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Contact statistics in populations of noninteracting random walkers in two dimensions
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The interaction between individuals in biological populations, dilute components of chemical systems, or
particles transported by turbulent flows depends critically on their contact statistics. This work clarifies those
statistics under the simplifying assumptions that the underlying motions approximate a Brownian random
walk and that the particles can be treated as noninteracting. We measure the contact-interval (also called the
waiting-time or interarrival-time), contact-count, and contact-duration distributions in populations of individuals
undergoing noninteracting continuous-space-time random walks on a periodic two-dimensional plane (a torus)
as functions of the population number density, walker radius, and random-walk step size. The contact-interval is
exponentially distributed for times longer than the ballistic mean-free-collision time but not for times shorter
than that, and the contact duration distribution is strongly peaked at the ballistic-crossing time for head-on
collisions when the ballistic-crossing time is short compared to the mean step duration. While successive contacts
between individuals are independent, the probability of repeat contact decreases with time after a previous
contact. This leads to a negative duration dependence of the waiting-time interval and overdispersion of the
contact-count probability density function for all time intervals. The paper demonstrates that for populations of
small particles (with a walker radius that is small compared to the mean-separation or random-walk step size),
the ballistic mean-free-collision interval, the ballistic-crossing time, and the random-walk-step duration can be
used to construct temporal scalings which allow for common waiting-time, contact-count, and contact-duration
distributions across different populations. Semi-analytic approximations for both the waiting-time and contact-
duration distributions are also presented.
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I. INTRODUCTION

This paper examines contacts between individual particles,
each of which is undergoing an independent continuous-
space-time random walk on a periodic two-dimensional plane
(a square with periodic boundary conditions, topologically a
torus). Contact between particles is defined by particle prox-
imity. The particles are noninteracting, with their trajectories
unperturbed by contact. We study the contact-interval (also
called the waiting-time or interarrival-time), contact-count,
and contact-duration distributions for any individual in the
group, and the dependence of these distributions on particle
number density, random-walk step size, and particle radius
(one-half the contact distance). While a closed-form analytic
solution for the distribution of the first contact time between
two Brownian particles as a function of their separation is
known in one and three dimensions (see, e.g., Refs. [1,2]), an
explicit solution in two dimensions is not known. This makes
direct calculation of both the minimum first-passage contact
time (equivalent to the waiting time for a given realization of
particle separations in a population) and the contact-duration
distributions difficult. We have succeeded in deriving approx-
imate forms for these distributions (Secs. III B and IV), but
we rely largely on numerical simulations of many Brownian
particles over many time steps to demonstrate scalings and
behaviors as a function of population properties.

The study of random walks, Brownian motion, and first-
passage processes has a long and rich history (see, e.g.,
Refs. [1,3–9]). Many studies have focused on first-passage
probabilities for single-particle intersections with targets over
a wide range of spatially complex and time-varying configu-
rations (see, e.g., Refs. [1,7], and references therein). Mean
first-passage times for individuals and mean encounter time
between walkers on networks is also well studied [10–12].
Closer to the work presented here are studies addressing the
probability of an encounter between two walkers in con-
fined domains, analytically in one dimension [13,14] and
numerically in more than one [15]. In general, closed-form
solutions for encounter statistics between individual random
walkers in groups of more than two are difficult to achieve,
particularly in two dimensions [16]. Recent work has made
headway in analytically determining the fastest first-passage
time of a large number of Brownian particles to a target
[17–19] and in numerically assessing the long-time exponen-
tial behavior of the distribution of the minimum-time for a
group of diffusive walkers to encounter an individual diffusing
target as a function of system size in one-, two-, and three-
dimensional confined domains [20]. Progress has also been
made in understanding the particle velocity and kinetic-energy
distributions in few-body populations of colliding particles
(both hard-sphere and Hertz-potential) and their convergence
to the thermodynamic limit [21,22]. Here we focus on contact
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statistics between individuals in populations of independent
random walkers in which the random-walk characteristics are
determined separately from contact between individuals.

We find that the ratio of the ballistic mean-free-collision
time [the mean time between collisions if the particle were
to move ballistically (without a change in direction) at the
random-walk step velocity] to the random-walk-step duration
is a critical parameter. The waiting time is exponentially dis-
tributed for times longer than the ballistic mean-free-collision
time but not for shorter times (Sec. III A). Contact count
distributions are consequently non-Poissonian over all time
intervals, even in populations with large number densities
(Sec. III C). When the ballistic mean-free-collision time is
used to scale the waiting time, its distribution collapses to a
common form for all populations sharing the same particle
size (Sec. III A). Waiting-time sensitivity to particle size is
captured by the ratio of the ballistic-crossing time (the time it
takes for two particles to cross on a straight-line and head-on
trajectory) to the random-walk-step duration. For small parti-
cles, the contact duration distribution is strongly peaked at this
ballistic-crossing time, and the ballistic-crossing time can be
used to scale the waiting time (Sec. III D) and contact-duration
time (Sec. IV) between populations differing in particle size.

Several lengthscales (or equivalently timescales as de-
scribed above) determine contact between individuals in
populations: the step length taken by the walkers (the corre-
lation length or Lagrangian integral scale for more complex
motions), the mean separation or number density of the parti-
cles, and the contact distance (particle radius). It is the relative
magnitudes of these that determine the contact statistics ob-
served. In the random-walk population models presented here,
these quantities are prescribed parameters. In more complex
systems they are constrained by the underlying dynamics
of the flow, which determine the particle motions, and the
population properties, including the nature of the particle
interactions.

Because the particles we consider are noninteracting, our
results are most relevant to systems in which particle contact
yields no change, or a low probability of change, in the parti-
cles’ motions, systems for which proximity rather than direct
contact is critical, or systems in which multiple encounters
are required before interaction. Some examples include con-
tagion in biological systems [23–25], chemical systems with
low reactivity [26–28], and aggregation under conditions of
uncertain coalescence [29,30]. More broadly, this work serves
as a simplified baseline for understanding contact statistics
in systems with more complex interactive dynamics, such as
turbulent flows or crowded populations [31–34].

II. RANDOM-WALK MODEL

We simulate the motion of a collection of particles under-
going independent continuous-space-time random walks on a
periodic two-dimensional plane of unit length in width and
height (a square with periodic boundary conditions). Each
successive step of each random walk is taken in a random di-
rection (uniformly distributed in angle between zero and 2π )
and has a random length (uniformly distributed between zero
and a specified maximum). The waiting-time and contact-
count results presented here are very likely independent of the

step-length distribution employed, so long as that distribution
has a finite mean and variance to ensure a Brownian diffusive
limit [35]. We have checked this empirically for populations
of individuals sharing a common and constant step-length.
One might anticipate that the contact-duration distribution,
on the other hand, has greater sensitivity to the step-length
distribution because contact durations between small particles
(smaller than the step size) do not typically extend over dif-
fusive timescales. Though we have not yet fully investigated
this aspect, we show in Sec. IV that contact durations are
dominated by ballistic crossings, and so we expect that they
too are insensitive to the step-length, so long as the mean step
size is greater than the particle size.

