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Polymers critical point originates Brownian non-Gaussian diffusion
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We demonstrate that size fluctuations close to polymers critical point originate the non-Gaussian diffusion of
their center of mass. Static universal exponents γ and ν—depending on the polymer topology, on the dimension
of the embedding space, and on equilibrium phase—concur to determine the potential divergency of a dynamic
response, epitomized by the center-of-mass kurtosis. Prospects in experiments and stochastic modeling brought
about by this result are briefly outlined.
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As a consequence of the central limit theorem, ordi-
nary diffusive motion of mesoscopic particles in solution
is characterized by a Gaussian probability density function
(PDF) whose variance grows linearly over time. Numerous
experiments performed in complex contexts [1–16], while
confirming the linear temporal increase of the variance, high-
light, however, distinct stages during which the PDF of the
random motion is non-Gaussian. This interesting contingency
has been called “Brownian non-Gaussian diffusion” and has
inspired various mesoscopic approaches, invoking superposi-
tion of statistics [2,15,17,18], diffusing diffusivities [19–26],
subordination concepts [20], continuous-time random walk
[27], and diffusion in disordered environments [28], but
presently few attempts have been made to establish a micro-
scopic foundation of this phenomenon [29,30]. To breach the
central limit theorem [31] one possibility is the emergence
of strong correlations; here we demonstrate that the poly-
mers critical point, separating the dilute to the dense phase
in the grand canonical ensemble [32–35], indeed originates a
Brownian yet non-Gaussian diffusion for the center of mass
(c.m.) of a polymer in solution. Prospects in experiments and
stochastic modeling brought about by this result are briefly
outlined.

Consider the grand canonical description of an isolated
polymer in solution in contact with a monomer chemostat.
The size of the polymer N is a random variable and to
the event N = n ∈ N is associated an equilibrium distribu-
tion P�

N (n) determined by the monomer fugacity z. Close
to criticality z → z−

c the partition function asymptotically
behaves as

Zgc(z) =
∑

n

(μcz)nnγ−1 ∼
⎧⎨
⎩

(1 − z/zc)−γ (γ > 0)
− ln(1 − z/zc) (γ = 0)
finite (γ < 0),

(1)
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where μc is the (model-dependent) connective constant and
zc = μ−1

c . The entropic exponent γ is specified by the space
dimension d and by the topology of the polymeric structure
(homeomorphism type of the underlying graph); together with
the metric exponent ν > 0 it identifies the universality class of
the critical behavior. For the wide class of polymer networks
in good solvent conditions, with any prescribed fixed topology
G made of chains of equal lengths, this exponent is known
thanks to the mapping with the magnetic O(n → 0) model
[33] through the relation [36]

γ = γG = 1 − νdL +
∑
L�1

nLσL, (2)

where L is the number of physical loops (or cyclomatic num-
ber) in the polymer network, nL the number of vertices with
functionality L, and σL the associated scaling dimension (see
Fig. 1 for examples and further details). Also in the case
when monomers functionality is free to fluctuate as in lattice
animals and trees [34,37], the γ exponent can be exactly com-
puted by relating the critical behavior of these systems to the
Yang-Lee singularity of an Ising model in d − 2 dimensions
[38,39] (again, more details in Fig. 1). The metric exponent
characterizes the large N behavior of the average square end-
to-end distance of large polymer chains: R2 ∼ N2ν . Unlike the
entropic one, its value does not depend on topology (if fixed)
but on the dimension of the embedding space (see Fig. 1).
Note that both exponents can further depend on the polymer
being in different equilibrium phases such as those triggered
by monomer-monomer attractions (coil to globule transition)
or by effective interactions with impenetrable surfaces (ad-
sorption transition) [32,34].

The position of the polymer c.m. Rc.m.(t ) =
(Xc.m.(t ),Yc.m.(t ), Zc.m.(t )) undergoes a Brownian motion
described by [45]

dRc.m.(t ) =
√

2D(N (t )) dB(dt ), (3)

where B(t ) is a Wiener process (Brownian motion). In view
of the Stokes-Einstein relation [46–48]

D(N ) ∼ D0/Nν, (4)

2470-0045/2021/104(6)/L062501(5) L062501-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3460-9327
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.L062501&domain=pdf&date_stamp=2021-12-30
https://doi.org/10.1103/PhysRevE.104.L062501


SANKARAN NAMPOOTHIRI et al. PHYSICAL REVIEW E 104, L062501 (2021)

