
h )

at time t = 0, the time durations τc and τh of the two isochores
can be numerically determined by using periodic boundary
constraints (the details of the calculation can be found in the
Appendix).

Figures 2(a) and 2(b) show the plots of the time durations
τc and τh as a function of the hot bath inverse temperature βr

h
for the heat engines based on systems S1 and S2, respectively.
Although the time required for cooling a system without ME
monotonically increases as the hot bath temperature increases,
the system allowing for the ME and initiated at a hot tem-
perature cools down faster than an identical system prepared
at a cold temperature when both systems are cooling by the
colder bath with inverse temperature βr

c . The time duration
τc (τh) increases with the inverse temperature βr

h for the heat
engine based on system S1, owing to the ME (inverse ME)
when βr

h � 0.42(βr
h � 0.72), as shown in Fig. 2(a). However,

when βr
h > 0.42 (βr

h > 0.72), the ME (inverse ME) vanishes
[as shown in Fig. 2(a)]. In this region of large βr

h values, the
time duration τc or τh decreases as βr

h increases, as shown in
Fig. 2(b), where neither the ME nor the inverse ME is present.
As can be seen, the time duration of the cooling stroke (τc)
is larger than one of the heating branch (τh), which coincides
with the theoretical prediction [55] of the uphill relaxation to
equilibrium being faster. The difference between τc and τh

is observed here to be very large, but not necessarily so in
general, as the distance function that determines the relaxation

(a)

(b)

FIG. 2. Time duration spent on two isochores for machines
working with systems (a) S1 and (b) S2 versus inverse temperature
βr

h . For system S1, the energy barriers are B12 = 1.5, B13 = 0.8,
and B23 = 1.2; for system S2 the energy barriers are B12 = 0.2,
B13 = 1.7, and B23 = 1.9. Systems S1 and S2 both have the same
energies: εc

1 = 0, εc
2 = 0.1, and εc

3 = 0.7. The energies along the hot
stroke are εh

n = λεc
n, with λ = 5. The inverse temperature of the cold

thermal bath is βr
c = 5.

time sensitively depends on the system parameters. Suppose
there is a system [56] that undergoes a cooling process which
is the reverse of a heating process. In Eq. (4), pn(0) and πn,
which are the respective occupation probabilities at the initial
and final states for the heating process, can be set as the
final and initial probability functions for the cooling process.
Clearly the distance function (4) monotonically increases as
the bath’s inverse temperature βr when the values of both
pn(0) and πn are given, and thus the distance function F
is larger in the cooling process where βr = βr

c than in the
heating one with βr = βr

h . By comparing Figs. 2(a) and 2(b), it
can be seen that the cooling time of system S1 is smaller than
that of S2. However, this is not always the case, because the
time for the cooling process depends on the selected system
parameters, such as the energies, the energy barriers, and the
initial temperature.

On the basis of the above discussion, we can now explore
the ME in the work and the power statistics of the thermal ma-
chine. The average work and work fluctuations of the machine
working system S1 with ME and system S2 without the ME
for different efficiencies η [Eq. (11)] are shown in Figs. 3(a)
and 3(b), respectively. For given βr

c , the average work and
work fluctuations increase as the hot bath inverse temperature
βr

h decreases, regardless of whether ME is present. This can
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(a)

(b)

FIG. 3. (a) Average work 〈w〉 and (b) work fluctuations 〈δw2〉
versus inverse temperature βr

h for λ = 5 and λ = 7. The other pa-
rameters are the same as those in Fig. 2.

be understood by the fact that the increase of the difference
between the two bath temperatures increases the average work
and fluctuations. Notably, when λ is given, the average work
produced by the machine with the ME and the machine with-
out the ME collapses into a single line, and a similar behavior
holds in the work fluctuations. This follows from the fact that
the stochastic work given by Eq. (8) depends on the system
energies only, and the effects induced by the energy barriers,
which account for the ME in our model, are entered into the
work distribution function [Eq. (9)] (if the system reaches the
thermal equilibrium, −→p (t → ∞) = −→π , the effects exerted by
the energy barriers disappear).

The comparison of the power output of the engine based on
system S1 to that produced by system S2 is shown in Fig. 4(a)
as a function of the inverse temperature βr

h . In Fig. 4(a), it can
be seen that, as βr

h decreases, the power output produced by
system S1 exponentially increases in the region (βr

h � 0.42)
where the ME exists [Fig. 2(a)]. The power output produced
by system S1 when βr

h > 0.42 or by system S2 decreases
almost linearly as βr

h increases because the ME is absent in
both of these cases. In physical terms, the decrease of the
hot bath inverse temperature βr

h increases the average work
〈w〉, but a considerable speedup in the cooling process can be
generated in the presence of the ME and will thereby expo-
nentially increase the power output P. Hence for the selected
parameters of system S1, the ME may be an important factor
for improving the machine performance because the ME can

(a)

(b)

FIG. 4. (a) Average power P and (b) square root of relative power
fluctuations δP/P versus inverse temperature βr

h for λ = 5 and λ = 7.
The inset in panel (b) shows the Fano factor δP2/P as a function of
inverse temperature βr

h . The other parameters are the same as those
in Fig. 2.

significantly enhance the power output without sacrificing the
thermodynamic efficiency.