In our random-walk model, the position of each walker on
the plane is resolved by numerically advancing their position
in small substeps, with a small random correction made to
the size of the final substep to avoid multiple random-walk
trajectories making directional changes simultaneously, which
would otherwise occur due to the discrete nature of the nu-
merical steps and is not present in real flows. In test cases,
the correction has no influence on the results presented in this
paper, but for consistency the solutions presented here were
all computed employing it. In short, each random walker takes
small equal-length numerical substeps (with the exception of
the small correction to the last substep) in the same direction
for a specified total number that is uniformly distributed be-
tween zero and the maximum step-length. Since the walkers
effectively move at constant speed, the number of numerical
substeps taken sets the temporal resolution of the steps and
thus that of the contact-interval and contact-duration mea-
surements. Aside from studies focused on temporal resolution
checks, 104 numerical substeps were taken per mean random-
walk step in all simulations.

In addition to checking that the conclusions drawn in this
paper do not depend on the numerical details of how the ran-
dom walks were constructed (as outlined above), we have also
checked that the results depend only very weakly, and then
only for very low values of particle number, on the imposed
domain periodicity. Instances of weak solution sensitivity to
periodicity are discussed along with the simulation results
in Sec. III below, and to mitigate those, solutions for the
lowest number density (four walkers per unit area) case were
computed not only for the unit square but also for a domain
three times as long in each direction. Number densities below
4 were not examined, as our focus is on solutions for which
periodicity plays no role, and our standard domain size is the
unit square. The results presented in this paper are effectively
those for populations of a given number density in an infinite
two-dimensional domain.

The fundamental parameters of the multiple-walker
random-walk simulations are the walker radius a and the
mean step length �r, which are taken common to all the
walkers in any given simulation, and the number density of
walkers in the domain n, or equivalently the mean nearest-
neighbor separation in the population 0.5/

√
n [32]. Contact is

defined as a separation of 2a or less between walkers, with the
motions of the individuals unchanged by contact. No inter-
action between individual walkers is modeled. The particles
overlap during times of contact and move along trajectories
independent of the contact between them. This, along with
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the periodic boundary conditions imposed, ensures that the
particle positions, which are initially uniformly distributed
on the plane (x and y positions independently and uniformly
distributed between 0 and 1) remain uniformly distributed as
the positions evolve.

In units of the domain width and height, the range of pa-
rameter values employed for this paper are as follows: walker
radius a ranging from 0.000 05 to 0.035, mean step size �r
equal to either 0.012 55 or 0.0251, and number density n
ranging from 4 to 1600 per unit area. Importantly it is the
relative magnitudes of these quantities, not their individual
values, that govern the solution statistics.

III. CONTACT INTERVAL

A. Simulation results

The interval between contacts τ for each walker in the sim-
ulations was computed as the time elapsed between the end
of a previous contact (the end of a time period during which
the walker was within a distance 2a of another walker) to the
beginning of the next. In all but those cases with the largest
walker radii (see Sec. IV), the occurrence of simultaneous
contact between more than two individuals is vanishingly rare,
and so this interval represents the time between binary con-
tacts. The normalized waiting-time probability densities p(τ )
that result for walkers in a series of simulations differing only
in population number density are shown in Fig. 1. The popu-
lations simulated for these plots have different walker number
densities n, but they share the same mean step-size �r and
contact distance 2a. The distributions in the figure are shifted
downward vertically, each by a factor of 10, for clarity, with
the uppermost curve (blue) plotting the unshifted distribution
obtained from the simulation with the lowest walker number
density (n = 4) and the lowermost plot (brown) showing the
distribution obtained from the simulation with the highest
walker number density (n = 1600). Over the remainder of
this section, we will show that the differences between the
waiting-time distributions apparent in Fig. 1 are due to the
differences in the ratio of a population’s ballistic mean-free-
path length (the mean distance a walker would travel between
collisions if it were to move ballistically at the random-walk-
step velocity) to the mean-step length taken by the individual
walkers.

For high number densities (short ballistic mean-free path
compared to the mean-step length), the walkers take few
steps between collisions. In this collisional limit, many walk-
ers move on nearly ballistic trajectories between successive
contacts, and the interval between contacts is approxi-
mately distributed as the mean-free-collision interval, p(τ ) =
1/τ̄b exp(−τ/τ̄b), where the ballistic mean-free time τ̄b =
1/(4 n a v̄) (e.g., [36]). With v̄ taken to be the average relative
ballistic velocity [37], v̄ = √

2 v, and with time measured
in units of the mean step duration, �t = 1, so that v =
�r/�t = �r, the ballistic mean-free time becomes τ̄b =
1/(4

√
2 n a �r). The limiting exponential collision probabil-

ity density is overplotted with solid lines in Fig. 1 for the
three cases with highest walker number densities. It is nearly
indistinguishable from the actual distribution for the n = 1600
case (bottommost plot, shown brown). As τ̄b → 0 (because

FIG. 1. Normalized probability densities p(τ ) of the time inter-
val τ between two successive contacts for any individual random
walker in a population of walkers. Time is measured in units of mean
step duration �t . Distributions below the uppermost one are offset
vertically by factors of one-tenth for clarity. Cases differ only in
walker number density (n = [4, 10, 25, 100, 400, 1600] top to bot-
tom, blue to brown). They share the same mean step-size (�r =
0.0251) and walker radii (a = 0.0005). The nearly indistinguishable
overlapping distributions second from top are from simulations with
identical n conducted separately in 1 × 1 and 3 × 3 domains. These
were undertaken to test the waiting-time distribution sensitivity to
domain periodicity. Overlapping distributions fifth from the top re-
sult from populations having the same product of n �r but differing
in n and �r individually (see the main text). The exponential bal-
listic mean-free-collision interval distribution is overplotted with
solid lines for the three cases with highest walker number densities
[nearly indistinguishable from the actual distribution in the highest
number density case (bottommost, shown brown)]. An analytic ap-
proximation (see Sec. III B) to the low number density waiting-time
distribution (uppermost blue plot) is indicated with a solid black
curve.

n �r → ∞ for a given finite particle radius), the range of
waiting times over which distribution is nonexponential goes
to zero, and the distribution becomes strictly exponential
for all waiting times [16]. In that limit, all walker contacts
occur on strictly ballistic trajectories. Note that for τ̄b < 1,
the timescale over which the collision-interval distribution
becomes nonexponential becomes less than one-mean step
time, and the step-duration (or equivalently the step-length)
distribution itself becomes important to the solution.

