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Impact of chaos on precursors of quantum criticality
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Excited-state quantum phase transitions (ESQPTs) are critical phenomena that generate singularities in the
spectrum of quantum systems. For systems with a classical counterpart, these phenomena have their origin in the
classical limit when the separatrix of an unstable periodic orbit divides phase space into different regions. Using
a semiclassical theory of wave propagation based on the manifolds of unstable periodic orbits, we describe the
quantum states associated with an ESQPT for the quantum standard map: a paradigmatic example of a kicked
quantum system. Moreover, we show that finite-size precursors of ESQPTs shrink as chaos increases due to
the disturbance of the system. This phenomenon is explained through destructive interference between principal
homoclinic orbits.
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Critical phenomena are ubiquitous in physics. They are
characterized by nonanalyticities of measurable observables
and have a profound impact on several aspects of the statistical
and dynamical properties of physical systems [1]. In quan-
tum mechanics, criticality can manifest itself in individual
states due to the discreteness of the spectrum. For instance,
at zero temperature, a quantum phase transition is expressed
by an abrupt change in the ground state when a parame-
ter is varied [2]. When this occurs for excited states, it is
called excited-state quantum phase transition (ESQPT) [3].
It appears when the level density reveals singularities that
have important consequences in the collective behavior of
interacting many-body systems [3]. It also has effects on
decoherence [4,5], quantum thermodynamics [6,7], quantum
information [8], and condensate physics [9,10].

ESQPTs have been studied in autonomous and periodically
driven systems. In the latter, criticality appears in quasienergy
states, which are a direct generalization of ESQPTs for driven
quantum systems [11–13]. The Floquet map represents the
collective variables of a many-body system. In general ES-
QPTs have been related to phase space structures associated
with the classical limit of the system [3]. In classical inte-
grable systems, unstable periodic orbits and their manifolds
make up the separatrices that divide classical phase space into
disjoint areas of regular motion. Moreover, they are sensitive
to disturbances, giving rise to chaotic regions when the system
is perturbed; that is, their breakdown generates homoclinic
and heteroclinic tangles which are the originating causes of
chaos [14]. Although some consequences of the destruction
of these structures have been studied in connection with ES-
QPT [3,15–20], the main aspects of this process have yet to
be understood.

Semiclassical theories have been the bridge between the
classical and quantum worlds and have had extraordinary
success in explaining various phenomena [21]. For integrable
or strongly chaotic motions, semiclassical theories are much
more developed [22] than in the case of nearly integrable
or mixed dynamics, where islands of stability coexist with
chaotic layers [23]. At the same time, ESQPTs have been
described using semiclassical torus quantization near a sep-
aratrix, but this technique works for integrable systems but
fails when chaos appears. In this case the separatrix associ-
ated with the unstable periodic orbit (PO) breaks, and new
invariant structures which are robust with respect to perturba-
tions emerge: the stable and unstable manifolds. Recently, a
semiclassical theory of wave propagation based on stable and
unstable manifolds of unstable POs was developed [24–26].
This method has been proven to be very efficient for the calcu-
lation of high energy levels of strongly chaotic systems [27],
but it has yet to be tested (used) in the mixed regime.

In this Letter we use this state-of-the-art semiclassical
method to show that the advent of chaos in the classical
model can result in the weakening of finite-size precursors of
ESQPTs. We find a simple semiclassical criterion specifying
the transition from the finite-size manifestation of quantum
criticality to quantum chaos. We predict when this effect oc-
curs depending on the size of the disturbance that changes the
ratio between a canonical invariant of the principal homoclinic
orbits and the Planck constant in our model (or the inverse of
the number of particles in many-body systems). The decrease
of finite-size precursors of ESQPTs is produced by the inter-
ference of principal homoclinic orbits, giving rise to scarred
states—i.e., states with accumulated probability density—on
satellite POs related to the homoclinic motion [28,29].
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FIG. 1. (a)–(f) Classical phase space for the standard map for
k = 0.001, 0.2, 0.5, 1, 1.5, and 1.8, showing the stable (blue/dark
gray printed, line) and unstable (red/light gray printed, line) man-
ifolds of z0. (e) displays the first (circles) and second (triangles)
homoclinic orbits of z0. (f) shows a black area indicating the invariant
�S. The middle panel shows a correlation diagram for the eigen-
phases of the quantized standard map with N = 158 as a function
of the perturbation parameter k; high intensities |ci|2 > 5 × 10−3 are
plotted in color. Darker shade corresponds to larger |ci|2.