FIG. 1. Metric and entropic exponents of different polymer network topologies (i.e., homeomorphism types) in d = 2 and d = 3 under
good solvent conditions. The first row refers to linear self-avoiding polymers: values in d = 2 are exact and were first computed via Coulomb
gas [40]; d = 3 values have been originally obtained by Wilson-Fisher expansion in dimension d = ε − 4 for the ϕ4 field theory of the
O(n → 0) model with ε = 1 [41] (first number), and later estimated with high precision Monte Carlo simulations [42,43] (second number).
Exponents from the second to the fourth row refer to star polymers with R arms [36], ring polymers, and watermelon graphs with L independent
loops [36], respectively. Since topology is kept fixed, the ν exponent does not vary with respect to the linear case. The γ exponent is obtained
filling proper values for ν, d , L, nL in Eq. (2), together with σL = (2 − L)(9L + 2)/64 (exact, d = 2) or σL = ε(2 − L)L/16 + O(ε2) (d = 3).
For instance, with star polymers one has L = 0, n1 = R, and nR = 1 (the n2 monomers with functionality L = 2 do not contribute as σ2 = 0);
note that the two-arms topology (n1 = 2, R = 2) corresponds to linear polymer. Similarly, with watermelon graphs L � 1, nL+1 = 2. The
last row refers instead to lattice animals, i.e., polymers in which the number of loops and branches can vary. In this case critical exponents
in d dimensions are related to the Lee-Yang edge singularity [38] through the relations νd+2 = (βd + 1)/2 and θd+2 = βd + 2, where βd is
the exponent controlling magnetization near the edge singularity. As the latter is exactly solvable in d = 0 and d = 1 with β0 = −1 and
β1 = −1/2, respectively, one gets γ2 = 1 − θ2 = 0, γ3 = 1 − θ3 = −1/2, and ν3 = 3/2. The exact expression for νd+2, however, breaks down
with d = 0 and for ν2 one has to rely on numerical estimates [44], such as the one reported in the table. Note that with d � 3 exponents γ and
ν are not independent but follow the relation γ = 1 − (d − 2)ν.

with D0 specific to the polymer subunits. Under the present
assumptions D fluctuates with the polymer size: we see that
Rc.m.(t ) becomes thus a subordinated stochastic process [31]
conditioned by the history [n(t )] ≡ {n(t ′) ∈ N|0 � t ′ � t} of
the polymer size. It is convenient to reparametrize the diffu-
sion path in terms of the coordinate s � 0, ds = 2 D(n(t ))dt ,
corresponding to the realization of the stochastic process

S(t ) ≡ 2
∫ t

0
dt ′D(N (t ′)) = 2D0

∫ t

0
dt ′N−ν (t ′). (5)

By using the subordination formula [31,50]

pRc.m.
(r, t |n0; 0) =

∫ ∞

0
ds

e−r2/2s

(2πs)3/2
pS (s, t |n0), (6)

where pRc.m.
(r, t |n0; 0) is the c.m. conditional PDF given the

initial condition pRc.m.
(r, 0|n0; 0) = δn,n0δ(r), moments of the

subordinated process are straightforwardly connected to those
of the subordinator. For instance, assuming an equilibrium
distribution P�

N (n0) for the initial size,

E
[
X 2

c.m.(t )
] = E[S(t )], E

[
X 4

c.m.(t )
] = 3E[S2(t )]. (7)

We already appreciate the influence of γ and ν in these mo-
ments: while the latter enters in the definition of S(t ), the
former characterizes P�

N (n).
Importantly, the equilibrium distribution P�

N (n) can
be related to a simple master equation describing the
polymerization/depolymerization process occurring as
monomers add and detach to the polymer in the grand
canonical ensemble. First of all we observe that if nmin is
the minimal polymer size, through the change of variable
n �→ n − (nmin − 1) we can always associate the support
1 � n < ∞ to P�

N (n) without altering the asymptotic behavior
in Eq. (4). Regard then the (forward) master equation

∂t PN (n, t |n0) = μPN (n + 1, t |n0) (n > 1)

+ λ(n − 1) PN (n − 1, t |n0)

− [μ + λ(n)] PN (n, t |n0),

∂t PN (1, t |n0) = μPN (2, t |n0) − λ(1)PN (1, t |n0). (8)

Here PN (n, t |n0) is the probability for N = n at time t � 0
given N = n0 at t = 0, and λ(n), μ are the rates for asso-
ciation and dissociation, respectively. Defining the growth
factor as g(n) ≡ λ(n)/μ, it is straightforward to prove that
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stationarity is attained under detailed balance, g(n) = P�
N (n +