With time measured in units of the mean step duration,
the ratio of the ballistic mean-free-collision time to mean
step duration is given by R = 1/(4

√
2 n a �r), with R ≈

[3520, 1410, 563, 141, 35.2, 8.80] for the cases shown top to
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FIG. 2. Probability density p(τ/τ̄b) of the waiting time τ (with
time measured in units of mean step duration) scaled by the ballistic
mean-free-collision interval τ̄b = 1/(4 n a v̄), with relative veloc-
ity v̄ = √

2 �r/�t . Cases differ in walker number density n =
[4, 10, 25, 100, 400, 1600], but share the same mean step-size �r =
0.0251 and walker radius a = 0.0005. Color scheme and underlying
simulations match those of Fig. 1, but here they are difficult to
distinguish after the τ scaling. An analytic approximation (Sec. III B)
to the waiting-time distribution is indicated with an underlying solid
black curve. Note that while plotted over the full abscissal range,
this solution is only valid for times very short compared to τ̄b. The
inset replicates the plots for two pairs of random-walk simulations.
The lower pair illustrates the dependence on domain periodicity at
small number densities, and the upper pair (offset vertically) displays
the small mismatch between simulations with the same value of
n �r but with differing number density n and mean step length �r
individually (see the main text).

bottom in Fig. 1. While the populations we simulate fall short
of the strictly ballistic limit, the waiting-time distributions ap-
proach the collisional exponential over all but the very shortest
time intervals in the highest number density (lowest R) cases.

In the opposite large-R limit, low number densities or small
step lengths (long ballistic mean-free path compared to the
mean step-length), the walkers undertake many random-walk
steps between contacts. In this Brownian limit, the waiting
time for any individual in the population is the minimum
statistic of the first-passage time to a separation of 2a with any
other individual [38]. An approximate semianalytic solution
for its form is developed in the next section (Sec. III B) and
is overplotted with a thick black curve for the lowest number
density case in Fig. 1. It does a reasonable job of capturing the
distribution over these timescales.

All the simulations illustrated by Fig. 1 share the same
random-walker radius a, thus each distribution shown approx-
imates a family of distributions sharing the same value of
n �r. The overlapping distributions plotted fifth from the top
in Fig. 1 illustrate this with simulations whose individual n
and �r values differ by factors of 2 and 1/2. While distri-
butions are nearly identical, small differences are apparent
(barely distinguishable here, but see Fig. 2, inset). The dif-
ferences reflect the unaccounted for changes in the relative
amplitudes of the mean nearest-neighbor particle separation

and the mean step size to the particle radii as n and �r are
changed. The simulations are not strictly similar when the
particle size is held constant. There are weak sensitivities to
the change in the relationships between the contact distance
and the step-size and between the contact distant and the mean
spacing of the walkers in the domain, because at close range
and over short waiting times the frequency of walker contacts
is sensitive to the walker size (see Sec. III D).

Separately, sensitivity to domain periodicity was investi-
gated. The pair of waiting-time distributions plotted second
from the top in Fig. 1 result from two random-walk sim-
ulations conducted in different size domains (3 × 3 shown
magenta and 1 × 1, shown purple) but otherwise sharing iden-
tical parameter values (identical values of n, a, and �r). While
nearly indistinguishable in this plot, there are small differ-
ences in shape of the two distributions that are more apparent
in the inset of Fig. 2. This very weak sensitivity to domain
periodicity decreases even further with increasing domain size
and/or particle number density, because contacts that result
from periodic edge crossings become less numerous relative
to those occurring in the bulk of the domain as the total
number of particles simulated increases. Thus, the boundary
periodicity we impose plays no significant role in the results
we present.

The importance of the ballistic mean-free-collision time as
a scaling parameter is more clearly illustrated by Fig. 2, which
replots Fig. 1 after scaling the waiting time by τ̄b (with no
vertical offset of the distributions). Application of this scaling
means that the abscissal extent in Fig. 2 is about 4.7 times that
shown in Fig. 1 for the n = 4 distribution and about 1% of that
shown in Fig. 1 for the n = 1600 distribution. When scaled
by the ballistic mean-free-collision time, the waiting-time
probability densities collapse to a nearly common distribution.
The small differences remaining are due to the walker-size
(contact distance) sensitivities and domain periodicity effects
discussed above, and illustrated by the figure inset.

B. Approximate solution in the Brownian limit

In a population characterized by large R (long ballistic
mean-free path compared to mean step-length), particles un-
dertake many random-walk steps between contacts, either
because the step length is very short or the number density is
very low. In this Brownian limit, the waiting time for any indi-
vidual is the minimum order statistic of the first-passage time
of any other member of the population to a circle of radius
2a surrounding the target (accounting for relative velocities
in the diffusion coefficient), and the waiting-time distribution
is determined by evaluating that minimum statistic given the
pair-separation distribution on the plane (see e.g., [39,40]
for general expositions of order statistics, and [41,42] for its
recent application to the fastest first-passage time to a target).
Unfortunately, the distribution of the first-passage time to
a circular object is not explicitly known in closed form in
two dimensions, and so the minimum statistic is not easily
evaluated.

Equivalently, in terms of pair separation, the waiting time
for any individual is the minimum statistic of the first-passage
time to a pair separation of 2a with any other individual in
the population. Pair-separation studies have a rich history,
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particularly in turbulent transport (see, e.g., Refs. [43–48] and
references therein), where the focus is often on mixing and
thus on dispersion from small to large separations. We outline
in Appendix some important characteristics of the time-
reverse problem, from large separations to small, that underlie
the contact considerations here. Importantly, while the distri-
bution of the distance between individual pairs as a function
of time is well known in the Brownian limit [Eq. (1) below],
even in this limit the distance between any two walkers only
approximates a one-dimensional diffusive process at short
and long times (Appendix). Over intermediate times the pair-
separation variance is a nonlinear function of time, making an
exact closed-form expression for the first-passage time over
all timescales difficult. We develop here an approximate solu-
tion for short first contact times in large R populations (Fig. 1)
or equivalently for all populations over times sufficiently short
compared to the ballistic mean-free-collision interval (Fig. 2).

In the Brownian limit, the distance rs between two unbi-
ased random walkers is Rice-distributed [49–51],

p(rs|r0) = rs

σ 2
exp

(
− r2

s + r2
0

2σ 2

)
I0

(
r0rs

σ 2

)
, (1)

where I0 denotes the lowest order modified Bessel function
of the first kind [52], r0 is the initial separation of the par-
ticles at t = t0, and σ 2 = 4 D (t − t0) with D = �r2/4�t .
Unfortunately this distribution does not readily yield a closed-
form expression for the first-passage-time probability density,
and thus it cannot be conveniently used to determine the
waiting-time distribution, the minimum order statistic of the
first-passage time to a given separation. However, Brownian
pair separation [Eq. (1)] has two limiting forms (Appendix).
For �t � t − t0 � r0 �t/(2�r), where r0 �t/(2�r) is the
earliest possible time that the distance between two walkers
can equal zero, the pair-separation distribution evolves as a
truncated Gaussian. While the Gaussian distribution is conve-
nient for the first-passage time calculation, it is not relevant.
The first-passage time distribution for any individual walker
cannot be determined using the pair-separation distribution
valid for times less than or equal to the minimum time for
contact.