For our calculations we have used a map that stems from
a periodically kicked Hamiltonian, the paradigmatic standard
map [30]. However, it is important to highlight that the con-
clusions reached have general validity. The standard map is a
two-dimensional area-preserving map depending on a pertur-
bation parameter k. This map evolves point z = (q, p) in the
unit torus to point z′ = (q′, p′) by the following rule:

p′ = p + k

2π
sin (2πq), mod1

q′ = p′ + q, mod1. (1)

This map is generated by the time-dependent Hamiltonian
H (q, p, t ) = p2/2 + k/(2π )2 cos(2πq)

∑
δ(t − n). For small

k ≈ 0 the map is almost integrable, and as k increases, invari-
ant tori begin to break. For very large k there are no visible
regular islands (although small ones do appear for certain
values); Fig. 1 shows phase portraits for k = 0.001, 0.2, 0.5, 1,
1.5, and 1.8. Upon quantization the map is a unitary operator
that can be expressed as a product of two kicks,

Û = exp

(
−i

p̂2

2h̄

)
exp

(
−i

k

h̄
cos(2π q̂)

)
. (2)

The phase space topology implies a finite Hilbert space of
dimension N and effective Planck constant h̄ = 1/(2πN ).

Therefore, Û is represented by an N × N matrix, and after
diagonalization, we analyze spectral properties in terms of
the set of eigenphases φi corresponding to the eigenstates
Û |φi〉 = eiφi |φi〉. We emphasize that the parameter N corre-
sponds to the particle number in a many-body system [11].

We now consider precursors of critical behavior in the
quasienergy spectrum associated with the separatrix generated
by the unstable PO of period 1 at z0 = (0, 0). Such an invariant
structure is broken even for an arbitrarily small perturbation,
and then a chaotic layer dominated by the stable and unstable
manifolds of z0 emerges [see Figs. 1(a)–1(f)]. In order to
study eigenfunctions localized on invariant curves influenced
by z0, we compute |z0〉 = ∑

ci |φi〉, with |z0〉 being a suitable
normalized wave packet centered at z0. This wave packet is
the map version of a Gaussian beam construction on unstable
POs, named the resonance of the PO [31] (see the Supplemen-
tal Material [32]).

In Fig. 1 (central frame) we show the eigenphases as a
function of the perturbation k (gray lines) for N = 158. The
thick colored lines mark eigenstates with high (darker shade)
intensity |ci|2. One clearly sees the emergence of an ES-
QPT precursor spectral structure in the form of Demkov-type
avoided level crossings [33,34] that follows the states with
the greatest overlap with the resonance of z0 (darker shade
in Fig. 1). This structure follows a straight line, which can be
identified with the Bohr-Sommerfeld (BS) phase φBS. The BS
phase of |z0〉 is a semiclassical estimate for the phase of the
matrix element 〈z0|Û |z0〉, resulting in [35]

φBS =
(

−kN

2π

)
mod(2π )

�
∑

|ci|2φ̃i, (3)

and the corresponding phase dispersion is given by
σφ = λ/

√
2 � [

∑ |ci|2(φ̃i − φBS)2]1/2, with λ = ln(1 +
k/2 +

√
k + k2/4) being the stability exponent of z0. Here

φ̃i is just φi or φi ± 2π ; one selects the value that minimizes
(φ̃i − φBS)2. This nonisolated avoided crossing structure is
observed in several models of many-body systems [3]. It can
also be observed in the elliptic billiard [34] and molecular
systems [33,36]. Figure 1 also shows that as the perturbation
grows, this structure gradually disappears, and for k � 1.4
it is difficult to observe the sequence of Demkov avoided
crossings. Understanding the physical process involved in the
destruction of this structure is the most important achievement
of this Letter. We emphasize that the expressions obtained for
φBS and σφ depend on only the properties of the neighborhood
of z0 because they are associated with the short time dynamics
up to the Ehrenfest time. Nevertheless, later we will compute
the inverse participation ratio of the intensities |ci|2, which
depends on the long time dynamics up to the Heisenberg
time, and then as we will show, a clear transition to quantum
chaos will be appreciated.