1)/P�
N (n) = μcz[(n + 1)/n]γ−1: this identifies the polymer-

ization process, given P�
N (n). In chain polymerization [51],

while it is natural to consider dissociation to be independent
of the polymer size, aggregation is instead influenced by the
ratio of the number of available configurations at sizes n + 1
and n. This is the reason for the size dependency λ(n) assumed
here, which is conveyed by the entropic correction ∝nγ−1

outside the mean-field limit (γ 
= 1). Note that the rate μ

remains a free parameter which may rescale Eq. (8), thus
determining the timescale τ for the autocorrelation of N (t ).
This is particularly apparent in the mean-field case (γ = 1),
where an elegant connection with the M/M/1 model (Marko-
vian interarrival times/Markovian service times/one server)
in queuing theory [52] allows one to extend the identifica-
tion even outside criticality and to analytically solve both
the equilibrium and the out-of-equilibrium behavior [53]. The
asymptotic behavior for small and large time of PN (n, t |n0) is
PN (n, t |n0) ∼

t�τδn,n0 , PN (n, t |n0) ∼
t�τP�

N (n), respectively.
The equilibrium size distribution is directly deduced from

the grand canonical partition function (generating function).
Close to the critical point zc = 1/μc we may neglect regular
contributions, and, remembering the definition of polylog-
arithm functions, Lis(z) ≡ ∑∞

n=1 zn/ns (which are finite in
z = 1 if s > 1), we have

P�
N (n) = (z/zc)n

n1−γ Li1−γ (z/zc)

∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−z/zc )γ (z/zc )n

n1−γ �(γ ) (γ > 0)

− (z/zc )n

n ln(1−z/zc ) (γ = 0)

(z/zc )n

n1−γ Li1−γ (z/zc ) (γ < 0).

(9)

We are now in a position to evaluate expected values in
Eq. (7). Let us primarily note that, with equilibrium initial
conditions P�

N (n0),

E[S(t )] ∼ 2D0

∫ t

0
dt ′ ∑

n,n0

PN (n, t ′|n0) P�
N (n0)

nν

= 2D0tE[N−ν], (10)

where we have used the stationarity of P�
N (n). Together with

Eq. (7), this proves the Brownian character of the c.m. dif-
fusion in equilibrium. Transients may display either sub- or
superdiffusive stages, depending on the specific initial condi-
tion [53]. Using the asymptotic expressions for PN (n, t |n0),
we analogously find

E[S2(t )] ∼
{

(2D0 t )2E[N−2ν] (t � τ )

(2D0 t )2(E[N−ν])2 (t � τ ),
(11)

which implies, for the c.m. kurtosis,

κc.m.(t ) = 3E[S2(t )]

(E[S(t )])2
∼

{
3 E[N−2ν ]

(E[N−ν ])2 (t � τ )

3 (Gaussian) (t � τ ).
(12)

Equation (12) shows that, while the kurtosis is potentially
different from 3 for time within the scale τ , it crosses over
to the Gaussian value at larger time. This is specifically what
is observed in many experiments [1,2,7,12–14] and also ob-
tained in various mesoscopic models [20–22,24,26,54].

TABLE I. Behavior of the initial c.m. kurtosis.

γ > 0

ν κc.m.(t ) ∼
t�τ

0 < ν < γ/2 3 �(γ ) �(γ−2ν )
[�(γ−ν )]2 (finite)

0 < ν = γ /2 3 �(γ )
[�(γ /2)]2 [− ln(1 − z/zc )]

γ /2 < ν < γ 3
�(γ ) Li1−γ+2ν (z/zc )

[�(γ−ν )]2
1

(1−z/zc )2ν−γ

ν = γ 3
�(γ ) Liγ+1(z/zc )

(1−z/zc )γ [− ln(1−z/zc )]2

ν > γ 3
�(γ ) Li1−γ+2ν (z/zc )

[Li1−γ+ν (z/zc )]2
1

(1−z/zc )γ

γ = 0

ν > 0 3 Li1+2ν (z/zc )
[Li1+ν (z/zc )]2 [− ln(1 − z/zc )]

γ < 0

ν > 0 3Zgc(z)
Li1−γ+2ν (z/zc )

[Li1−γ+ν (z/zc )]2 (finite)

To evaluate the non-Gaussianity of the c.m. diffusion in
terms of κc.m. during the early stages, averages in Eq. (12)
must be calculated according to Eq. (9). Once more, this
invokes the known behavior of the polylogarithm function;
it also highlights the interplay between exponents γ , ν in
establishing the dynamic response. We have

κc.m.(t ) ∼
t�τ

3

Li1−γ (z/zc)

Li1−γ+2ν (z/zc)

[Li1−γ+μ(z/zc)]2
. (13)

Table I wraps up the initial kurtosis behavior, which includes
power-law divergency (possibly with logarithmic correc-
tions), logarithmic divergency, or even finiteness. The shape
of the initial non-Gaussian PDF for the polymer c.m. is
conveniently studied by switching to the unit-variance di-
mensionless variable X c.m.(t ) ≡ Xc.m.(t )/

√
E[X 2(t )]. From
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FIG. 2. Unit-variance initial x PDF for the c.m. of a linear poly-
mer close to criticality. For comparison purposes, a unit-variance
Gaussian PDF is also plotted in a red dash-dotted line.
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FIG. 3. Unit-variance initial x PDF for the c.m. of a star polymer
in d = 3 with different numbers of arms R close to criticality.