In the opposite limit, t − t0 � 4r2
0�t/�r2, many steps

have been taken and the pair-separation distribution is approx-
imately Rayleigh (Appendix),

p(rs, t |r0, t0) ≈ rs

σ 2
exp

(
− (rs − r0)2

2σ 2

)
. (2)

Using this pair-separation distribution to evaluate the proba-
bility density of first-passage to a separation of 2a yields its
Laplace transform (see, e.g., Ref. [1]),

f̃ (s|r0) =
K0

(√ (rs−r0 )2 s
2D

)
K0

(√ (rs−2a)2 s
2D

) , (3)

with the Bromwich integral solution (see, e.g., Ref. [53]),

f (t |r0, t0) = 2

π

∫ ∞

0
u e−u2(t−t0 )

× J0(Bu)Y0(Au) − J0(Au)Y0(Bu)

[J0(Bu)]2 + [Y0(Bu)]2 du, (4)

where A = |rs − r0|/√
2D, B = |rs − 2a|/√

2D, and K0, J0, and
Y0 denote the lowest-order modified Bessel function of the
second kind and the lowest-order Bessel functions of the first
and second kind, respectively [52]. The factor 2D in A and B
results because both particles are moving with the same Brow-
nian properties and thus the effective diffusion coefficient is
doubled.

Beyond this formal solution, the inverse Laplace transform
of Eq. (3) can be determined analytically only in the large
s limit. This corresponds to short first contact times (small
t − t0). In this limit and to lowest order, K0(x) ≈ √

π/2 x−1/2 e−x

[52], and the inverse transform of Eq. (3) is

f (t |r0, t0) ≈ 2a

r0

(r0 − 2a)√
8πD (t − t0)3

exp

(
− (r0 − 2a)2

8 D (t − t0)

)
, (5)

when taken to be independent of rs, as appropriate. The
first contact time t − t0 between any two walkers is Lévy-
distributed, and it depends on their initial separation r0 and
radii a.

The approximations made in the development of this first-
passage-time distribution imply that it is valid only for short
first contact times between walkers that have taken many steps
before contact. Within our context, this is the short-time limit
of populations characterized by large R (long ballistic mean-
free time to mean step duration). It is applicable as well to very
short waiting times in any population (Fig. 2), because, for
times very short compared to the ballistic mean-free-collision
interval, the waiting time is dominated by particles that have
made directional changes while still in close proximity fol-
lowing a previous contact (Secs. III C and III D below). We
note the curious fact that, with these approximations, the
first-crossing time distribution for a given r0 in two dimen-
sions is equivalent to that without approximation in the three
dimensions [1]. This does not mean that the waiting-time
distribution derived using it will be the same as that in three
dimensions, because the distributions of particle separations
sampled by the populations in two and three dimensions are
different.

Given the first-passage-time probability density [Eq. (5)],
one can calculate the waiting time for a given distribution of
particle separations as the minimum order statistic. The wait-
ing time for any individual in a large collection of Brownian
particles is the minimum first-passage time to a separation of
2a from a value larger than this. It is the shortest time for
the separation between a particle and any other member of
the population to reach a value of 2a. For independent but
non-identically-distributed variates (as is the case for first-
passage-time distributions for each member of the population
since each depends on a different separation distance from
the target individual), the minimum order-statistic is given
by F(1)(x) = 1 − ∏M

i [1 − Fi(x)], where
∏

indicates the prod-
uct, and Fi(x) are the cumulative distributions from which
M samples are drawn (e.g., [40,54]). For the approximate
Lévy-distributed first-crossing time [Eq. (5)], the cumulative
distributions are complementary error functions [52], so

F(1)(τ ) ≈ 1 −
N−1∏

i

[
1 − 2a

r0i
erfc

(√
(r0i − 2a)2

8Dτ

)]
, (6)
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where τ = t − t0 is the waiting-time interval for an individual
walker, and r0i is the separation between it and each of the
N − 1 other walkers on the plane.

Since each Brownian particle in the population isotrop-
ically and randomly samples the square plane (as ensured
by the periodic boundary conditions imposed), the distances
between them at any instance in time are distributed as the
distances between two randomly chosen points on the unit
square. This is given by [55]

p(r0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2πr0 − 8r2
0 + 2r3

0 , r0 � 1,

−(2π+4)r0 + 8r0

√
r2

0 − 1 − 2r3
0

+ 8r0 arcsin

(
1

r0

)
, 1 < r0 �

√
2.

(7)
The cumulative waiting-time distribution F(1)(τ ) is thus deter-
mined by sampling the planar-separation distribution [Eq. (7)]
for r0i, N − 1 times, and evaluating Eq. (6) with those values.
The average cumulative distribution is achieved by repeat-
ing this process many times, and the corresponding average
waiting-time probability density is plotted as a black curve
in Figs. 1 and 2. It does a reasonable job of approximating
the distributions observed for populations with low number
density, those with a large ballistic mean-free path compared
to the step size, or over time intervals very short compared to
the ballistic mean-free-collision time in all populations.

C. Contact counts

The nonexponential waiting-time distributions observed
(Figs. 1 and 2) imply non-Poisson count statistics (e.g., [56]).
The rapid decline in probability density at short waiting
times yields a rapid decrease in the hazard function h(τ ) =
p(τ )/[1 − P(τ )], where P(τ ) is the cumulative waiting-time
distribution, with increasing waiting time. This suggests neg-
ative duration dependence and overdispersion of the contact
count probability mass function (e.g., [57]), p(Nt ), where Nt is
the number of contacts an individual walker has with any other
over a time interval of t steps. Contacts between random walk-
ers are independent, but the probability of contact between
any two individuals depends on the elapsed time since the last
occurrence. It is more likely for two random walkers recently
in contact to contact each other again because the mean and
variance of their separation increases with time. In a confined
space, recontact depends on the domain size [15]. For a popu-
lation of individuals on an effectively infinite plane (a periodic
domain of sufficient size, so that the number of contacts due
to periodic edge crossings is negligible compared to those
occurring in the bulk of the domain, as discussed in Sec. III A
above), the importance of recontact compared to new contact
depends on the value of the ballistic mean-free-collision time.
For times shorter than the ballistic mean-free-collision time,
the waiting time is not exponentially distributed because the
likelihood of recontact with a previously contacted walker is
greater than the likelihood of contact with a new walker.