To understand the mechanism associated with the avoided
crossings we first notice that for a small perturbation, the
separatrix divides the phase space into two regions where the
motion is a rotation or a libration, just like in a planar pendu-
lum. Then, as we move adiabatically on an eigenphase with
high intensity that passes through an avoided crossing, the
corresponding eigenstate, previously localized on an invariant
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FIG. 2. Manifestation of ESQPT in the eigenphase spectrum of
the standard map. Top left: Difference φi+1 − φi vs φi for k = 0.5
and N = 158. Circles and crosses indicate quantum and semiclassi-
cal calculations, respectively. The inset shows η(x) of Eq. (4). Top
right: Correlation diagram for N = 158 in the range k = (0.3, 0.7).
The thick colored lines represent |ci|2 > 5 × 10−6. Bottom: Several
eigenstates of the ESQPT in the Hussimi representation.

curve corresponding to rotation, transitions to an invariant
curve that corresponds to libration [32].

Let us discuss the structure of eigenfunctions and eigen-
phases with the highest intensities |ci|2 at k = 0.5, a value of
perturbation far from the breakup region (see Fig. 1). In the
top right panel of Fig. 2 the eigenphases with the highest |ci|2
are marked with red circles, while in the top left panel we
show the neighbor spacings φi+1 − φi vs φi. These spacings
have a minimum at φBS, with this bunching of levels being a
characteristic feature for ESQPT; that is, quantum criticality
is expressed by the accumulation of levels around the sep-
aratrix [8]. To compute the spacings the phases need to be
unfolded; that is, if φi is in a line coming from a previous
(subsequent) Demkov structure, we add (subtract) 2π . The
corresponding eigenfunctions are localized on invariant tori
close to the separatrix; the bottom panels of Fig. 2 display the
Husimi function [37] of these states. The state closest to the
separatrix, labeled 0, is highly localized on the periodic point
z0 due to the dynamics on the separatrix. States labeled with
positive integers are localized on tori with libration motion,
and those labeled with negative integers are on tori with rota-
tion motion.

Now we will obtain the previous result at a semiclassical
level by using a technique based on the stable and unstable
manifolds of z0 (thick red and blue lines in Fig. 1). The
intersection of these manifolds defines the set of homoclinic
orbits (HOs) of z0. Each HO consists of an infinite sequence of
points that accumulate at z0. The main accomplishment of this
theory is the ability to compute a semiclassical autocorrelation
function of the wave packet centered on a PO, which is written
as a sum over HOs, each one characterized by four canonical
invariants (see [27,32] for more details). Then, the Fourier

transform of the autocorrelation function gives a smoothing of
the spectral function 	(φ) = ∑ |ci|2δ(φ − φ̃i ), expressed in
terms of the product of two real functions F̃ (φ)
(φ) [32]. The
function F̃ (φ) is positive definite and describes the envelope
of the intensities, with a maximum value at φ = φBS. As we
are interested here only in the semiclassical determination of
φ̃i, this function is not relevant for our analysis. In contrast,
the function 
(φ) is strongly oscillatory, and its maxima give
us the eigenphases influenced by |z0〉. This function is a sum
over HOs, where each term is the product of an amplitude and
the cosine of the phase [27],