Eq. (6), as t → 0+, we have

pX (x, 0+) ∼
∞∑

n=1

P�
N (n)

e−E[N−ν ]x2/2n−ν

√
2π n−ν

E[N−ν ]

, (14)

which only depends on z/zc, γ , and ν. At large |x| the
PDF is asymptotic to the Gaussian cutoff ∼e−E[N−ν ]x2/2, and
as z/zc → 1 this cutoff is pushed towards |x| → ∞, since
E[N−ν] → 0.

It is now interesting to discuss peculiar initial dynamical
responses of polymers with different topologies, as z → zc.

Linear polymers. In this case the condition γ /2 < ν < γ

is satisfied both in d = 2 and d = 3 (see first row in Fig. 1)
and the kurtosis diverges with exponents 5/32 and 0.012,
respectively (cf. Fig. 2).

R-arms star polymers. In d = 2 the kurtosis diverges if
R � 4, with exponent 2ν − γ (R = 2, 3) or γ (R = 4). In
d = 3 the kurtosis diverges if R � 5, with exponent 2ν − γ

(R = 2, 3, 4) or γ (R = 5) (cf. Fig. 3).
Rings and watermelon networks. Since γ < 0 both in d =

2 and d = 3, κc.m. does not diverge.
Branched polymers (lattice animals). In d = 2, γ = 0 and

the kurtosis diverges logarithmically, independently on the
value of ν. Instead, in d = 3, γ < 0, implying a finite value
of κc.m. also at the critical point.

So far we have considered polymers whose equilib-
rium properties are dominated by monomer-solvent attraction
(swollen phase). On the other hand, by varying solvent

conditions polymers may undergo a thermodynamic transition
from swollen (good solvent) to globular or compact phase
(poor solvent). The transition occurs at a well-defined criti-
cal phase known as � point, a genuine O(n → 0) tricritical
point governing an equilibrium phase characterized by its
own critical exponents γ� and ν� [32,34]. For instance, lin-
ear polymers at the � point in d = 2 have ν� = 4/7 and
γ� = 8/7 [55–58], whereas in d = 3 the mean-field values
ν� = 1/2 and γ� = 1 are expected [33,59]. Hence, in both
dimensions ν = γ /2. This remarkable relation has the impor-
tant consequence that as z → zc the initial kurtosis diverges
logarithmically for linear polymers at the � point, irrespective
of the dimension. This result suggests that a change in the
quality of the solvent driving dilute linear polymers close to
� point, concomitantly mitigates the non-Gaussianity of the
c.m. diffusion from power-law to logarithmic divergence of
κc.m.. Figure 2 displays the associated PDFs.

Finally, since the ν and γ exponents depend on the em-
bedding dimension d of the system, transitions between
phases with different effective dimension may also alter the
non-Gaussianity of the initial c.m. diffusion. An example is
the well-studied [32,34] adsorption transition from the d =
3 polymer swollen phase to the adsorbed (d = 2) swollen
phase. This is triggered by effective attractive interactions
between monomers and an impenetrable surface. With a
non-negligible mobility of the polymer at the surface, the ad-
sorption transition of linear polymers increases the exponent
of the power-law divergence of κc.m. from 0.012 (d = 3) to
5/32 (d = 2).

We have analytically shown that the polymer critical
state is the hallmark behind the non-Gaussian behavior of
its c.m. To each universality class, identified by the en-
tropic and metric exponents γ and ν, corresponds a specific
Brownian non-Gaussian diffusion of the polymer c.m. which
crosses then over to ordinary Brownian motion above the
polymerization autocorrelation timescale. This finding offers
novel perspectives in stochastic modeling, as the anomalous
stochastic process is not obtained here via a mesoscopic
ansatz, but rather as a natural consequence of a microscopic
foundation which can be worked out in all details and bridges
the universal behavior of polymer systems at equilibrium with
their short-time anomalous dynamical response. The back-
ground we have evoked (different polymer architectures, �,
and adsorption transitions) is commonly operated in polymer
experiments; this implies the exposed anomalous dynamics
to be potentially triggered and highlighted in a variety of
chemostatted experimental conditions.

We acknowledge insightful discussions with R. Metzler.
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sity of Padova BIRD191017 project “Topological statistical
dynamics.”
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