The upper panel of Fig. 3 displays (for each of the simula-
tions whose waiting time distribution is shown in Figs. 1 and
2) the number of contacts an individual walker experiences
over a 2000-step interval. Unsurprisingly, higher counts occur

FIG. 3. Probability density p(Nt ) of the number of contacts Nt

experienced by a walker in time interval t . Simulation runs and color
coding are the same as those of Figs. 1 and 2, with cases differing
in the walker number density n = [4, 10, 25, 100, 400, 1600] (shown
blue and brown, left to right in the upper panel) but sharing the same
mean step-size �r = 0.0251 and walker radii a = 0.0005. In the
upper panel, count distributions are plotted for an interval of 2000
steps. In the lower panel, count distributions are plotted for four
different time intervals scaled by the ballistic mean-free-collision
time: approximately 11, 5.7, 2.8, and 0.57 τ̄b (offset top to bottom).
For reference these correspond to 40 000, 20 000, 10 000, and 2000
random-walk steps in the n = 4 simulation (shown blue and purple in
3 × 3 and 1 × 1 domains, respectively) and 100, 50, 25, and 5 steps
in the n = 1600 run (shown brown). Poisson distributions based on
the mean Nt values are overplotted with solid-dotted curves in both
panels.

in simulations with higher walker number densities (smaller
R). Perhaps less expected is that significantly non-Poisson
count statistics, overdispersion of the contact count probabil-
ity mass function, are apparent even at high number densities
and even in the cases for which the waiting-time distribution is
exponential at all but the very shortest waiting times. The short
waiting-time excess results in non-Poisson count statistics in
all the simulations.

Scaling the count intervals by the ballistic mean-free-
collision time collapses the count statistics as it did for the
waiting-time distributions. In the lower panel of Fig. 3, the
count distributions are plotted in groups for all the simulations
using four different time intervals each scaled by the ballistic
mean-free-collision time: approximately 11 τ̄b, 5.7 τ̄b, 2.8 τ̄b,
and 0.57 τ̄b (offset top to bottom). The Poisson-distributed
cores of the count distributions for the mean-free-collision
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weighted time intervals overlap, and all distributions show
similar non-Poisson count excesses for large count values.
Somewhat unexpectedly, overdispersion of the distribution
appears to be slightly greater in small R simulations (high
number density) than in large R simulations. This seems
counter to the expectation that as τ̄b → 0 (as n → ∞) all
walker contacts should occur on strictly ballistic trajectories
and that therefore the negative duration dependence of the
waiting time should vanish because there is no chance of re-
contacting a previously contacted walker before another. The
unexpected behavior is due to the finite particle size (interac-
tion distance). As the particle size (along with step length)
are fixed across these simulations, the particles are bigger
relative to the interparticle spacing as the number density
increases. This enhances the relative importance of recontact
with previously contacted particles compared to new contact
even after the count interval has been scaled to account for the
differing n �r values.

D. Sensitivity to interaction distance

The contact interval between walkers at close range is
sensitive to the interaction distance (or equivalently the walker
radii). As the particle radii increase toward the step length,
recontact becomes more probable because smaller changes
in direction are required for recontact. In the extreme, when
the radius approaches the mean nearest-neighbor separation,
multiwalker overlap becomes much more likely. The ballistic
mean-free-collision time scaling we have employed up to this
point does not capture particle size effects.

Plotted in the upper panel of Fig. 4 are the ballistic mean-
free collision-time scaled waiting-time distributions realized
in simulations computed with identical walker step size and
number densities, but with differing interaction distances. The
orange curve (second from bottom at small τ/τ̄b) plots the
same waiting-time distribution as that of the same color in
Figs. 1–3. In that simulation, the particle radii were equal to
4% of the mean step size and 0.7% the mean nearest-neighbor
distance. Walker radii in the remaining simulations illustrated
by Fig. 4 range from one-tenth (blue curve, lowermost at small
τ/τ̄b) to 70 times (yellow, flattest curve in the inset) those val-
ues. As walker radii get larger, the nonexponential behavior of
distribution at short waiting times becomes more pronounced
even when the waiting-time interval is scaled by τ̄b. Short
waiting times become more probable as the walker radius
(interaction distance) approaches the step-size, and as it ap-
proaches the mean nearest-neighbor separation, multiwalker
overlap becomes more likely (gray and yellow curves, Fig. 4,
inset). In the opposite limit, very small particle size relegates
the nonexponential behavior to very short times. As a → 0
for finite n �r, the time over which the walkers are in close
enough proximity for nonballistic motions to be important for
recontact also goes to zero, and as this limit is approached, the
waiting-time distribution becomes exponential for all but the
shortest time [blue curve, lowermost at small τ/τ̄b, Fig. 4(a)].

A relevant timescale for contact between walkers is the
ballistic-crossing time for head-on collisions, tb = 2a/�r,
with time measured in mean step duration so that �t = 1,
and a walker-radius independent timescale can be constructed
from the product τ̄b tb = 1/(2

√
2 n �r2). Simulations sharing

FIG. 4. Waiting-time distributions for simulations that share
the same step size and number density but differ in particle
size (interaction distance). Colors indicate distributions (top to
bottom, blue to brown) obtained from simulations with walker
radii a ≈ [0.004, 0.04, 0.08, 0.2, 0.4] �r or equivalently about
[0.000 71, 0.0071, 0.014, 0.035, 0.071] times the mean nearest-
neighbor distance between walkers. The inset shows waiting-
time distributions for simulations with a ≈ [0.6, 2.8] �r or about
[0.1, 0.5] times the mean nearest-neighbor distance, gray and yellow,
respectively. Waiting time in the upper panel is scaled by the ballistic
mean-free-collision time τ̄b and in the lower panel by

√
τ̄b tb, where tb

is the ballistic-crossing time for head-on collisions. The later scaling
is independent of a, but it does not account for multiparticle overlap
(gray and yellow in the inset).

the same value of n �r2 but with differing walker radii a yield
overlapping waiting-time distributions when the waiting time
is scaled by

√
τ̄b tb (lower panel in Fig. 4). Deviations from

this scaled waiting-time distribution occur when a approaches
the step size or the mean nearest-neighbor distance (brown,
uppermost curve at small τ/τ̄b in the main figure, gray and
yellow curves in the inset).

As pointed out by anonymous referees, a number of sub-
tleties remain. Apart from repeat encounters between nearby
walkers, the nonballistic nature of the particle trajectories
themselves introduces non-Poisson behavior. Changes in di-
rection of a finite-size particle causes overlap of the area
explored by that particle before and after the directional
change. This implies nonconstant contact rates with other
walkers (via a reduction in the new area explored per unit
time immediately after each directional change), and thus
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departures from Poisson-distributed contact counts which are
larger for larger particles. This effect may be more appar-
ent in populations of walkers with larger radii and lower
number densities than those studied here. Moreover, because
of the importance of recontact in our simulations (the high
probability of repeated contact very soon after the first be-
cause of the particles’ close proximity, Sec. III C), the waiting
time distribution for the first contact and that for subsequent
contacts may be considerably different. Characterization of
the nth contact waiting-time distribution and its dependence
on population number density, random-walk step length, and
particle size is of significant interest, particularly under cir-
cumstances of low interaction probability or when multiple
contact encounters are critical for interaction.

IV. CONTACT DURATION

The contact duration tc is also sensitive to the walker radius
(interaction distance). The contact-duration probability den-
sity is shown in the upper panel of Fig. 5 for the same set of
simulations as those for which the waiting-time distributions
are plotted in Fig. 4. As expected, the mean contact duration
increases with increasing walker size, but additionally the
distributions are structured, showing a discrete peak at tb.