ψ j (φ) = S j/h̄ − μ jπ/2 + xη(x) + x ln(Aj/h̄), (4)

where x = (φBS − φ)/λ, S j is the homoclinic action, μ j is the
homoclinic Maslov index, and Aj is the relevance. Moreover,
η(x) is a real even function with the only maximum at the
origin (see the inset in the top left panel of Fig. 2 and further
details in [32]). The evolution up to the Heisenberg time
requires an enormous number of terms in the sum of 
(φ).
Nevertheless, we want to describe eigenfunctions localized
on invariant curves close to the broken separatrix, which are
well defined in terms of an evolution up to the Ehrenfest
time. Therefore, only a few HOs are sufficient. Using a large
number of HOs in this case does not provide new information,
and the only effect is to reduce the width of the smoothed
delta functions defining the eigenphases. Furthermore, for
small and moderated perturbations the amplitudes associated
with the first two HOs are much greater than the next ones,
and consequently, we will restrict the analysis to these two.
These amplitudes are very similar in the considered range
of k; e.g., the relative difference is 3.9 × 10−5 for k = 0.5
and goes to zero with k. Then to evaluate the maxima of

(φ) we include only the cosine factors 
(φ) ∝ cos(ψ1) +
cos(ψ2). To compute this function we notice that the first
HO is marked with circles in Fig. 1(e), and the second one
is marked with triangles. The homoclinic Maslov indices are
μ1 = 0 and μ2 = 1 for all k. For k = 0.5, S = (S1 + S2)/2 ≈
0.142258, �S = S2 − S1 ≈ 1.2 × 10−5, A = (A1 + A2)/2 ≈
0.53998, and �A = A2 − A1 ≈ 5.8 × 10−4.

We express cos(ψ1) + cos(ψ2) = 2 cos(ψ ) cos(�ψ/2),
with ψ = (ψ1 + ψ2)/2 and �ψ = ψ2 − ψ1. To leading or-
der in the small quantity ε = �A/A (ε goes to zero with k)
we can consider �ψ = �S/h̄ − π/2 + O(ε) to be a constant
(independent of φ). Hence, the maxima of the sum of cosines
can be found (to leading order) with the quantization condition
(cos ψ = 1)

ψ = S/h̄ − π/4 + xη(x) + x ln(A/h̄) = 2πn. (5)

This condition for finding the eigenphases that participate
in the ESQPT is important because it associates each so-
lution with the quantum number n, an essential ingredient
when the perturbation goes to zero. The integer providing
the eigenphase with the smallest |x| is n0 = 22, correspond-
ing to the one labeled 0 in Fig. 2, and the solution with
n = n0 − l is the eigenphase labeled l . The top left panel
of Fig. 2 shows that quantum and semiclassical calculations
are very close. Furthermore, we have verified the accuracy
of the eigenphases obtained from Eq. (5) for N up to 3000,
finding an error O(1/N ). However, below we show that there
is a critical value of N after which the validity of Eq. (5) no
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FIG. 3. Normalized running average of the IPR of |z0〉 vs k/kbreak

for N = 200, 400, 1000, 3000, 5000, and 10 000. For all the curves
a running average was performed to smooth out the fluctuations.
Inset: kbreak vs N (see text for details). The normalization factor was
empirically found to behave as ξN ≈ 3/(3.75 + ln N ).

longer holds. Finally, we notice that an estimate of the mean
nearest-neighbor spacing for the solutions of Eq. (5) is given
by �φ ∼ λ/ ln(A/h̄). Then, the number of eigenstates influ-
enced by |z0〉 results in 2σφ/�φ ∝ ln(A/h̄), and consequently,
the phenomenon of ESQPT introduces a logarithmic diver-
gence for the mean density of states at φBS in the semiclassical
limit.