Finally, the stability of the machine is analyzed by compar-
ing system S1, where the ME may occur, to system S2 without
the ME. The machine stability can be described by the Fano
factor for work 〈δw2〉/〈w〉, which is determined by the ratio
of work fluctuations 〈δw2〉 to the average work 〈w〉, or the
coefficient of variation for work 〈δw〉/〈w〉, which is equal to
the square root of the relative power fluctuations, δP/P. These
two are measures for the dispersion of the probability distri-
bution [24] and describe similar physics. Here, we consider
the coefficient of variation because it is dimensionless, and we
plot this coefficient as a function of the inverse temperature βr

h
in Fig. 4(b). As can be seen, the values of the coefficient δP/P
for different values of λ collapse to a single form and are thus
independent of the efficiency η. In particular, that in the region
where the ME occurs under the influence induced by the
ME on the coefficient of variation δP/P disappears. Although
the Fano factor δP2/P is larger in the presence of the ME
compared with that without the ME [see inset of Fig. 4(b)],
the power fluctuations follow super-Poisson statistics owing
to the Fano factor δP2/P < 1, which indicates that the engine
with ME runs in the stable regime.

Before ending this section, we would like to mention that
here we consider only one of the many periodic states that the
machine could explore, in which the system is close to thermal
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equilibrium at the end of the isochoric process. This leaves a
large amount of configurations of the heat engine unexplored
and limits the generality of these results.

IV. CONCLUSIONS

This study considered the finite-time performance and the
stability of an Otto engine working with two different sys-
tems: one system wherein the ME may exist and another
system without the ME. Under the condition of the engine
having reached the unique, periodic steady state, the time
periods (τc and τh) of the isochoric cooling and heating strokes
were numerically determined by assuming the distance func-
tion to be much closer to zero. The observation of τh being
much less than τc, regardless of the presence or the absence
of the ME, coincides with the theoretical prediction of the
asymmetric relaxation. It was discovered that the ME can
significantly boost the power output without increasing the
relative power fluctuations and sacrificing the machine effi-
ciency. Finally, it was found that the influence induced by
the ME on the relative power fluctuations is negligible, and
the engine with the ME is stable owing to the very small
super-Poisson Fano factor for power.
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APPENDIX: NUMERICAL METHOD FOR DETERMINING
THE TIME DURATIONS OF THE TWO ISOCHORIC

PROCESSES

Notably, from Eq. (1) in the main text, the probabilities−→p (t ) at any instants during the isochore of the machine under
consideration can be determined as follows:

−→p (t ) = exp(
−→
R ct )−→p (0), (A1)

with 0 � t � τc. Here, the transition rate matrix is
expressed as

−→
R c =

⎛
⎝ • R12 R13

R21 • R23

R31 R32 •

⎞
⎠,

where the off-diagonal elements (Rnm)n �=m and the diagonal
elements Rnn are determined by Eq. (2) with γ replaced by
γc and βr replaced by βr

c . Because the occupation probability−→p is kept constant along the isentropic, adiabatic process, the
evolution of the probabilities −→p (t ) along the hot isochore with
τc � t � τc + τh is given by the following equation:

−→p (t ) = exp(
−→
R ht )−→p (τc), (A2)

where the elements Rnm are determined according to Eq. (2)
by replacing γ and βr with γh and βr

h , respectively. A single
cycle is performed, according to the state evolution along the
two isochoric strokes described by Eqs. (A1) and (A2); that
is, the evolution of the system for one cycle is given by the

(a)

(b)

FIG. 5. Distance-from-equilibrium function in heating stroke for
machines with systems (a) S1 and (b) S2 versus time duration of
the system-bath interaction interval. A logarithmic scale is used in
the distance function (ordinate axis). The parameters are the same as
those in Fig. 2.

following equation:

−→p (τh + τc) = −→
M −→p (0), (A3)

where
−→
M = exp(

−→
R cτc) exp(

−→
R hτh) is used.

The system evolution over many cycles is determined by
the repeated application of the positive transition matrix

−→
M ,

which indicates that the system evolves to a periodic steady
state after infinite cycles [51],

−→p ps(0) = lim
i→∞

−→
M i−→p (0). (A4)

This implies that the following equation holds:

−→p ps(0) = −→
M −→p ps(0). (A5)

For a machine where the inverse temperatures of two baths
(βr

c and βr
h) are given, our numerical approach for deter-

mining the times τc and τh is as follows. First, we choose
the initial value of the probability at the beginning of the
cold isochoric stroke by setting −→p initial(0) = −→π (βr

h ) due to
constant entropy, such that we can solve F [−→p (τc); βr

c ] ≈ 0
with the precision up to 10−4 [see time-dependent distance
function F in Figs. 1(c) and 1(d)] with this accuracy indicating
that the system is much closer to thermal equilibrium. The
initial value of the effective temperature of the system at the
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beginning of cold isochore [in Fig. 1(e)] is given by β initial
A =

λβr
h . Moreover, by using Eq. (A1), we can determine −→p (τc),

which is equal to the probability of the system at the initial
state of the hot isochore. The next step is to numerically obtain
τh by determining the root of the equation F [−→p (τh); βr

h] ≈ 0
with precision limit 10−7 [57] (F [−→p (τh), βr

h] is plotted in
Fig. 5). In the same manner as in the cold isochore, the system
is close to the thermal equilibrium at the end of the isochore.
Third, the two abovementioned steps are repeated until −→p (0)
approaches its asymptotic value, which indicates that the sys-
tem reaches the periodic steady state, yielding the value of−→p ps(0) in Eq. (A4) and the value of −→p ps(τc) in Eq. (A1).

Finally, τc and τh are calculated based on Eq. (A5) using the
same approach as in steps one and two. To keep the nota-
tion simple, we use −→p (t ) instead of −→p ps(t ) to describe the
periodic steady state in the main text. As emphasized, there
are many other periodic steady states that the machine could
operate in finite time, in these states the times τc,h are deter-
mined by setting the distance function F to be finite values
(much larger than the precision used here). Since the machine
under consideration is set to wait quite long time durations τh

and τc until the distance function is much closer to zero, only
one of many periodic states that the machine could explore is
considered here.
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