In most of the simulations studied, the mean random-walk
step size was taken to be much larger than the particle size,
which defines the contact distance. For example, in the simu-
lations we studied in Sec. III, 2a/�r ≈ 0.04 or 0.08. In those
simulations underlying the distributions in the main body
of Fig. 4, 2a/�r ≈ [0.008, 0.08, 0.16, 0.4, 0.8], and in those
contributing to the distributions plotted in the inset of Fig. 4,
2a/�r ≈ [1.2, 5.6]. When the particle radii are smaller than
the random-walk step size, most contacts occur over a single
step and the contact duration is dominated by the ballistic
crossing of the two particles in random directions. When this
is the case, the separation of any two walkers at close range
can be approximated by the ballistic equation of motion based
on their relative velocity,

r2
s = r2

0 + 2 r0 �r t (cos θ1 − cos θ2)

− 2 �r2 t2 cos(θ1 − θ2), (8)

where θ1 and θ2 are the angles the walker velocity vectors
make with the axis between them, and time is measured in
steps so that their speeds are equal to �r (v = �r/�t with
�t = 1). The contact duration, in this limit, is the time it takes
for the distance between two objects on ballistic trajectories to
go from a value of 2a (first contact) to less than 2a and back
(last contact). It is given by the tc > 0 solutions to

tc = 2a

�r

(cos θ1 − cos θ2)

1 − cos(θ1 − θ2)
. (9)

Thus, under the ballistic-crossing approximation, the contact-
duration distribution is given by Eq. (9), with θ1 and θ2

independently and uniformly distributed between zero and
2π . It is plotted, for the values of 2a and �r used in the simu-
lations, in the lower panel of Fig. 5. Each distribution peaks at
tb = 2a/�r, the ballistic-contact time for head-on collisions
(marked with vertical dashed fiducial lines). The distribution
wing to shorter contact durations reflects the intersection-

FIG. 5. Contact duration tc (in units of the mean step
time) distributions (upper panel) for simulations differing in
particle size only. Colors indicate distributions (left to right,
blue to yellow) obtained from simulations with walker radii
a ≈ [0.004, 0.04, 0.08, 0.2, 0.4, 0.6, 2.8] �r or equivalently about
[0.00071, 0.0071, 0.014, 0.035, 0.071, 0.1, 0.5] times the mean
nearest-neighbor distance between walkers (the same simulations
and the same color scheme as Fig. 4). Contact duration distribution
for randomly oriented ballistic intersections (lower panel) between
objects of the same size as the walkers in the simulations yielding
the distributions in the upper panel. Vertical fiducial lines indicate
the ballistic-crossing times for head-on collisions, tb = 2a/�r. Note
that, as discussed in the main text, the distributions in the lower panel
collapse identically into one when the contact duration is rescaled by
tb. Scaled simulation distributions are shown in Fig. 6.

chord-length distribution for walkers moving in opposite, but
not head-on, directions, and wing to longer contact durations
reflects the extended contact periods that can occur between
walkers traveling in the same direction, between walkers with
low relative velocities. These idealized ballistic distributions
are self-similar, overlapping when tc is scaled by tb; the dis-
tributions in the lower panel of Fig. 5 are identical when the
contact duration is rescaled by the ballistic-crossing time.

The contact-duration distributions measured in the simu-
lations (upper panel of Fig. 5) show similar features, also
peaking at tb = 2a/�r but with differently shaped wings and
some sensitivity to the walker radii (the step size and num-
ber density are constant over these runs). In the simulations
there is a finite probability of directional change by one
of the walkers during contact. This nonballistic contribution
to the motion flattens the distribution peak and lessens the
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FIG. 6. Contact duration tc distributions for simulations dif-
fering in particle size only, scaled by the ballistic-crossing time
tb = 2a/�r. Colors indicate distributions obtained from simulations
with walker radii a ≈ [0.004, 0.04, 0.08, 0.2, 0.4] �r or equiva-
lently about [0.00071, 0.0071, 0.014, 0.035, 0.071] times the mean
nearest-neighbor distance between walkers (the same simulations
and color scheme as Figs. 4 and 5). Contact duration distribution for
randomly oriented ballistic intersections is indicated with the under-
lying solid black curve. The inset shows waiting-time distributions
for simulations with a ≈ [0.6, 2.8] �r or about [0.1, 0.5] times the
mean nearest-neighbor distance (gray, rightmost peak, and yellow,
leftmost peak, respectively).

probability of very short or very long duration contacts (in
comparison to the idealized purely ballistic distributions).
With increased particle radius, the probability of directional
change during contact increases. For very large particle
radii, the interaction distance approaches the step size (2a ≈
1.2 �r, gray curve, peaking second from right) and the mean
nearest-neighbor separation (2a ≈ 0.5/

√
n, yellow, rightmost

curve), and the distributions lose the ballistic-crossing peak
altogether. This occurs in the first case because a change in
the direction of particle motions occurs during most every
encounter, and in the second because multiparticle contact
becomes more frequent, blending the contact durations.

Rescaling tc by tb highlights these nonballistic effects and
the residual sensitivity of the contact-duration distributions
to particle radius. Figure 6 displays the distributions from
Fig. 5 after rescaling tc by tb. The underlying black curve plots
the randomly oriented ballistic-crossing time distribution. The
simulation distributions largely overlap under this scaling, but
they show a residual systematic decrease in the amplitude of
the peak relative to the wings with an increase in particle size
(Fig. 6, main body, orange to brown, lower amplitude wings to
higher). This trend continues until nonballistic effects domi-
nate when the walker size becomes comparable to the step size
or to the mean nearest-neighbor distance (Fig. 6, inset). Note
that, for the smallest walker radius (distribution shown in blue,
that with the largest histogram bins), the numerical substep
employed is insufficient to fully resolve the tc distribution over

the narrow interval around tb displayed or to capture contacts
shorter than the head-on ballistic-crossing time.

V. CONCLUSION

In this paper, we examined waiting-time, count, and
contact-duration statistics in populations of noninteracting
random walkers as functions of the interaction distance (par-
ticle size), the random-walk step length (correlation length of
the motions), and the mean separation of the walkers (number
density) in the populations. A particular ordering was chosen
for the magnitudes of these parameters, typically a < �r <

0.5/
√

n in the simulations. In more complex and realistic
settings, the lengthscale values and their ordering depend on
the dynamics of the motions and the physical properties of the
population and its members.

Using random-walk simulations, we uncovered nonexpo-
nential waiting-time (non-Poisson count) behavior associated
with a negative-duration dependency of the waiting-time in-
terval. The nonballistic motions of walkers in close proximity
shorten the waiting time to repeat contact. Since the mean
and variance of the separation between two walkers increase
with time, the probability of repeat contact between two walk-
ers increases with decreased distance between them, peaking
immediately after a previous contact. This increase in the
probability of the next contact soon after a previous one
leads to short waiting-time enhancement and overdispersion
of contact counts. The random directional changes in the
motions also modify the contact duration distribution, which
would otherwise reflect strictly ballistic crossings between
individuals.