The quantization condition of Eq. (5) works over a wide
range of perturbations up to k ≈ 1.1 for the N = 158 case
considered in Figs. 1 (central panel) and 2. Even though
throughout this transition the chaotic region is (classically)
growing, it is not large enough to be detected by quantum
mechanics. This is evidence that the existence of classical
chaos does not necessarily affect fine-size precursors. For
larger k it is difficult to associate semiclassical solutions with
quantum eigenphases, and for k ≈ 1.6 the finite-size mani-
festation of ESQPT is destroyed. Due to the fact that this
structure mainly depends on the first two HOs, it is expected
that the destruction of the precursor of ESQPT happens when
the contributions of these HOs cancel each other out. This
criterion of strong perturbation occurs for cos(�ψ/2) = 0, or,
equivalently, for �S/h̄ = 3π/2. The functional dependence
of �S on k allows us to define a perturbation value kbreak

where the ESQTP breaks up. Based on the definition of �S
[see shaded area in Fig. 1(f)], we have obtained the following
expression [32]:

�S(k) ≈ 6π
(
1 − 0.341k1/3

)
exp

(
− π2

√
k

)
, (6)

with the exponential factor extracted from Ref. [38]. We ob-
serve that a characteristic of the breakup region is a sudden
proliferation of contributing eigenphases. This effect is de-
tected by a measure of localization of |z0〉 in the basis |φi〉
such as the inverse participation ratio ξ = ∑ |ci|4. In Fig. 3
we show ξ/ξN , where ξN is a normalization factor so that
ξ/ξN = 1 for k → 0, as a function of the renormalized per-
turbation k/kbreak for several values of N [32]. The evidence
of full delocalization for k/kbreak ≈ 1 supports the accuracy
of our ESQPT breakup estimation. In the inset of Fig. 3 we
show kbreak as a function of N , which defines a phase diagram

FIG. 4. Top: Intensities |ci|2 of |z0〉 for k = 1.447 and N = 158;
the inset shows the case k = 0.5 and N = 158. Bottom: Husimi
representation of eigenstates with high intensities. Panel 3 shows a
satellite PO (crosses) of the first HO, and panel 4 shows a satellite
PO (pluses) of the second HO.

showing a region in which traces of ESQPT remain and a
region where the precursors of criticality are fully destroyed. It
can be clearly seen that kbreak goes to zero in the semiclassical
limit (N → ∞).

Let us finally discuss qualitatively the transition process
from localization to delocalization for |z0〉. The top panel
of Fig. 4 displays |ci|2 for N = 158 and k = 1.447 close to
kbreak (158) ≈ 1.62, showing a much more complicated sys-
tematic than the intensities for k = 0.5 (shown in the inset).
Intensities 1 and 2 are predicted for consecutive solutions
of Eq. (5) with n = 37 and n = 38, respectively, while the
associated states are reminiscent of states 0 and −1 in Fig. 2.
The intensity labeled 3 approximately satisfies the equation
ψ1 = 2πn1, with n1 = 38, and state 3 shows a strong scar [27]
of the PO, displayed by crosses; this PO is a satellite PO of the
first HO [39]. Equivalently, intensity 4 verifies the equation
ψ2 = 2πn2, with n2 = 39, and state 4 shows a strong scar
of the PO, displayed by pluses, which is a satellite of the
second HO. Finally, intensities 5 and 6 are not close to any of
the three equations mentioned before, and both states exhibit
characteristics of the three structures discussed in the previous
panels. This description suggests that for k close to kbreak,
the phenomenon of scarring manifests clearly on satellite
POs of the principal HOs, providing a signature of chaos
at the quantum level. One observes a competition between
two processes: coherent interference between HOs in order to
generate ESQPT states and destructive interference between
HOs giving rise to scars of satellite POs.

In summary, the effect of a perturbation on the finite-size
precursors of ESQPTs was analyzed. We have demon-
strated that the advent of chaos can decrease the quantum
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manifestations of an ESQPT whenever quantum mechanics is
able to detect the small scale structures generated by chaos. In
this sense classical chaos is a necessary but not sufficient con-
dition to affect finite-size precursors of ESQPT. We revealed
that the mechanism of this phenomenon is the destructive in-
terference between principal homoclinic orbits of the unstable
periodic trajectory that generates criticality. Moreover, a semi-
classical criterion specifying a transition to quantum chaos
was established. Finally, we would like to emphasize the use
of manifolds of unstable POs for the semiclassical description

of a quantum perturbation. These Lagrangian manifolds, un-
like tori, are structurally stable and for this reason are suitable
for analyzing the effect of perturbations over the system.
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