Further, we demonstrated that the differences between
the waiting-time, contact-count, and contact-duration dis-
tributions in different populations are determined by key
timescales: the step duration, ballistic mean-free-collision
time, and ballistic-crossing time. Temporal scalings based on
these collapse the waiting time and contact count distributions
into common forms across different populations, with very
small residual differences reflecting particle size sensitivities
at close range and larger deviations occurring when the walker
radius (interaction distance) approaches the step size or the
mean nearest-neighbor separation in the population. Similarly,
the contact-duration distributions for populations differing in
particle size, overlap when scaled by the ballistic-crossing
time, with the individual distribution shapes again showing
small residual sensitivity to finite-particle-size effects at very
close range.

The canonical random walk induced by elastic collisions
between ballistic trajectories, in an ideal gas, for example,
is a special limiting case of the random walks we consid-
ered here. It displays strictly Poissonian statistics because
directional changes are caused by the collisional interaction
between the particles themselves. In populations undergoing
Brownian motion, this may not be the case. The random-
walk characteristics are determined separately from contact
between the individuals undergoing the Brownian motion.
Examples in natural systems range from biological, in which
the random-walk characteristics may be determined by behav-
ior, to physical, in which the motion of a dilute component
may be governed by collisions between it and the primary
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component or by an underlying turbulent flow. This paper
focused on the simplest case in which each individual in
the population undertakes an independent random walk in
two dimensions. The results are most relevant to systems
in which particle proximity is critical and contact results in
no change (or a low probability of change) in the particles’
motions, or to systems in which multiple contact encounters
are required before interaction. They also form the basis for
follow-on work which will look at how the population contact
statistics reported here change with more complex underlying
dynamics. This includes more complex flow dynamics, such
as turbulent flows which show nondiffusive Lagrangian trans-
port (see, e.g., Refs. [48] and references therein) and more
complex models of particle contact, including particle interac-
tion and nonoverlap (volume exclusion). The effect of particle
interaction has been previously evaluated for many particle
diffusive systems using macroscopic fluctuation theory [58]
in the context of both occupation times in one dimension [59]
and the short and long time limits of the nonescape probability
from a bounded domain [60]. The importance of particle vol-
ume exclusion has been recently assessed using the boundary
local time distribution (see, e.g., Refs. [61] and references
therein) in the context of both first-passage time problems
[62] and contact counts between two Brownian particles on a
plane [63].

One important application of the work presented in this
paper may be contagions in human populations. The motions
of individuals in populations may be largely determined in-
dependently from contact events, as in our model, though
elements of collective behavior [64] may also be present.
Individuals cross each others’ paths within an interaction
distance (contagion radius) of each other, the overlap of conta-
gion zones does not necessarily cause trajectory changes, and
the interaction distance is often smaller than the correlation
length of the motions. Under these circumstances, contacts
are unlikely to show exponential waiting-time distributions
and corresponding Poisson counts, and the contact-duration
distribution may be peaked around the ballistic-crossing time
of two individuals. As the number density of individuals varies
between populations, the timescale over which nonexponen-
tial contact statistics are apparent should as well. It would
be interesting to test the limits of these suggestions using
high-resolution cell-phone location data [34].
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APPENDIX: PAIR SEPARATION IN TWO DIMENSIONS

Underlying the contact statistics in populations of random
walkers are the statistics of pair separation, as the waiting
time interval between contacts (the interarrival time) for any
individual is the minimum statistic, over all other individuals,

of the first passage time to a specified contact-distance given
the pair-separation distribution of the population [38]. While
in the Brownian limit the diffusion equation readily yields a
closed-form solution for the random-walk first-passage time
distribution to a point or sphere in one or three dimensions
(the Levy distribution), it fails to yield such a convenient
solution in two dimensions. The fundamental underlying diffi-
culty arises because, while the motion of each individual on a
two-dimensional plane can be described as a two-dimensional
random walk, the distance between any two walkers only
approximates a one-dimensional constant diffusivity process
in the short- and long-time limits. At intermediate times the
pair-separation probability distribution evolves from approxi-
mately Gaussian to Rayleigh with a corresponding nonlinear
change in the variance.

In two dimensions, the distance rs between two unbiased
random walkers, as a function of their initial separation r0 at
t = t0, is Rice-distributed,

p(rs|r0) = rs

σ 2
exp

(
− r2

s + r2
0

2σ 2

)
I0

(
r0rs

σ 2

)
, (A1)

with I0 denoting the lowest-order modified Bessel function of
the first kind [52] and the scale parameter σ 2 = 4 D (t − t0),
with D = �r2/4�t , in the continuous time and space limit.
The pair-separation variance [the variance of the Rice distri-
bution, Eq. (A1)] is a nonlinear function of the scale parameter
σ 2 = 4 D (t − t0), and thus time,

σ 2
s = 2σ 2 + r2

0 − πσ 2

2
L2

1/2

( − r2
0/2σ 2

)
, (A2)

where L2
1/2 indicates the square of the L1/2 Laguerre

polynomial.
The standard deviation of the separation between pairs in

random-walk simulations is plotted as a function of time in
Fig. 7. Time is measured in units of the number of steps
taken (i.e., �t = 1). The simulations follow those described
in Sec. II of the main text, but for individual pairs rather than
populations, and they are of a short enough duration that peri-
odicity plays no role. We use them to measure pair separation
as a function of time for different values of the initial separa-
tion r0 and mean step length �r. The solid color (nonblack)
curves in Fig. 7 plot σs for initially well-separated (r0 = 0.7)
pairs taking steps of mean length �r = 0.0041 (solid orange
curve) and �r = 0.0021 (solid blue curve). As expected,
the distance between two random walkers scales ballistically,
σs ∼ t , for times short compared to one step, and diffusively,
σs ∼ t1/2, for times greater than this. For reference, the σs ∼ t
and σs ∼ t1/2 scalings are indicated with black dashed lines,
and the strict diffusive limit for each individual simulation,
σs = σ = √

4 D (t − t0), is plotted as a dotted curve of the
same color. The offset between the theoretical diffusive limit
and the numerically determined result at long times (the offset
between the dotted lines and and solid curves of the same
color at long times) reflects the discrete early ballistic motion,
which is resolved numerically for times less than 1 by taking
small substeps (see Sec. II of the main text).

The same simulations were also run for smaller initial pair
separation (r0 = 0.02). The resulting evolution of the pair-
separation standard deviation is plotted in Fig. 7 using dashed
line styles. They illustrates how the solid curves would behave
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FIG. 7. Standard deviation of the pair separation distribution as
a function of time (in units of the number of steps taken) for random
walkers of varying initial separation and step length. Curves of solid
(gray) colors indicate pair separation results for walks with step
lengths (left to right) �r = [0.0041, 0.0021] and an initial separation
of r0 = 0.7. The black curve plots standard deviation of the separa-
tion for a pair with step length �r = 0.0251 and initial separation
r0 = 0.002. The latter are values typical of those immediately after
contact between pairs in the walker population simulations discussed
in the main text. Dotted curves of the same colors indicate the
expected standard deviations in the diffusion limit as discussed in
this Appendix. Dark orange and dark blue dashed curves plot the pair
separation distribution standard deviations for two pairs of random
walkers with step length �r = [0.0041, 0.0021] and initial separa-
tion r0 = 0.02. Small dotted vertical fiducial lines indicate the time
of first possible contact between those pairs and the approximate time
of transition to the long-time Rayleigh distribution limit (see Fig. 8
and discussion in this Appendix).

if extended to longer times. The curves deviate from diffusive
scaling at t − t0 ≈ r0/(2�r) (marked by the left-hand short
dashed vertical fiducial lines for each case). This is the earliest
possible time (time measured in mean step duration, �t = 1)
that the distance between the two random walkers can equal
zero. Diffusive scaling is reestablished later, but with a re-
duced variance equal to σ 2

s = (4 − π )/2 σ 2 (indicated with
dotted dark orange and dotted dark blue lines). By Eq. (A2),
this occurs for r2

0 � 2σ 2, and the approximate time at which
it occurs, t − t0 ≈ 4r2

0/�r2, is marked by the two right-hand
short dashed vertical fiducial lines.

The change in variance between t − t0 ≈ r0/(2�r) and t −
t0 ≈ 4r2

0/�r2 reflects a change in the underlying separation
probability density function. In two dimensions, this depends
critically on both the initial separation and the elapsed time.
Figure 8 shows the temporal evolution of the normalized pair
separation distribution for pairs of walkers whose separation
variance is plotted with the dashed dark blue (lowermost)
curve in Fig. 7. For times shorter than one step, the probability
density function is non-Gaussian (gray, uppermost curve in
the upper panel of Fig. 8), reflecting the ballistic separation
of the walkers [Eq. (8), main text]. This ballistic phase is
important in determining the contact duration distributions (as
discussed Sec. IV of the main text). For somewhat longer

FIG. 8. Snapshots of the pair-separation probability density as
a function of time for pairs of walkers whose separation variance
is plotted with the dashed dark blue curve in Fig. 7. Distributions
are shown for t − t0 = [0.5, 1.0, 3.0, r0/(2�r) = 4.76] (narrow to
wider PDFs, respectively) in the upper panel, and for t − t0 =
[10.0, 60.0, 4r2

0/�r2 = 363] (narrow to wider PDFs, respectively)
in the lower panel. In the upper panel, black curves indicate best-fit
Gaussian distributions, and in the lower panel, black curves indicate
best-fit Rice distributions. Best-fit Rayleigh distributions are shown
in red in the lower panel.

but still short times, 1.0 � t − t0 � r0/(2�r) (illustrated by
the remaining curves in the upper panel of Fig. 8), the pair
separation is distributed as a truncated Gaussian, with the
truncation occurring at a value of r = r0 ± 2 �r (t − t0), the
maximum and minimum separations that the walkers can
achieve over the elapsed time. During this period, the separa-
tion distribution variance scales diffusively, with a diffusivity
equal to twice that of the displacement of an individual walker
from its origin, σ 2

s = σ 2 = 4 D (t − t0). For times longer than
t − t0 = r0/(2�r) (lower panel), the pair separation is Rice-
distributed, with the mean shifting to larger separations with
time and the variance growing more slowly than t because the
separation values reflect across r = 0. At long times, t − t0 �
4r2

0/�r2, the Rice distribution asymptotes to Rayleigh, with
the variance again scaling with t − t0 but offset to a reduced
value σ 2

s = (4 − π )/2 σ 2. These behaviors, while making
direct calculation of the first passage time difficult, provide
an opportunity for simplified analysis in the short and long
time limits (Sec. III B, main text).
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It is important to note that, depending on the ratio of the
particle to step sizes, the transition to Rayleigh-distributed
walker separation can occur at any time with respect to the
ballistic to diffusive scaling transition. For initial separations
smaller than the step size, the shift to Rayleigh distributed
walker separation occurs during the ballistic phase of the
motion (over times shorter than about one step). This is il-
lustrated by the black curve in Fig. 7). For that, the initial
separation between walkers was taken to be twice a typical
walker radius a employed in the many-walker population sim-
ulations described in the main text (r0 = 2a = 0.002). This is
the separation walkers would have immediately after contact
in the those experiments. The step size was take to be a
factor of about 12.5 greater than this (�r = 0.0251), again

a value typical of most of the simulations undertaken for
the main body of this paper. With these parameters, the pair
separation distribution becomes Rayleigh before the variance
scaling transitions from ballistic to diffusive, and the variance
asymptotes directly to its Rayleigh distribution value.

For most of the population simulations discussed in the
main text, the walker interaction distance was taken to be
much smaller than the step length, and thus, for simulation
times longer than about one step after each contact, the separa-
tion between any two walkers is already Rayleigh-distributed
with the mean separation increasing as the square-root of
time and the variance increasing linearly with time. This is
consistent with the approximate solution derived in Sec. III B
of the main text.
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Rempel, Astrophys. J. 854, 118 (2018).

[52] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables,
Applied Mathematical Series (U.S. Department of Commerce,
National Bureau of Standards, Washington, DC, 1972), p. 55.

[53] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, Oxford, 1959).

[54] G. Cao and M. West, Commun. Stat. Theor. Meth. 26, 755
(1997).

[55] J. Philip, The Probability Distribution of the Distance between

two Random Points in a Box, TRITA MAT 07 MA 10 (2007),
www.math.kth.se/∼johanph/habc.pdf.

[56] M. Taboga, Lectures on Probability Theory and Mathemati-
cal Statistics (CreateSpace Independent Publishing Platform,
2012).

[57] R. Winkelmann, J. Bus. Econ. Stat. 13, 467 (1995).
[58] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.

Landim, Rev. Mod. Phys. 87, 593 (2015).
[59] T. Agranov, P. L. Krapivsky, and B. Meerson, Phys. Rev. E 99,

052102 (2019).
[60] T. Agranov and B. Meerson, Phys. Rev. Lett. 120, 120601

(2018).
[61] D. S. Grebenkov, Phys. Rev. E 100, 062110 (2019).
[62] D. S. Grebenkov, J. Stat. Mech.: Theor. Expt. (2020)

103205.
[63] D. S. Grebenkov, J. Phys. A 54, 015003 (2021).
[64] W. H. Warren, Curr. Dir. Psychol. Sci. 27, 232

(2018).

014103-13

https://doi.org/10.1103/PhysRevE.93.043120
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x
https://doi.org/10.3847/1538-4357/aaa251
https://doi.org/10.1080/03610929708831947
http://www.math.kth.se/~johanph/habc.pdf
https://doi.org/10.1080/07350015.1995.10524620
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/PhysRevE.99.052102
https://doi.org/10.1103/PhysRevLett.120.120601
https://doi.org/10.1103/PhysRevE.100.062110
https://doi.org/10.1088/1742-5468/abb6e4
https://doi.org/10.1088/1751-8121/abc9a3
https://doi.org/10.1177/0963721417746743

